
Appendix

Proof of Theorem 1. We give the proof for da+. The proofs for da1 and da0 are given in

the eAppendix (http://links.lww.com).
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Proof of Theorems 2 and 3. See eAppendix (http://links.lww.com) for details.

Relation to Other Sensitivity Analysis Techniques

Relation to the Sensitivity Analysis of Rosenbaum and Rubin (1983)

In the sensitivity analysis proposed by Rosenbaum and Rubin,6 they consider a binary

outcome Y , binary treatment A, covariate(s) X (in their application, X indicates propensity

score strata) and hypothesize a binary unmeasured confounder U such that Ya
a
AjX;U .
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The researcher speci�es sensitivity parameters

�x = P (U = 1jx)

�x = log(
P (A = 0jU = 1; X = x)

1� P (A = 0jU = 1; X = x)
=
P (A = 0jU = 0; X = x)

1� P (A = 0jU = 0; X = x)
)

�xt = log(
P (Y = 0jU = 1; A = t;X = x)

1� P (Y = 0jU = 1; A = t;X = x)
=
P (Y = 0jU = 0; A = t;X = x)

1� P (Y = 0jU = 0; A = t;X = x)
):

For speci�ed values of �x, �x and �xt, maximum likelihood estimates of the causal e¤ect

can then be obtained; sensitivity analysis proceeds by specifying di¤erent values of the

parameters �x, �x and �xt. In their application (described above), �x, �x and �xt are

assumed to be constant over x. As noted above, assuming no unmeasured confounding the

estimate of the causal e¤ect is 0:31. Rosenbaum and Rubin6 consider values for � (the

overall prevalence of U) of 0:1, 0:5 and 0:9. They �rst consider � = 2 and values �t=0

and �t=1 either 1
2
or 2; under this set of scenarios, the smallest causal e¤ect estimate, an

estimate of 0:28, is obtained when the prevalence of U is 0:5 and when U doubles the odds

of surgery (� = 2) and also doubles the odds of improvement (�t=0 = 2 and �t=1 = 2). They

then consider � = 3 and values �t=0 and �t=1 either 1
3
or 3; under this set of scenarios, the

smallest causal e¤ect estimate, an estimate of 0:25, is obtained when the prevalence of U is

0:5 and when U triples the odds of surgery (� = 3) and also triples the odds of improvement

(�t=0 = 3 and �t=1 = 3). They conclude that for an unobserved confounder to explain the

outcome di¤erence comparing medical and surgical patients, it would have to more than

triple the odds of surgery and of improvement. Admittedly, this seems unlikely. We saw

above, however, that when the sensitivity analysis is conducted on a risk-di¤erence scale

rather than an odds-ratio scale, although the degree of uncontrolled confounding that would

be needed to explain away the estimate of the causal e¤ect is still unlikely, the numbers are

perhaps slightly less inconceivable.

The bias formula for da+ in Theorem 1 can also be used in a reasonably straightforward

way to replicate the odds-ratio sensitivity analysis of Rosenbaum and Rubin.6 Let a0 = 0
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and a1 = 1 and let u = 1 and u0 = 0. For speci�ed values of the sensitivity-analysis

parameters �x, �x and �xt in the approach proposed by Rosenbaum and Rubin we will show

how to obtain the quantities needed for the application of the formula for da+ in Theorem

1, namely, (i) fE(Y ja1; x; u) � E(Y ja1; x; u0)g and fE(Y ja0; x; u) � E(Y ja0; x; u0)g and (ii)

fP (uja1; x)�P (ujx)g and fP (uja0; x)�P (ujx)g. Given �x and �x, we can use the equations

�x = log(
P (a0jx; u)

1� P (a0jx; u)
=
P (a0jx; u0)

1� P (a0jx; u0)
)

P (a0jx) = P (a0jx; u)P (ujx) + P (a0jx; u0)P (u0jx)

to solve for P (a0jx; u) and P (a0jx; u0); note that P (ujx) = �x and P (u0jx) = 1��x. It then

follows from Bayes�rule that

P (uja0; x) =
P (a0jx; u)�x
P (a0jx)

:

A similar procedure can be used to obtain P (uja1; x) and thus also P (ujx). Furthermore to

obtain fE(Y ja1; x; u)� E(Y ja1; x; u0)g and fE(Y ja0; x; u)� E(Y ja0; x; u0)g, we can use the

equations

�x0 = log(
1� E(Y ja0; x; u)
E(Y ja0; x; u)

=
1� E(Y ja0; x; u0)
E(Y ja0; x; u0)

)

E(Y; U ja0; x) = E(Y ja0; x; u)P (uja0; x) + E(Y ja0; x; u0)P (u0ja0; x)

to solve for E(Y ja0; x; u) and E(Y ja0; x; u0); note that P (uja0; x) and P (u0ja0; x) have already

been obtained. A similar procedure can be used to obtain E(Y ja1; x; u) and E(Y ja1; x; u0).

We can then proceed by using the bias formula for da+ .

Although the bias formula for da+ in Theorem 1 can be used to replicate the odds-ratio

sensitivity analysis of Rosenbaum and Rubin,6 the formula in Theorem 1 is considerably

more general since, as we have seen in the applications above, it can be applied to binary

or continuous outcomes and to binary, categorical or continuous confounding variables and
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treatment variables. The result of Rosenbaum and Rubin was restricted to binary outcomes.

Relation to Sensitivity Analysis of Lin et al. (1998)

Lin et al.11 considered settings including binary and continuous outcomes Y , binary treat-

ment A, and binary and continuous unmeasured confounding variable U . They compared

the two regression models

E(Y ja; u; x) = g(�+ �a+ 
u+ �0x)

and

E(Y ja; x) = g(�� + ��a+ ��0x):

for linear, log-linear and logistic links g and derived algebraic formulas to relate � and ��

under two possible alternative assumptions. Their �rst assumption was that U and X were

conditionally independent givenA. Their second possible assumption was that the mean of U

conditional on A andX was additive in A andX i.e. �a;x := E(U jA = a;X = x) = �a+q(x).

Hernán and Robins45 showed that the �rst assumption concerning the independence of U

and X conditional on A could not be satis�ed if both U and X were causes of A, and thus

that the results of Lin et al.11 concerning the conditional independence assumption could not

be employed in those contexts in which the formulas would be most useful, i.e. when both U

and X contained confounding variables. VanderWeele20 showed that the second assumption

of Lin et al. concerning additivity held for an entire family of distributions even if both U

andX were causes of A. Under this second assumption of additivity, Lin et al.11 showed that

when the conditional distribution of U given A and X is normal with mean �a;x = �a+ q(x)

then the regression coe¢ cients � and �� were related by

� = �� � 
(�1 � �0)

for linear and log-linear links and that this relationship held approximately for a logistic link.
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Lin et al.11 also noted that this relationship would hold for linear link (but not log-linear

or logistic) if U were binary (rather than normally distributed) with a conditional mean

�a;x = �a + q(x).

The results for a linear link follow immediately from the bias formula for da+(x) by

replacing expressions of the form E(Y ja; u; x) with the linear combination of regression

coe¢ cients and by using E(U ja; x) = �a+q(x). See also Cox and McCullagh.32 Furthermore,

from the bias formula for da+ it also follows that to obtain � = �� � 
(�1 � �0), the

unmeasured confounding variable U does not need to be binary nor to be conditionally

normally distribution; all that is needed to obtain � = ��� 
(�1��0), or more generally to

obtain � = �� � 
(�a1 � �a0), is that the conditional mean of U given X and A is given by

�a;x = �a + q(x). Not only do all of these results for linear regression follow immediately

from Theorem 1, but the bias formula for da+(x) can in fact be used to relax the additivity

assumption. Without making an assumption about additivity, it follows immediately from

the bias formula for da+ that � and �
� are related by:

� = �� � 

Z
x

Z
u

fdP (uja1; x)� dP (uja0; x)gdP (x):

The bias formulas in Theorem 1 are yet more general than this in that, as we saw in the

applications above, unlike the results of Lin et al.11 and Imbens,14 Theorem 1 does not

presuppose a regression context; furthermore it does not assume that there are no interactions

between A, U and X, and does not presuppose any particular functional form.

Relation to Prior External Adjustment Results

As noted above, the bias formulas in Theorem 1 are a generalization of prior bias for-

mulas in the external adjustment literature.1;8;21 This prior external adjustment literature

generally considered the setting of a dichotomous treatment, a dichotomous outcome and a

categorical unmeasured covariate. If in Theorem 1, X = ?, Y is dichotomous and U is cat-

egorical, the formulas given above reduce to the results for the risk di¤erence in Kitagawa1
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and Arah et al.21 The bias formula results given here thus generalize these prior external ad-

justment results in two ways. First our results apply not only to dichotomous outcomes but

also to continuous outcomes. Second, our results allow for control of some set of measured

covariates X. Whereas prior risk di¤erence results compared the average outcome di¤er-

ence unadjusted for X, E(Y ja1)�E(Y ja0), to the causal e¤ect E(Ya1)�E(Ya0), our results

compare the average outcome di¤erence adjusted for X,
X

x
fE(Y ja1; x)�E(Y ja0; x)gP (x),

to the causal e¤ect E(Ya1) � E(Ya0). Most of the prior external adjustment literature ef-

fectively presupposed that the analysis was within strata of, or conditional on, X (or that

there were no measured covariates to control for). In order to combine results over strata

of X, Lee and Wang46 and Flanders and Khoury9 for instance propose an assumption of

homogeneity of e¤ects across of X; Greenland15;16 and Arah et al.21 discuss Bayesian and

Monte Carlo method approaches; using risk ratios, Flanders and Khoury9 also derive an

external adjustment formula in cases with both a measured and an unmeasured covariate.
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