

Figure S1: Western blot analyses showing the level of expression of Rho and the overproduced protein fragments. Cells harboring the Doxy-regulated Rho expression plasmid and a 2 μ construct expressing constitutively the indicated HA-tagged Pcf11 and Nrd1 protein-fragments (Pcf11: 1-426 and 1-125; Nrd1: 1-448 and 1-151) were grown under Rho-induced (+) or Rho-repressed (-) conditions. The proteins were extracted in lysis buffer, fractionated on a 10% polyacrylamide gel and analyzed by immunobloting using anti-HA antibodies (α -HA from Invitrogen) to detect the overproduced protein-fragments or custom made anti-Rho polyclonal antibodies (α -Rho from Eurogentec) to detect Rho. The proteins were visualized with a secondary antibody using a chemiluminescence detection kit from Invitrogen. Purified bacterial Rho protein (lanes indicated by asterisks) run in parallel was used as control. Protein molecular weights, according to ColorPlus prestained protein marker (New England Biolabs) run in parallel, are shown on the left of the gels.

Figure S2: ChIP analyses of Nrd1 recruitment across the PGK1 locus

(Upper panel) Schematic representation of the *PGK1* gene with the horizontal bars denoting the positions of the PCR products used in the ChIP analyses. (Lower panel) Quantifications of the fold enrichment for *PGK1* DNA in Nrd1-TAP immunoprecipitates from cells expressing Rho (+Rho) or not (- Rho) and co-transformed with either the empty 2μ vector vector for the assays without suppressor or the plasmids over-expressing the suppressors Nrd1 (1-448) or Pcf11 (1-300). The « no TAG » control strain is W303 transformed with the empty 2μ vector and either the (- Rho) or the (+Rho) plasmids. Immunoprecipitated samples (output) were normalized to input. The average of three independent experiments is shown with error bars representing standard deviations.

Table S1 - Saccharomyces cerevisiae strains used in this study

Strain name	Genotype	Source
BMA41	MAT α ade2-1 ura3-1 leu2-3,112 his3-11,15 trp1 Δ can1-100	Baudin-Baillieu et al.,1997*
W303	MAT α ade2-1 ura3-1 leu2-3,112 his3-11,15 trp1-1 can1-100	Thomas and Rothstein, 1989**
∆rrp6	as BMA41 with <i>rrp6</i> ∆:: <i>KAN</i>	Mosrin-Huaman et al., 2009
DLY1144	as W303 with nrd1∆::KAN [pRS415-NRD1-HA, LEU2, CEN/ARS]	D. Libri laboratory
DLY1146	as W303 with nrd1∆::KAN [pRS415-nrd1-102-HA, LEU2, CEN/ARS]	D. Libri laboratory
NHY001	as W303 with nrd1∆::KAN [pAG415-NRD1, LEU2, CEN/ARS]	This study
YNH026	as W303 with nrd1∆::KAN [pAG415-nrd1∆1-151, LEU2, CEN/ARS]	This study
YPN102	as W303 with <i>nab3-11</i>	P. Thuriaux laboratory
DLY913	as W303 with pcf11A::TRP1 [pNOPL-PCF11, LEU2, CEN/ARS]	D. Libri laboratory
DLY915	as W303 with pcf11A::TRP1 [pNOPL-pcf11-13, LEU2, CEN/ARS]	D. Libri laboratory
DLY914	as W303 with pcf11∆::TRP1 [pNOPL-pcf11-2, LEU2, CEN/ARS]	D. Libri laboratory
rpo21-∆104	as W303 with <i>rpo21-</i> ∆104	P. Thuriaux laboratory
DLY1124	as W303 with NRD1-TAP::HIS3	D. Libri laboratory
DLY388	as W303 with RRP41-TAP::KAN	D. Libri laboratory
DLY391	as W303 with RRP4-TAP::HIS3	D. Libri laboratory
DLY269	as W303 with RRP6-TAP::HIS3	D. Libri laboratory

*Baudin-Baillieu, A., Guillemet, E., Cullin, C., and Lacroute, F. (1997). Construction of a yeast strain deleted for the TRP1 promoter and coding region that enhances the efficiency of the polymerase chain reaction-disruption method. Yeast *13*, 353-356.

**Thomas, B.J., and Rothstein, R. (1989). The genetic control of direct-repeat recombination in Saccharomyces: the effect of rad52 and rad1 on mitotic recombination at GAL10, a transcriptionally regulated gene. Genetics *123*, 725-738.

 $\textbf{Table S2} \ \text{-} \ \textbf{Plasmids used in this study}$

Plasmid name	Yeast sequences	Rho expression	Backbone vector	Source
pCM185	CEN TRP1			Euroscarf
pCM189	CEN URA3			Euroscarf
pCM185-Rho	CEN TRP1	pTetO7::Rho-NLS	pCM185	Mosrin-Huaman et al., 2009
pCM189-Rho	CEN URA3	pTetO ₇ ::Rho-NLS	pCM189	This study
pCM189-Rho-KE	CEN URA3	pTetO ₇ ::Rho-KE-NLS	pCM189	This study
pRS415- <i>NRD1</i> -HA	CEN LEU2 NRD1		pRS415	D.Libri laboratory
pRS415- <i>nrd1-10</i> 2-HA	CEN LEU2 nrd1-102		pRS415	D.Libri laboratory
pNOPL [*] - <i>PCF11</i>	CEN LEU2 PCF11		pRS315-2XProtA-TEV	D.Libri laboratory
pNOPL <i>pcf11-2</i>	CEN LEU2 pcf11-2		pRS315-2XProtA-TEV	D.Libri laboratory
pNOPL [^] - <i>pcf11-13</i>	CEN LEU2 pcf11-13		pRS315-2XProtA-TEV	D.Libri laboratory
pAG425GPD	2µ LEU2		pAG425GPD-ccdB	Addgene
FL (<i>PCF11</i>)	2µ LEU2 PCF11		pAG425GPD-ccdB	Mosrin-Huaman et al., 2009
1-426	2µ LEU2 pcf11 1-426		pAG425GPD-ccdB	This study
1-300	2µ LEU2 pcf11 1-300		pAG425GPD-ccdB	This study
1-145	2µ LEU2 pcf11 1-145		pAG425GPD-ccdB	This study
1-125	2µ LEU2 pcf11 1-125		pAG425GPD-ccdB	This study
∆CID (<i>PCF11</i>)	2µ LEU2 pcf11∆1-125		pAG425GPD-ccdB	This study
M1	2µ LEU2 pcf11 1-145 M1 (A66D)		1-145	This study
M2	2µ LEU2 pcf11 1-145 M2 (D68A, S69A)		1-145	This study
M3	2µ LEU2 pcf11 1-145 M3 (D68A, S69A, I70A)		1-145	This study
FL (<i>NRD1</i>)	2µ LEU2 NRD1		pAG425GPD-ccdB	This study
1-151	2µ LEU2 nrd1 1-151		pAG425GPD-ccdB	This study
1-178	2µ LEU2 nrd1 1-178		pAG425GPD-ccdB	This study
1-369	2µ LEU2 nrd1 1-369		pAG425GPD-ccdB	This study
1-448	2µ LEU2 nrd1 1-448		pAG425GPD-ccdB	This study
∆RRM	2µ LEU2 nrd1∆340-410		pAG425GPD-ccdB	This study
NRD1	ČEN LEU2 NRD1		pAG415GPD-ccdB	This study
∆CID (<i>NRD1</i>)	CEN LEU2 nrd1∆1-151		pAG415GPD-ccdB	This study

*Senger, B., Simos, G., Bischoff, F.R., Podtelejnikov, A., Mann M., and Hurt, E. (1998). Mtr10p functions as a nuclear import receptor for the mRNA-binding protein Npl3p. EMBO J 17, 2196-2207.

Plasmid ORF Forward Reverse name 5'GGGGACCACTTTGTACAAGAAAGCTGGGTCCTATCATTACTAC 1-426 TTACCACACACGCTACATTTATTTG 3' 5'GGGGACCACTTTGTACAAGAAAGCTGGGTCCTATCATTACTAT 1-300 TCAACGCCAGAAATATTACCAAAAAGAG 3' 5'GGGGACAAGTTTGTACAAAAAGCAGGCTCCACCATGGA TCACGACACAGAAGTTATAGT 3' 5'GGGGACCACTTTGTACAAGAAAGCTGGGTCCTATCATTAGTTT 1-145 TTCTGGTGGAGACGA 3' 5'GGGGACCACTTTGTACAAGAAAGCTGGGTCCTATCATTACTA 1-125 GCCTTCAAACAGAGG 3' PCF11 ΔCID 5'GGGGACAAGTTTGTACAAAAAGCAGGCTCCACCATGTC 5'GGGGACCACTTTGTACAAGAAAGCTGGGTCCTATCACTATTAT (PCF11) AGCACTGGAGAAAATTG 3' TTTGTGACCAATTTC 3' 5'AAGCTATACGCTTTTTATGACTTGGACTCCATTTGTAAG 3' M1 5'CTTACAAATGGAGTCCAAGTCATAAAAAGCGTATAGCTT3' 5'CGCTTTTTATGCCTTGGCCGCCATTTGTAAGAATGTTGG 3' 5'CCAACATTCTTACAAATGGCGGCCAAGGCATAAAAAGCG 3' M2 5'CCAACATTCTTACAAGCGGCGGCCAAGGCATAAAAAGCG 3' М3 5'CGCTTTTTATGCCTTGGCCGCCGCTTGTAAGAATGTTGG 3' 5'GGGGACAAGTTTGTACAAAAAGCAGGCTCCACCATGCA NRD1 GCAGGACGACGATTTTC 3' 5'GGGGACCACTTTGTACAAGAAAGCTGGGTCCTAGCAAATAAA GGGTGGAGTAAAG 3' 5'GGGGACAAGTTTGTACAAAAAGCAGGCTCCACCATGGA ΔCID (NRD1) CATATCGAATAACACC 3' 5'GGGGACCACTTTGTACAAGAAAGCTGGGTCCTATTATCAAGC 1-151 AAAGCATTTTGACCTGATGGCG 3' 5'GGGGACCACTTTGTACAAGAAAGCTGGGTCCTATCATTACAA 1-178 GATTTGTTTCGACCTCTGCTTGGG 3' As NRD1 plasmid NRD1 5'GGGGGACCACTTTGTACAAGAAAGCTGGGTCCTATCATTAAATG 1-369 ACGCTTTGTACTTCAGCAAAAGG 3' 5'GGGGACCACTTTGTACAAGAAAGCTGGGTCCTATCATTAACCA 1-448 GAAGTGCCACCCCATTGCGC 3' 5'-GGTCCAAGAGATTGTTGTGACTATCAACACGGTTACAGTATT 5'GATAGTCACAACAATCTCTTGGACCACGGCTGTAGACTTTAATA ΔRRM ATTCCTATGCACAGGC 3' TATCTGGTGG 3'

Table S3 - Primers used in this study for the construction of overexpression plasmids (full length, deleted, and mutated ORFs)

Bold sequences correspond to the Gateway attB-attachment sites and the stop codons whenever necessary. Italics and underlined sequences represent the linker nucleotides and the modified codons, respectively.

Table S4 - Oligonucleotides and amplicons used in the Northern blot analyses

Targets	Amplicons, bp	Oligonucleotide sequence	
PGK1	NA	5' CCTTACCGAAGTACTTCAATTCC 3'	
18S	NA	5' GGTTAAGGTCTCGTT 3'	
5.8S	NA	5' TTTCGCTGCGTTCTTCATC 3'	
		Forward	Reverse
PMA1	631	5' GATGGTCGTATTGTCACTGAAGAC 3'	5' CAATAGCATCCAAACCCTTCTTC 3'

NA, not applicable

Table S5 – PMA1 and PGK1 primers used in the ChIP experiments

Alias	Name	Sequence
PM1 _	F-151	5' CAATCTAATCACGGTGTCGACGACGAAGAC 3'
	R-390	5' GGCTTCCATAACGAATTGAATTGGACCGAC 3'
PM2 _	F-1010	5' GTTTGCCAGCTGTCGTTACCACCAC 3'
	R-1235	5' GCAGCCAAACAAGCAGTCAACATCAAG 3'
PM3 _	F-2251	5' AACCTACCAAGATTATGGGGTATGTC 3'
	R-2532	5' CCAACCGAATAAGGTAAACATGGTAGCGATG 3'
PK1	F-455	5' GGCTGATGTTTACATCAACGATGCCT 3'
	R-650	5' TCAGCAACCTTGGCACCACCTAAG 3'
PK2	F-751	5' ATCGGTGACTCCATCTTCGACAAGGC 3'
	R-927	5' CCAGCCAGCTGGAATACCTTCCTTGTC 3'
PK3 -	F-1053	5' GGCTTTGTTAGACGAAGTTGTCAAGAGC 3'
	R-1229	5' GCAACACCTGGCAATTCCTTACCTTCC 3'