## **Supplementary Data**



**Supplementary Figure 1.** The bifunctional fluorescent derivatization of glycosphingolipids and the validation of microarray printing. (a) The monosialyl ganglioside GM1 (Gal $\beta$ 1-3GalNAc $\beta$ 1-4(Neu5Ac $\alpha$ 2-3)Gal $\beta$ 1-4Glc $\beta$ 1-ceramide) is treated with ozone, PNPA, and diamines with different lengths. Treatment of PNPA conjugates with ethylenediamine yielded AEAB

conjugates, while treatment with 1,4-diaminobutane and 1,8-diaminooctane (ODA) generated homologs with varied lengths, termed N-(aminobutyl)-2-amino benzamide (ABAB) and N-(aminooctyl)-2-amino benzamide (AOAB) conjugates. The fluorescent GM1 conjugates are named as GM1-AEAB, GM1-ABAB and GM1-AOAB; (b) C18-HPLC profiles of GM1-AEAB, GM1-ABAB and GM1-AOAB; all products gave a single fluorescent product peak by C18-HPLC; (c) MALDI-TOF profiles of GM1-AEAB, GM1-ABAB and GM1-AOAB, showing masses matching calculated values. (d) The test printing of GM1-AEAB, GM1-ABAB and GM1-AOAB at different concentrations. The three GM1 derivatives were quantified based on fluorescence, printed on three different glass slides, and interrogated with biotinylated cholera toxin subunit B (CTSB), which specifically binds the GM1 glycan. They were printed on 4 slides: nitrocellulose-vendor 1, nitrocellulose-vendor 2, NHS and epoxy slides. For each sample, 8 concentrations (200, 100, 50, 25, 12.5, 6.25, 3.13, 1.6  $\mu$ M) were printed in replicates of n = 4 for each concentration. The slides were interrogated with biotinylated CTSB and detected by cyanine5-streptavidin. The slides were scanned at different photomultiplier tube (PMT) settings. PMT 70 has higher detecting sensitivity than PMT 50. For nitrocellulose slides, lower PMT (50) had to be used due to the autofluorescence of nitrocellulose membrane. For glass slides, either NHS or epoxy, higher PMT (70) was used to reach a higher sensitivity. When background is high (such as the epoxy slide in the following picture), lower PMT (50) can be used to reduce the background. The pictures show the fluorescent images on different slides and their brightness/contrast ratio have been adjusted. The comparative studies by printing of the three GM1 derivatives on nitrocellulose slides and NHS- or epoxy-slides demonstrate that the N-(aminooctyl)-2-amino benzamide (AOAB) conjugates, GM1-AOAB with the C<sub>8</sub> extension was detected by CTSB with greater sensitivity than the other derivatives. The longer alkyl chain of GM1-AOAB, which increases its hydrophobicity, may increase the printing efficiency or, more possibly, may help to organize the parallel fatty acid chain, reducing its interference between binding of CTSB and glycan.



**Supplementary Figure 2.** Thin-layer chromatography (TLC) image of GM1, GD1a, GT1b, BBG, and their corresponding AOAB conjugates by orcinol staining (**a**) or fluorescence upon UV irradiation (**b**).



**Supplementary Figure 3.** The 2D HPLC separation of BBG GSL-AOABs. Bovine brain gangliosides were treated with ozone, quenched with methyl sulfide, dried over nitrogen and conjugated with PNPA. The mixture was precipitated with 10-20 volumes of water, centrifuged and filtered through a 0.2  $\mu$ m membrane. The precipitate, unreacted PNPA, was discarded. The filtrate was lyophilized and treated with 1,8-diaminooctane, dried, neutralized with acetic acid. (a) The crude product was injected onto a C18 semi-prep HPLC column and eluent from 41-54

minutes (the gray area) was pooled as the fluorescently labeled glycolipids fractions. A Vydac C18 column (250 mm x 9.2 mm) was used. The mobile phase was acetonitrile and water with 0.1% trifluoroacetic acid (TFA). The flow rate was 2.5 ml min<sup>-1</sup>. The concentration of acetonitrile increased from 15% to 90% linearly over 75 minutes. (b) The pooled eluent was dried, lyophilized, reconstituted in methanol, and injected into normal phase semi-preparative HPLC for 1st dimension separation; 20 fractions were collected. (c) All normal phase fractions were briefly evaporated in Speed-vac to remove organic solvent and then lyophilized. The lyophilized material was reconstituted in water and separated on a C18 reverse phase HPLC column. Fractions were collected manually as peaks. The HPLC profiles (retention time 15 to 28 minutes) of the second dimension C18 HPLC separation of the normal fractions are shown below (from bottom to top: normal phase fraction #1 to #20). Fractions were rechromatographed on the same C18 HPLC column with a different gradient to check the homogeneity and further separate glycans if several peaks were present. A total of 40 fractions were obtained in the tagged ganglioside library.



**Supplementary Figure 4**. The elucidation of the structure of fraction 12. Water loss can occur during MALDI analysis, however the loss of water can also occur prior to MALDI analysis as in a lactone or anhydrosugar formation. We offer multiple lines of evidence to support GD1b-lactone as the structure of fraction 12. These lines of evidence include: 1) C18 HPLC and MS analyses, which showed that upon storage this fraction separated into 2 major components with Peak 2 being the original component (the lactone) and Peak 1 being the hydrolyzed product from the lactone; 2) Neuraminidase treatment, showing resistance to neuraminidase as expected for a lactone; 3) Chemical treatment, since lactones are prone to amidation with amine while the corresponding disialyl GSLs and anhydrosugars are not. Based on these data, we are confident that the structure is a GD1b-lactone conjugate. (a) The C18-HPLC profiles of fraction #12 after ~1 year at -20°C storage (with several freeze-thaw cycles), Peak 1 (20.01 min) and Peak 2 (20.44 min) are annotated. The two peaks were isolated from HPLC and analyzed by mass spectrometry; (b) The MALDI-TOF spectra of Peak 1 (top panel), Peak 2 (middle panel), and the

MALDI-TOF/TOF spectrum of Peak 2 (bottom panel). Peak 1 showed a dominant molecular ion at m/z 1905 [M+H]+, matching (Hex<sub>3</sub>HexNAc<sub>1</sub>Neu5Ac<sub>2</sub>) without loss of water. It is reasonable to conclude that peak 1 is formed by hydrolysis of the proposed lactone structure (Peak 2), which is consistent with Peak 2's longer retention time (greater hydrophobicity). (c) The C18-HPLC profiles of three fractions before and after neuraminidase treatment; Both GD1a-AOAB (fraction 24) and GD1b-AOAB (Peak 1 in fraction 12) were digested to GM1-AOAB (fraction 9) but the GD1b-lactone-AOAB (Peak 2 in fraction 12) is resistant to neuraminidase; (d) Ethylenediamine treatment of fraction 9 (GM1-AOAB) as a control and fraction 12. A new peak X is generated from GD1b-lactone-AOAB while GM1-AOAB and GD1b-AOAB are not affected. (e) The reaction scheme of GD1b-lactone-AOAB with ethylenediamine. The new peak X is isolated from HPLC and characterized by MALDI-TOF (top panel) and MALDI-TOF/TOF (bottom panel), which confirmed the expected molecular weight and fragmentation pattern of the amide of GD1b-AOAB.



**Supplementary Figure 5.** Fluorescent AOAB derivatization of PC3 cells GSLs. (a) C18-HPLC profile of the GSL-AOAB derivatives from a glycolipid extract of PC3 cells; (b) The MS analysis of fraction 16 and its tentative structure. In negative mode (top panel), this fraction showed only a single peak at 1535.1[M-H]-, suggesting an absolute mass of 1536. Interestingly, in positive mode, this fraction showed dominant peaks at 1456.8[M+H]+ and 1478.8[M+Na]+ (middle panel), with no detection at expected 1537[M+H]+. The striking discrepancy of the MS spectra in positive and negative mode clearly suggested a labile moiety with a mass of 80. While both sulfate and phosphate can give an 80 mass shift, it is known that de-sulfation is common while glycan phosphates are quite stable to fragmentation during MALDI-TOF analysis. Furthermore, the HPLC profile shift upon mild acid hydrolysis and resistance to alkaline phosphatase strongly suggests that the glycan associated with fraction 16 is sulfated. The 1456.8[M+H]+ molecular ion matches well with the composition of Hex<sub>4</sub>HexNAc<sub>1</sub> possessing a C16-N-acyl sphingosine moiety. MS/MS analysis of peak 1456.8 (bottom panel) gave a clear linear pattern of Hex-HexNAc-Hex-Hex, suggesting a globo-series GSL structure with a sulfated pentasaccharide glycan.



**Supplementary Figure 6.** The lectin binding to PC3 cell glycosphingolipids microarray. Thirtythree fractions of PC3 GSL-AOABs were separated by C18-HPLC and printed; 11 GSL-AOAB or GAEAB structures were printed on the same microarray as controls. The concentration of lectins (**a**) ConA; (**b**) MAA; (**c**) AAL and (**d**) SNA used is 10  $\mu$ g ml<sup>-1</sup>.

## Supplementary Table 1. HPLC and Mass spectrometry characterization of BBG 2-dimensional fractions.

(a) All 40 fractions were characterized by MALDI-TOF/TOF and the MS and MS/MS spectra are included below. The major peaks and most probable glycan compositions are summarized in the following table. These fractions represent a tagged library of bovine brain gangliosides and were printed as described in the main text. The C18-HPLC profiles of the final re-purification are also attached below the table. All of the fractions (#1-40) are denoted on the profiles. For this re-purification, a linear gradient from 60% acetonitrile in 0.1% TFA to 90% acetonitrile in 0.1% TFA in 10 minutes was used.

| BBG-      |                      |                   |          |                    |                    |                        |
|-----------|----------------------|-------------------|----------|--------------------|--------------------|------------------------|
| AOAB      |                      |                   |          |                    |                    |                        |
| 2D        |                      | RP fraction # and |          |                    |                    |                        |
| fractions | NP fraction # and    | retention time    | RP-HPLC  | Observed Mass      |                    |                        |
| #         | retention time (min) | (min)             | repurify | (RP)               | Observed Mass (RN) | Glycan Composition     |
| F-01      | NP01-28.34min        | RP01-22.85        |          | 1248.766           | 1246.852           | Hex2Neu5Ac1            |
| F-02      | NP02-29.09min        | RP03-21.60        |          | 1344.701, 1025.492 | 1455.824           | Hex3HexNAc1            |
| F-03      | NP03-30.35min        | RP02-21.51        |          | 1613.943, 1823.134 | 1612.033           | Hex3HexNAc1Neu5Ac1     |
| F-04      | NP03-30.35min        | RP03-22.19        |          | 1451.87            | 1449.924           | Hex2HexNAc1Neu5Ac1     |
| F-05      | NP03-30.35min        | RP04-22.52        |          | 1521.884           | 1519.986, 1538.003 | Hex2Neu5Ac2-H2O        |
| F-06      | NP04-31.16min        | RP03-23.88        |          | 1583.895, 1793.1   | 1581.978           | Hex3HexNAc1Neu5Ac1     |
| F-07      | NP05-31.72min        | RP01-21.58        |          | 1887.175           | 1885.145           | Hex3HexNAc1Neu5Ac2-H2O |
| F-08      | NP06-32.70min        | RP03-21.05        |          | 1376.663           | 1336.779           | Hex3HexNAc1Neu5Ac1     |
| F-09      | NP06-32.70min        | RP04-22.04        |          | 1614.03            | 1612.152           | Hex3HexNAc1Neu5Ac1     |
| F-10      | NP07-34.76min        | RP01-20.27        |          | 1390.71            | 1366.797, 1609.876 | Hex3HexNAc1Neu5Ac2     |
| F-11      | NP07-34.76min        | RP02-20.72        |          | 1887.057           | 1886.029, 1904.064 | Hex3HexNAc1Neu5Ac2-H2O |
| F-12      | NP07-34.76min        | RP03-20.99        |          | 1887.052           | 1886.042           | Hex3HexNAc1Neu5Ac2-H2O |
| F-13      | NP07-34.76min        | RP04-21.57        |          | 1613.941           | 1612.072           | Hex3HexNAc1Neu5Ac1     |
| F-14      | NP07-34.76min        | RP05-22.08        |          | 1614.195           | 1612.127           | Hex3HexNAc1Neu5Ac1     |
| F-15      | NP08-36.52min        | RP01-19.56        |          | 1685.771           | 1639.9             | Hex3HexNAc1Neu5Ac2     |
| F-16      | NP08-36.52min        | RP03-20.74        |          | 1817.455           | 1815.44            | Hex3HexNAc2Neu5Ac1     |
| F-17      | NP08-36.52min        | RP06-23.63        |          | 1509.816           | 1485.867           | Hex3HexNAc1Neu5Ac1     |
| F-18      | NP09-38.12min        | RP03-20.48        |          | 1593.719           | 1570.049           | Hex3HexNAc2Neu5Ac1     |
| F-19      | NP09-38.12min        | RP04-21.04        |          | 2020.099           | 2018.157           | Hex3HexNAc3Neu5Ac1     |
| F-20      | NP09-38.12min        | RP06-22.65        |          | 1522.028           | 1520.033           | Hex2Neu5Ac2-H2O        |
| F-21      | NP09-38.12min        | RP07-23.60        |          | 1782.876, 1875.06  | 1740.892           | Hex3HexNAc1Neu5Ac2     |
| F-22      | NP10-38.49min        | RP08-23.51        |          | 1874.979           | 1895.103           | Hex3HexNAc1Neu5Ac2     |
| F-23      | NP11-40.46min        | RP02-20.30        |          | 2108.3             | 2128.412           | Hex3HexNAc2Neu5Ac2     |
| F-24      | NP11-40.46min        | RP03-21.78        |          | 1905.15            | 1885.225           | Hex3HexNAc1Neu5Ac2     |

| F-25 | NP11-40.46min | RP04-23.50 |   | 1629.864           | 2208.283 | Hex3HexNAc1Neu5Ac3-H2O    |
|------|---------------|------------|---|--------------------|----------|---------------------------|
| F-26 | NP12-42.3min  | RP01-20.23 |   | 1681.946, 1756.127 | 1640.054 | Hex3HexNAc1Neu5Ac2        |
| F-27 | NP12-42.3min  | RP02-20.70 | а | 2178.554, 2196.576 | 2176.605 | Hex3HexNAc1Neu5Ac3-H2O    |
| F-28 | NP12-42.3min  | RP02-20.70 | b | 2178.255           | 2176.523 | Hex3HexNAc1Neu5Ac3-H2O    |
| F-29 | NP12-42.3min  | RP02-20.70 | С | 1887.030, 2178.135 | 2094.3   | Hex3HexNAc1Neu5Ac3-H2O    |
| F-30 | NP12-42.3min  | RP03-21.60 |   | 1404.58            | 1380.755 | Hex3HexNAc1Neu5Ac1        |
| F-31 | NP14-46.4min  | RP06-23.52 |   | 1801.09            | 1758.933 | Hex3HexNAc1Neu5Ac2        |
| F-32 | NP17-50.83min | RP01-20.37 | а | 2193.972, 2212.007 | 2210.433 | Hex3HexNAc1Neu5Ac2Neu5Gc  |
|      |               |            |   |                    |          | Hex3HexNAc1Neu5Ac2Neu5Gc- |
| F-33 | NP17-50.83min | RP01-20.37 | b | 2194.168           | 2214.479 | H2O                       |
| F-34 | NP18-52.88min | RP02-19.91 | а | 2178.128           | 2194.29  | Hex3HexNAc1Neu5Ac3-H2O    |
| F-35 | NP18-52.88min | RP02-19.91 | b | 2178.224           | 2176.365 | Hex3HexNAc1Neu5Ac3-H2O    |
| F-36 | NP18-52.88min | RP03-20.43 | а | 2177.943           | 2198.369 | Hex3HexNAc1Neu5Ac3-H2O    |
| F-37 | NP18-52.88min | RP03-20.43 | b | 2178.492           | 2198.499 | Hex3HexNAc1Neu5Ac3-H2O    |
| F-38 | NP19-55.00min | RP01-20.20 | а | 2451.852           | 2467.703 | Hex3HexNAc1Neu5Ac4-2H2O   |
| F-39 | NP19-55.00min | RP01-20.20 | b | 2178.612           | 2467.557 | Hex3HexNAc1Neu5Ac4-2H2O   |
| F-40 | NP20-57~69min | RP01-21.36 |   | 1695.854           | 1654.123 | Hex3HexNAc1Neu5Ac2        |



(b) Re-chromatography of all 40 HPLC fractions on C18 HPLC.













F-34, 35 (left and right peaks respectively)

(c) MS and MS/MS spectra of the 40 fractions.



10



























## Supplementary Table 2. Raw data of antibody binding from control and Lyme disease patient sera.

|          | PATIENT #1 |       | PATIENT #2 |         | 2     | PATIENT #3 |           | 3     | PATIENT #4 |         | PATIENT #5 |      | PATIENT #6 |       | 6     | PATIENT #7 |       |       | PATIENT #8 |       |       | PATIENT #9 |       |       | PATIENT #10 |       |       |         |       |       |
|----------|------------|-------|------------|---------|-------|------------|-----------|-------|------------|---------|------------|------|------------|-------|-------|------------|-------|-------|------------|-------|-------|------------|-------|-------|-------------|-------|-------|---------|-------|-------|
| Chart ID | Average    | STDEV | %CV        | Average | STDEV | %CV        | / Average | STDEV | %CV        | Average | STDEV      | %CV  | Average    | STDEV | %CV   | Average    | STDEV | %CV   | Average    | STDEV | %CV   | Average    | STDEV | %CV   | Average     | STDEV | %CV   | Average | STDEV | %CV   |
| 1        | 1153       | 145   | 13         | 247     | 58    | 23         | 549       | 50    | 9          | 398     | 212        | 53   | -152       | 498   | -329  | 191        | 218   | 114   | 111        | 13    | 12    | 84         | 24    | 29    | 204         | 64    | 31    | 91      | 33    | 36    |
| 2        | 696        | 114   | 16         | 510     | 17    | 3          | 245       | 49    | 20         | 140     | 31         | 22   | 256        | 35    | 13    | 233        | 28    | 12    | 111        | 32    | 29    | 146        | 33    | 22    | 179         | 16    | 9     | -7      | 94    | -1340 |
| 3        | 1275       | 146   | 11         | 436     | 21    | 5          | 515       | 152   | 30         | 414     | 259        | 62   | -117       | 474   | -405  | 260        | 104   | 40    | 192        | 47    | 24    | -113       | 154   | -136  | 403         | 59    | 15    | 288     | 65    | 23    |
| 4        | 421        | 167   | 40         | 143     | 11    | 7          | 129       | 104   | 81         | 74      | 1          | 1    | 25         | 14    | 56    | 258        | 48    | 19    | 80         | 19    | 24    | 198        | 173   | 88    | 80          | 104   | 131   | 234     | 63    | 27    |
| 5        | 55         | 26    | 48         | 63      | 62    | 98         | 79        | 46    | 59         | 101     | 40         | 39   | 580        | 62    | 11    | 239        | 15    | 6     | 125        | 24    | 19    | -31        | 60    | -191  | 104         | 11    | 11    | 51      | 41    | 80    |
| 6        | -8         | 29    | -352       | 52      | 40    | 77         | 4         | 44    | 1108       | 29      | 3          | 10   | 247        | 5     | 2     | 223        | 79    | 35    | 140        | 68    | 49    | 69         | 19    | 28    | -7          | 10    | -150  | 41      | 31    | 76    |
| 7        | 727        | 197   | 27         | 230     | 42    | 18         | 118       | 32    | 27         | 487     | 183        | 38   | 342        | 245   | 72    | 196        | 93    | 48    | 48         | 16    | 34    | 80         | 109   | 136   | -68         | 128   | -188  | 32      | 40    | 127   |
| 8        | 358        | 45    | 13         | 62      | 8     | 14         | 73        | 18    | 25         | 7       | 7          | 100  | 68         | 51    | 75    | 290        | 113   | 39    | 19         | 10    | 53    | -1         | 29    | -5798 | 204         | 296   | 145   | 12      | 32    | 270   |
| 9        | 988        | 149   | 15         | 345     | 43    | 13         | 473       | 90    | 19         | 686     | 51         | 7    | 34         | 16    | 46    | 294        | 42    | 14    | 92         | 25    | 27    | 90         | 61    | 68    | 104         | 112   | 107   | 334     | 73    | 22    |
| 10       | 144        | 101   | 70         | 157     | 44    | 28         | 116       | 79    | 68         | 320     | 98         | 31   | 286        | 6     | 2     | 150        | 78    | 52    | 76         | 12    | 16    | 98         | 39    | 40    | 98          | 13    | 14    | 48      | 37    | 77    |
| 11       | -31        | 58    | -188       | 131     | 50    | 39         | -5        | 273   | -5198      | 175     | 40         | 23   | -52        | 287   | -551  | 136        | 47    | 34    | 63         | 6     | 10    | 83         | 73    | 88    | 64          | 170   | 266   | 14      | 6     | 40    |
| 12       | 7595       | 1809  | 24         | 1031    | 216   | 21         | 7242      | 1374  | 19         | 3170    | 325        | 10   | 97         | 202   | 207   | 626        | 92    | 15    | 140        | 38    | 27    | <b>690</b> | 65    | 9     | -132        | 189   | -143  | 2164    | 272   | 13    |
| 13       | -33        | 299   | -898       | 46      | 9     | 19         | 51        | 13    | 26         | 95      | 19         | 20   | 170        | 67    | 39    | 20         | 33    | 169   | 46         | 60    | 130   | 47         | 18    | 39    | 67          | 51    | 76    | 19      | 23    | 123   |
| 14       | 44         | 177   | 407        | 124     | 81    | 65         | 44        | 1     | 3          | 9       | 12         | 133  | 62         | 36    | 59    | 124        | 118   | 95    | -52        | 7     | -13   | -32        | 60    | -190  | -38         | 168   | -441  | -30     | 54    | -180  |
| 15       | -40        | 41    | -101       | 134     | 40    | 30         | 83        | 49    | 59         | 64      | 55         | 86   | 278        | 35    | 13    | 139        | 11    | 8     | 93         | 56    | 60    | -6         | 52    | -905  | 148         | 43    | 29    | -16     | 154   | -960  |
| 16       | 182        | 72    | 40         | 58      | 13    | 23         | 125       | 57    | 45         | 54      | 55         | 101  | 574        | 130   | 23    | 58         | 18    | 31    | 76         | 22    | 29    | 46         | 94    | 206   | 97          | 18    | 19    | 50      | 80    | 158   |
| 17       | 2238       | 296   | 13         | 774     | 35    | 5          | 609       | 127   | 21         | 574     | 233        | 41   | 109        | 44    | 41    | 130        | 94    | 73    | 373        | 88    | 24    | 369        | 69    | 19    | -51         | 234   | -459  | 476     | 23    | 5     |
| 18       | -126       | 100   | -80        | 357     | 79    | 22         | 237       | 111   | 47         | 238     | 8          | 4    | 320        | 152   | 48    | 89         | 11    | 13    | 158        | 42    | 26    | 194        | 26    | 14    | 55          | 52    | 95    | 213     | 20    | 9     |
| 19       | -17        | 184   | -1069      | 57      | 33    | 57         | 139       | 97    | 70         | 140     | 23         | 16   | 78         | 65    | 83    | 158        | 18    | 12    | -18        | 94    | -511  | 71         | 23    | 32    | 186         | 46    | 25    | -52     | 29    | -56   |
| 20       | 142        | 12    | 8          | 111     | 38    | 35         | 43        | 60    | 141        | 51      | 77         | 151  | 167        | 153   | 92    | 126        | 62    | 49    | 44         | 1     | 2     | 101        | 22    | 22    | -137        | 183   | -134  | 54      | 88    | 162   |
| 21       | 196        | 46    | 23         | 98      | 16    | 16         | 8         | 15    | 182        | -4      | 9          | -223 | 129        | 74    | 57    | 68         | 70    | 104   | 137        | 48    | 35    | 93         | 34    | 36    | -46         | 63    | -137  | 32      | 14    | 44    |
| 22       | 114        | 51    | 45         | 61      | 12    | 19         | -29       | 56    | -195       | 54      | 24         | 45   | 461        | 106   | 23    | -29        | 100   | -343  | 36         | 15    | 42    | -64        | 55    | -87   | 39          | 11    | 29    | -69     | 55    | -80   |
| 23       | 40         | 138   | 349        | 227     | 55    | 24         | 38        | 31    | 80         | 128     | 2          | 2    | -131       | 238   | -182  | 57         | 107   | 189   | -55        | 52    | -95   | -103       | 142   | -138  | 188         | 107   | 57    | 47      | 63    | 135   |
| 24       | 364        | 424   | 116        | 218     | 14    | 6          | -16       | 86    | -523       | 60      | 90         | 152  | 487        | 315   | 65    | 241        | 33    | 14    | 155        | 36    | 23    | 123        | 18    | 15    | -3          | 53    | -1630 | 75      | 18    | 24    |
| 25       | 266        | 53    | 20         | 186     | 42    | 22         | 43        | 28    | 65         | 160     | 47         | 30   | -4         | 48    | -1197 | 272        | 44    | 16    | 40         | 58    | 144   | -20        | 41    | -205  | 127         | 33    | 26    | -66     | 97    | -148  |
| 26       | 167        | 285   | 170        | 685     | 226   | 33         | 1839      | 395   | 21         | 1017    | 209        | 21   | 752        | 36    | 5     | 591        | 165   | 28    | 313        | 30    | 9     | 770        | 269   | 35    | 98          | 267   | 274   | 861     | 180   | 21    |
| 27       | -36        | 49    | -136       | 237     | 67    | 28         | 261       | 59    | 23         | 177     | 12         | 7    | 312        | 118   | 38    | 179        | 112   | 63    | 17         | 32    | 183   | -23        | 8     | -36   | 193         | 148   | 77    | 52      | 34    | 65    |
| 28       | 115        | 45    | 39         | 253     | 71    | 28         | 116       | 28    | 24         | 49      | 12         | 25   | -132       | 735   | -557  | 334        | 169   | 51    | 19         | 45    | 238   | 353        | 27    | 8     | 90          | 45    | 50    | 17      | 16    | 92    |
| 29       | 304        | 33    | 11         | 146     | 48    | 33         | 237       | 67    | 28         | 6       | 10         | 150  | 331        | 73    | 22    | 44         | 70    | 158   | 10         | 37    | 368   | -38        | 22    | -59   | 32          | 69    | 217   | -31     | 58    | -191  |
| 30       | 132        | 34    | 25         | 214     | 23    | 11         | 97        | 16    | 16         | 24      | 3          | 13   | 1163       | 179   | 15    | 103        | 13    | 12    | -28        | 51    | -182  | 124        | 30    | 24    | 238         | 112   | 47    | 92      | 7     | 7     |
| 31       | -8         | 104   | -1304      | 113     | 29    | 26         | 61        | 40    | 66         | 31      | 38         | 122  | -75        | 474   | -630  | 138        | 20    | 14    | 34         | 30    | 88    | -70        | 64    | -92   | 77          | 22    | 29    | 53      | 43    | 82    |
| 32       | 214        | 68    | 32         | 69      | 4     | 6          | 91        | 26    | 29         | 11      | 4          | 34   | 221        | 112   | 51    | 134        | 88    | 65    | -15        | 60    | -391  | 49         | 79    | 162   | -4          | 197   | -4927 | 8       | 14    | 168   |
| 33       | 2781       | 146   | 5          | 1276    | 336   | 26         | 2539      | 587   | 23         | 1232    | 302        | 25   | 824        | 199   | 24    | 435        | 105   | 24    | 722        | 33    | 5     | 1157       | 172   | 15    | 807         | 127   | 16    | 1020    | 222   | 22    |
| 34       | 228        | 34    | 15         | 230     | 42    | 18         | 39        | 101   | 263        | 111     | 28         | 25   | 15         | 53    | 366   | 55         | 60    | 108   | 91         | 33    | 36    | 50         | 9     | 19    | -6          | 146   | -2546 | 77      | 31    | 41    |
| 35       | 250        | 91    | 37         | 325     | 50    | 15         | -21       | 28    | -136       | 246     | 94         | 38   | 32         | 339   | 1072  | 323        | 81    | 25    | 99         | 16    | 16    | 169        | 48    | 28    | 274         | 78    | 29    | 195     | 34    | 18    |
| 36       | 557        | 62    | 11         | 126     | 109   | 86         | 147       | 40    | 28         | 85      | 57         | 68   | 238        | 316   | 133   | 162        | 183   | 113   | 32         | 38    | 119   | 185        | 44    | 24    | 96          | 70    | 73    | 63      | 56    | 89    |
| 37       | -50        | 124   | -249       | 4       | 9     | 202        | 83        | 20    | 25         | 23      | 25         | 108  | 400        | 175   | 44    | 291        | 145   | 50    | -3         | 37    | -1242 | -1         | 11    | -2132 | -63         | 74    | -117  | -19     | 58    | -300  |
| 38       | -3         | 79    | -2637      | 32      | 16    | 52         | -36       | 34    | -96        | 26      | 40         | 152  | -43        | 435   | -1024 | 234        | 84    | 36    | 67         | 29    | 43    | -46        | 99    | -215  | 41          | 12    | 30    | 21      | 111   | 539   |
| 39       | 469        | 139   | 30         | 728     | 205   | 28         | 148       | 28    | 19         | 560     | 120        | 21   | 495        | 100   | 20    | 429        | 203   | 47    | 126        | 35    | 28    | 279        | 31    | 11    | 195         | 49    | 25    | 635     | 169   | 27    |
| 40       | 529        | 125   | 24         | 341     | 257   | 75         | 463       | 109   | 24         | 112     | 144        | 129  | 2681       | 940   | 35    | 698        | 311   | 45    | 205        | 48    | 23    | 470        | 116   | 25    | 585         | 103   | 18    | 698     | 124   | 18    |
| 41       | 991        | 164   | 17         | 206     | 37    | 18         | 160       | 33    | 21         | 193     | 81         | 42   | -220       | 324   | -148  | 188        | 43    | 23    | 11         | 4     | 39    | 195        | 57    | 29    | -71         | 61    | -85   | 59      | 12    | 21    |
| 42       | 1001       | 337   | 34         | 138     | 40    | 29         | 143       | 16    | 11         | 145     | 59         | 41   | 525        | 336   | 64    | 209        | 41    | 19    | 0          | 24    | -7202 | 285        | 59    | 21    | 54          | 25    | 46    | 44      | 15    | 33    |
| 43       | 131        | 33    | 25         | 50      | 11    | 21         | 43        | 74    | 171        | 46      | 12         | 27   | 1465       | 234   | 16    | 0          | 11    | -3208 | 67         | 24    | 36    | -128       | 84    | -66   | -96         | 145   | -152  | 2       | 25    | 1050  |
| 44       | 863        | 129   | 15         | 326     | 66    | 20         | 162       | 26    | 16         | 93      | 50         | 54   | 714        | 204   | 29    | 160        | 91    | 57    | 197        | 24    | 12    | 305        | 75    | 25    | 245         | 100   | 41    | 423     | 105   | 25    |

(a) IgG response of sera from Lyme disease patients on the BBG-AOAB microarray. Average = average of 4 median RFU values.

|          | CONTROL #1 |       |       | CONTROL #2 |       |         | CONTROL #3 |       |       | CONTROL #4 |       |     | CONTROL #5 |       |          | CONTROL #6 |        |      | CONTROL #7 |       |         | CONTROL #8 |       |     |
|----------|------------|-------|-------|------------|-------|---------|------------|-------|-------|------------|-------|-----|------------|-------|----------|------------|--------|------|------------|-------|---------|------------|-------|-----|
| Chart ID | Average    | STDEV | %CV   | Average    | STDEV | %CV     | Average    | STDEV | %CV   | Average    | STDEV | %CV | Average    | STDEV | %CV      | Average    | STDEV  | %CV  | Average    | STDEV | %CV     | Average    | STDEV | %CV |
| 1        | 373        | 257   | 69    | -5         | 34    | -716    | -152       | 31    | -355  | 191        | 3     | 22  | 111        | 17    | 59       | 84         | 8      | 42   | 21         | 4     | 20      | 49         | 6     | 13  |
| 2        | 322        | 71    | 22    | 92         | 62    | 67      | 256        | 48    | 35    | 233        | 2     | 9   | 111        | 10    | 12       | 146        | 4      | 16   | 19         | 6     | 30      | 47         | 8     | 17  |
| 3        | -151       | 435   | -289  | 17         | 6     | 36      | -117       | 35    | 29    | 260        | 5     | 15  | 192        | 10    | 11       | -113       | 9      | 29   | 37         | 7     | 17      | 179        | 42    | 23  |
| 4        | 149        | 221   | 148   | 7          | 11    | 162     | 25         | 17    | 25    | 258        | 13    | 85  | 80         | 19    | 43       | 198        | 6      | 35   | 22         | 9     | 41      | 84         | 15    | 18  |
| 5        | 0          | 29    | -8779 | 43         | 16    | 36      | 580        | 20    | 29    | 239        | 1     | 11  | 125        | 15    | -196     | -31        | 9      | 36   | 13         | 3     | 20      | 44         | 12    | 27  |
| 6        | 12         | 14    | 118   | 19         | 2     | 12      | 247        | 35    | 462   | 223        | 3     | 24  | 140        | 24    | -4760    | 69         | 3      | 21   | 17         | 5     | 31      | 26         | 11    | 42  |
| 7        | 303        | 87    | 29    | 19         | 1     | 5       | 342        | 12    | 12    | 196        | 5     | 26  | 48         | 16    | 31       | 80         | 3      | 14   | 14         | 1     | 7       | 48         | 38    | 79  |
| 8        | 284        | 105   | 37    | 11         | 16    | 141     | 68         | 244   | -2122 | 290        | 5     | 21  | 19         | 25    | 3703     | -1         | 3      | 21   | 11         | 1     | 13      | 50         | 18    | 36  |
| 9        | 676        | 291   | 43    | 7          | 12    | 167     | 34         | 4     | 5     | 294        | 4     | 20  | 92         | 9     | 15       | 90         | 13     | 34   | 21         | 5     | 22      | 68         | 5     | 8   |
| 10       | 190        | 115   | 61    | 32         | 7     | 22      | 286        | 46    | 42    | 150        | 4     | 27  | 76         | 7     | 18       | 98         | 0      | 0    | 12         | 5     | 41      | 47         | 11    | 23  |
| 11       | -42        | 122   | -295  | 20         | 4     | 18      | -52        | 102   | -1388 | 136        | 2     | 10  | 63         | 7     | 13       | 83         | 7      | 22   | 17         | 2     | 14      | 56         | 11    | 20  |
| 12       | -67        | 134   | -202  | 61         | 7     | 11      | 97         | 40    | 32    | 626        | 9     | 30  | 140        | 36    | 22       | 690        | 17     | 24   | 41         | 10    | 23      | 111        | 50    | 45  |
| 13       | -15        | 21    | -140  | 61         | 5     | 9       | 170        | 30    | 31    | 20         | 4     | 28  | 46         | 0     | 0        | 47         | 10     | 31   | 13         | 0     | 0       | 24         | 9     | 39  |
| 14       | 53         | 38    | 72    | 41         | 42    | 103     | 62         | 5     | 9     | 124        | 3     | 22  | -52        | 7     | 39       | -32        | 1      | 4    | 14         | 1     | 10      | 20         | 4     | 18  |
| 16       | -16        | 85    | -522  | 21         | 14    | 67      | 278        | 67    | -256  | 139        | 10    | 55  | 93         | 8     | 35       | -6         | 4      | 25   | 12         | 1     | 12      | 35         | 1     | 4   |
| 17       | -8         | 68    | -821  | 54         | 30    | 56      | 574        | 37    | -64   | 58         | 2     | 21  | 76         | 15    | 12       | 46         | 13     | 78   | 11         | - 2   | 17      | 16         | 8     | 49  |
| 18       | 200        | 169   | 20    | 66         | 18    | 42      | 109        | 13    | 12    | 130        | 9     | 20  | 3/3        | 12    | 18       | 369        | /<br>0 | 12   | 39         | 1     | 18      | 106        | 19    | 17  |
| 19       | 200        | 76    | 141   | 47         | 20    | 43<br>9 | 79         | 20    | 50    | 159        | 1     | 42  | -19        | 7     | 10       | 71         | 0<br>7 | 20   | 10         | 2     | 0<br>0  | 50         | 2     | 3   |
| 20       | 227        | 62    | 26    | 20         | 2     | 0       | 167        | 20    | 43    | 136        | 5     | 20  | -10        | 6     | 4/<br>21 | 101        | 2      | 11   | 19         | 2     | 0<br>26 | 30         | 2     | 12  |
| 21       | 207        | 5     | 25    | 29         | 15    | 51      | 129        | 61    | -574  | 68         | 4     | 27  | 137        | 10    | -104     | 93         | 4      | 25   | 17         | 3     | 20      | 24         | 1     | 4   |
| 22       | 17         | 4     | 20    | 5          | 14    | 304     | 461        | 28    | -704  | -29        | 3     | 22  | 36         | 8     | 87       | -64        | 13     | 53   | 15         | 4     | 28      | 22         | 1     | 3   |
| 23       | 109        | 92    | 84    | 46         | 14    | 30      | -131       | 1     | 1     | 57         | 3     | 27  | -55        | 5     | 14       | -103       | 4      | 28   | 14         | 6     | 47      | 18         | 12    | 66  |
| 24       | 312        | 319   | 102   | 13         | 13    | 99      | 487        | 94    | -568  | 241        | 3     | 29  | 155        | 40    | -269     | 123        | 3      | 9    | 14         | 3     | 18      | 33         | 7     | 22  |
| 25       | 134        | 32    | 24    | 7          | 5     | 76      | -4         | 4     | 21    | 272        | 2     | 23  | 40         | 16    | 77       | -20        | 5      | 15   | 17         | 7     | 43      | 11         | 3     | 24  |
| 26       | 405        | 180   | 44    | 121        | 1     | 1       | 752        | 289   | 25    | 591        | 21    | 35  | 313        | 57    | 66       | 770        | 12     | 12   | 117        | 26    | 23      | 104        | 10    | 10  |
| 27       | 937        | 86    | 9     | 29         | 17    | 59      | 312        | 79    | 88    | 179        | 5     | 26  | 17         | 9     | 25       | -23        | 9      | 53   | 22         | 4     | 18      | 50         | 10    | 20  |
| 28       | 332        | 115   | 35    | 25         | 13    | 54      | -132       | 38    | 34    | 334        | 5     | 28  | 19         | 13    | 42       | 353        | 8      | 20   | 22         | 4     | 21      | 23         | 8     | 35  |
| 29       | 31         | 12    | 38    | 10         | 19    | 191     | 331        | 32    | 41    | 44         | 8     | 55  | 10         | 17    | 77       | -38        | 3      | 11   | 11         | 1     | 13      | 23         | 0     | 0   |
| 30       | -456       | 284   | -62   | 7          | 5     | 71      | 1163       | 25    | 20    | 103        | 8     | 38  | -28        | 12    | 21       | 124        | 7      | 17   | 15         | 2     | 15      | 42         | 7     | 17  |
| 31       | -138       | 146   | -106  | 1          | 12    | 889     | -75        | 43    | -445  | 138        | 4     | 19  | 34         | 20    | 50       | -70        | 9      | 49   | 21         | 4     | 20      | 16         | 3     | 18  |
| 32       | 218        | 39    | 18    | 13         | 14    | 108     | 221        | 2     | 2     | 134        | 7     | 31  | -15        | 18    | 87       | 49         | 1      | 9    | 16         | 4     | 23      | 33         | 9     | 26  |
| 33       | 1866       | 251   | 13    | 221        | 37    | 17      | 824        | 45    | 15    | 435        | 49    | 24  | 722        | 85    | 25       | 1157       | 2      | 1    | 159        | 33    | 21      | 241        | 60    | 25  |
| 34       | 55         | 103   | 188   | 27         | 10    | 37      | 15         | 63    | 26    | 55         | 3     | 13  | 91         | 30    | 160      | 50         | 7      | 23   | 24         | 5     | 21      | 52         | 13    | 25  |
| 35       | -95        | 128   | -135  | 9          | 28    | 310     | 32         | 11    | 5     | 323        | 6     | 17  | 99         | 23    | 33       | 169        | 3      | 17   | 22         | 4     | 20      | 29         | 9     | 32  |
| 36       | -18        | 221   | -1225 | 29         | 29    | 97      | 238        | 12    | 9     | 162        | 5     | 37  | 32         | 31    | 38       | 185        | 5      | 12   | 22         | 3     | 11      | 19         | 17    | 89  |
| 37       | -21        | 52    | -243  | 28         | 4     | 12      | 400        | 116   | 157   | 291        | 2     | 9   | -3         | 17    | 50       | -1         | 8      | 41   | 18         | 2     | 12      | 8          | 13    | 157 |
| 38       | 108        | 38    | 35    | 60         | 2     | 3       | -43        | 233   | 129   | 234        | 7     | 15  | 67         | 6     | 17       | -46        | 18     | 129  | 50         | 11    | 23      | 26         | 28    | 106 |
| 39       | 753        | 331   | 44    | 38         | 33    | 87      | 495        | 195   | 38    | 429        | 27    | 66  | 126        | 9     | 10       | 279        | 3      | 7    | 51         | 2     | 4       | 59         | 11    | 19  |
| 40       | 99         | 91    | 92    | 144        | 25    | 17      | 2681       | 173   | 57    | 698        | 12    | 24  | 205        | 12    | 8        | 470        | 25     | 19   | 57         | 5     | 9       | 89         | 18    | 20  |
| 41       | -68        | 95    | -140  | 76         | 30    | 39      | -220       | 60    | 16    | 188        | 16    | 47  | 11         | 7     | 18       | 195        | 11     | 28   | 21         | 2     | 9       | 41         | 7     | 17  |
| 42       | -64        | 146   | -228  | 56         | 33    | 59      | 525        | 44    | 8     | 209        | 6     | 15  | 0          | 4     | 6        | 285        | 16     | -466 | 38         | 11    | 29      | 36         | 10    | 28  |
| 43       | -360       | 303   | -84   | 13         | 11    | 87      | 1465       | 44    | 69    | 0          | 11    | 84  | 67         | 43    | 202      | -128       | 6      | 182  | 14         | 3     | 20      | 16         | 6     | 35  |
| 44       | 224        | 100   | /4    | 66         | 1/    | 25      | /14        | 93    | 17    | 160        | 0     | 1 0 | 197        | 60    | - 38     | 305        | 49     | 113  | 31         | 12    | - 32    | 93         | 23    | 25  |

(**b**) IgG response of control sera on the BBG-AOAB microarray. Average = average of 4 median RFU values.

**Supplementary Table 3.** MALDI-TOF MS and MS/MS data of the 10 peaks collected from C18 HPLC separation of PC3 cell GSL-AOABs. For each fraction, MS at positive mode, MS at negative mode and MS/MS at positive mode were obtained and shown below.

Fraction 3







Fraction 6



Fraction 8

























