Modelling equations used in Figure 4

Here we derive the key equations used in Figures 4 to calculate CO_2 assimilation rate, A, chloroplast CO_2 partial pressure, C_{chlo} , from Rubisco and bicarbonate transporter activities and cell wall/plasamalema conductance, g_w and chloroplast envelope conductance, g_{chlo} to CO_2 diffusion. The equations are based on the C_4 and C_3 photosynthetic models given in von Caemmerer and Furbank (1999) and von Caemmerer (2000) and have been adapted from the single cell C_4 photosynthesis model presented by von Caemmerer and Furbank (2003).

 CO_2 assimilation rate of a hypothetical C_3 photosynthesis system with a bicarbonate pump at the chloroplast envelope outlined in Figure 3a and 4 can be described by two simple equations. Since ultimately all CO_2 is fixed by Rubisco in the chloroplast the net rate of CO_2 assimilation, A, is

$$A = V_c - 0.5V_o - R_d \tag{A1}$$

where V_c and V_o are the rates of Rubisco carboxylation and oxygenations and R_d is the rate of mitochondrial respiration not associated with photorespiration.

We assume that the chloroplast receives extra CO_2 from the from the transport of bicarbonate into the chloroplast, such that

$$V_c = V_b - L \tag{A2}$$

where V_b is combined rate of the bicarbonate transporters, and L is the rate of CO_2 leakage across the chloroplast envelope. Equation (A2) differs from the standard formulation of the C₄ model because we assume that photorespiratory CO_2 loss occurs in the cytosol compartment. The leakage L in turn is given by

$$L = g_{chlo} \left(C_{chlo} - C_{cyt} \right) \tag{A3}$$

Where C_{chlo} and C_{cyt} are the chloroplast and cytosol CO_2 partial pressures respectively. Leakiness, ϕ , can then be defined as the leak rate as a fraction of the rate of bicarbonate transport.

$$\phi = L/V_b \tag{A4}$$

It should be noted that leakrate and leakiness will be positive only if C_{chlo} is greater than C_{cyt} . At high irradiance the maximal activity of Rubisco limits the rate of CO_2 fixation rather than the light dependent capacities for the regeneration of RuBP which is not considered here.

Under these conditions Rubisco carboxylations is given by the RuBP saturated rate $V_{c} = \frac{C_{chlo}V_{c\,\text{max}}}{C_{chlo} + K_{c}\left(1 + O_{c}/K_{o}\right)}$ (A5)

where
$$V_{cmax}$$
 is the maximum carboxylation rate and K_c and K_o are the Michaelis-Menten constants
for CO₂ and O₂ and O is the O₂ partial pressure in the chloroplast. Following the oxygenation of one
mol of RuBP, 0.5 mol of CO₂ is evolved in the photorespiratory pathway. The ratio of oxygenation
to carboxylation can be expressed as

$$V_{g}/V_{c} = 2\Gamma_{*}/C_{chlo} \tag{A6}$$

and Γ_* the CO₂ compensation point in the absence of mitochondrial respiration is determined by Rubisco's specificity (S_{c/o}):

$$\Gamma_* = \frac{0.5O}{S_{c/o}} = 0.5 [V_{o\max} K_c / (V_{c\max} K_o)] O$$
(A7)

where V_{omax} is the maximal oxygenase activity.

The rate of bicarbonate transport is given as

$$V_b = \frac{C_{\rm cyt} V_{b\,\rm max}}{C_{\rm cyt} + K_b} \tag{A8}$$

where V_{bmax} is the maximal activity of the transporter and K_b is the Michaelis Menten constant for CO_2 . This was converted from the Michaelis Menten constant for bicarbonate with the use of the Henderson Hasselbach equation assuming a cytosolic pH of 7.4. If more than one transporter is involved the individual rates can be summed. We modelled the rate of BicA (V_{bic}) and SbtA (V_{Sb}) individually and combined.

To obtain an overall rate equation for CO_2 assimilation as a function of the cytosol CO_2 partial pressure one can first derive a quadratic expression for the chloroplast CO_2 partial pressure C_{chlo} , by combining equations A2, A3 and A5.

This gives a quadratic of the form

$$\left(C_{chlo}\right)^2 + b\left(C_{Chlo}\right) + c = 0 \tag{A9}$$

where

$$C_{chlo} = \left(-b + \sqrt{b^2 - 4c}\right) / (2) \tag{A10}$$

and

$$b = -\{C_{cyt} - K_c(1 + O/K_o) + (V_b - V_{cmax})/g_{chlo}\}$$
(A11)

$$c = -K_c \left(1 + O/K_o\right) \left(C_{cyt} - V_b/g_{chlo}\right)$$
(A12)

With a solution for C_{chlo} , A can be calculated form equations A1, A5, and A6. Intercellular CO₂, C_i, was calculated retrospectively from

$$C_i = C_{cyt} + A/g_w \tag{A13}$$

where g_w is the conductance to CO_2 diffusion across the cell wall plasmalemma interface.

ATP consumption rate was calculated from

$$ATP consumption = \alpha V_b + (3 + 7\Gamma_*/C_{chlo})V_c$$
(A14)

(See equation 4.27 von Caemmerer 2000). The energy cost of bicarbonate transport is uncertain but we assumed that the bicarbonate transporter BicA required the transport of one H^+ whereas SbtA required 2 H^+ . Assuming a requirement of 4 H^+ to generate an ATP we have calculated the ATP requirement of the transporters as 0.25ATP and 0.5 ATP per transport event respectively.

Parameter	Value
K _c (μbar)	260 ^a
K _o (mbar)	179 ^a
S _{c/o} (bar/bar)	2585
Γ_* at 200 mbar O ₂ (µbar)	38.6 ^a
V_{cmax} (µmol m ⁻² s ⁻¹)	100
$R_{d} (\mu mol m^{-2} s^{-1})$	0
$V_{BicA} \ (\mu mol \ m^{-2} \ s^{-1})$	30
K _{BicA} (μbar)	140
$V_{\text{SbtA}} (\mu \text{mol } \text{m}^{-2} \text{ s}^{-1})$	15
K _{Sbta} (µbar)	15

Supplementary Table 1 Photosynthetic parameters used in the model simulation

^a (von Caemmerer et al., (1994)).