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Figure S1 Inhibition of CDK1 enhances H3K27 trimethylation. (a)H3K27 
trimethylation increased by the treatment of CGP in a dose depedent 
manner. Cells were treated with CGP for different concentrations, and 
H3K27 trimethylation was measured by Western blotting. (b) H3K27 
trimethylation is dynamically regulated by CDK1. Cells were treated with 5 

μM CGP for different times, and H3K27 trimethylation was measured by 
Western blotting. (c) Knock-down of CDK1 enhances H3K27 trimethylation. 
Western blotting analysis of H3K27 trimethylation in HeLa cells transfected 
with control or CDK1 SMARTpool siRNA (Dharmacon RNA Technologies) for 
48 hrs.
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Figure S2 CDK1 phosphorylated EZH2 at Thr487 in vivo. (a)Lysates of 
Hela cells were immunoprecipitated with anti-EZH2 and analyzed by mass 
spectrometry analysis. (b) Dot blot assay of the EZH2 peptides containing 
phosphorylated or non-phosphorylated Thr487. Phospho- or non-phospho-
peptides were immunoblotted with an phosphoT487-EZH2 antibody. (c) 

Lysates of 293 cells transfected with Myc-EZH2 or Myc-T487A-EZH2 
mutant were immunoprecipitated with anti-Myc. Anti-phosphoT487-EZH2 
sera were pre-incubated with peptide (50 mg/mL) at 37 oC for 30 min then 
immunoblotted. Membrane was stripped and re-immunoblotted with anti-
myc antibody. V, Vector; W, WT-EZH2; M, T487A-EZH2 mutant.
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Figure S3 (a) Phosphorylation of EZH2 at Thr 487 disrupts binding of 
EZH3 with SUZ12 and EED. PRC2 complex were purified from MCF7 
cell lines stably expressing Myc-His-tagged WTEZH2 or T487A-EZH2 
mutant by using a combination of protein G-crosslinked Myc antibody 
and nickel column purification. PRC2 complex from WT-EZH2 or T487A-
EZH2 mutant were titrated, 0.5, 1, and 2 µg proteins were loaded on 
SDS-PAGE gel, then stained by coomassie blue. Left side showed the 

molecular weight marker. Right side showed the names of subunit of the 
PRC2 complex. (b) Phosphorylation of EZH2 at Thr487 was regulated 
during cell cycle. MCF7 cell lines stably expressing WT-EZH2 or T487A-
EZH2 mutant were treated either by serum starvation (to collect cells 
at G0/G1 phase) or by double thymidine blockage and release to collect 
cells at S and G2/M phases. Then cells lysates were immunoblotted with 
antibodies as shown.
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Figure S4 Osteoblast differentiation medium induces activation of CDK1 and phosphorylation of EZH2 in primary hMSC. (a) and (b) The primary hMSC (pMSC1 and 
pMSC2) were cultured in control medium or OM with or without CDK1 shRNA infection. Lysates were subjected to immunoblot analysis using antibodies as shown.
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Figure S5 Validation of ChIP-on-chip results for five genes. These five 
genes were randomly selected from ChIP-on-chip results whose binding to 
EZH2 were lost after osteogenic differentiation. qChIP were done on the 

promoters of the five genes indicated by using (a)EZH2 antibody and (b)
H3K27me3 antibody. (c) qRT-PCR detection of the expression of the five 
genes.
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