Supporting Information for

Use of 2,3,5-F₃Y-β2 and 3-NH₂Y-α2 to study PCET in *E. coli* Ribonucleotide Reductase

Mohammad R. Seyedsayamdost,^{†,&} Cyril S. Yee,[†] and JoAnne Stubbe^{*,†,‡}

Department of Chemistry[†] and Biology[‡], Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139–4307

[&]Current address: Department of Biological Chemistry and Molecular Pharmacology, 240 Longwood Avenue, C1-609, Boston, MA 02115

* To whom correspondence should be addressed. Tel: (617) 253-1814. Fax: (617) 258-7247. E-mail: <u>stubbe@mit.edu</u>

Figure S1: Increasing the radical content of intein wt- $\beta 2$ and F_3Y_{356} - $\beta 2$. UV-vis (A) and EPR (B) spectra of intein wt- $\beta 2$ (1.1 Y_{122} •/dimer) after the chelation/reconstitution procedure. The inset (A) is a magnified view of the features associated with the Y_{122} • diiron cluster. UV-vis (C) and EPR (D) spectra of F_3Y_{356} - $\beta 2$ (1.2 Y_{122} •/dimer) after the chelation/reconstitution procedure. The inset (C) shows a magnified view of the features associated with the Y_{122} • diiron cluster.

Figure S2: SDS PAGE analysis of F_3Y_{356} - $\beta 2$ (lane 1, 4 µg) and F_3Y_{356} - $\beta \beta'$ (lane 2, 4 µg) after the chelation/reconstitution procedure.

Figure S3: EPR spectra of the reaction of F_3Y_{356} - $\beta 2$ with wt $\alpha 2$ in the presence of CDP/ATP quenched after 28 ms and 612 ms. The spectra were recorded at 77 K.

Figure S4: Stability of NH₂Y₇₃₁• probed by EPR and UV-vis spectroscopy. (A) NH₂Y₇₃₁- α 2 and ATP were mixed with wt β 2 (1.2 Y₁₂₂• / β 2) and CDP at 25°C to give final concentrations of 20 μ M, 3 mM, 20 μ M and 1 mM, respectively. At defined time points, an aliquot was removed, transferred to an EPR tube, frozen in liquid N₂ and its EPR spectrum recorded. (B-E) The analysis and fits for the data in panel (A) are shown in panels B-E. For each time point, the [spin]_{total} (black dots) and its distribution between Y₁₂₂• (blue squares) and NH₂Y₇₃₁• (red triangles) was determined and plotted vs. time. Time courses for [Y₁₂₂•] (B), [NH₂Y₇₃₁•] (C), and [spin]_{total} (D) are shown with mono-exponential fits to the data indicated by black lines. (E) Time course of Y₁₂₂• decay measured by UV–vis spectroscopy. The reaction was carried out at 25°C and contained final concentrations of 18 μ M NH₂Y₇₃₁• α 2/ β 2 (1.2 Y₁₂₂• / β 2) and 1 mM CDP and 3 mM ATP. At defined time points a UV-vis spectrum was recorded and the [Y₁₂₂•] (blue dots) computed using the dropline method. The black line is a mono-exponential fit to the data. The fits above yield decay rate constants 0.0057 ± 0.0013 s⁻¹ for Y₁₂₂• (B), 0.0052 ± 0.0017 s⁻¹ for NH₂Y₇₃₁• (C), 0.0072 ± 0.0012 s⁻¹ for [spin]_{total} (D), and 0.0065 ± 0.0005 s⁻¹ for Y₁₂₂• determined by UV-vis spectroscopy (E), giving an average decay *k* of 0.0062 ± 0.0012 s⁻¹.

Figure S5: Stability of NH_2Y_{730} • probed by EPR spectroscopy. (A) NH_2Y_{730} - α^2 and ATP were mixed with wt β^2 (1.0 Y_{122} • / β^2) and CDP at 25°C to give final concentrations of 20 μ M, 3 mM, 20 μ M and 1 mM, respectively. At defined time points, an aliquot was removed, transferred to an EPR tube, frozen in liquid N_2 and its EPR spectrum recorded. (B-D) The analysis and fits for the data in panel (A) are shown in panels B-D. For each time point, the [spin]_{total} (black dots) and its distribution between Y_{122} • (blue squares) and NH_2Y_{730} • (red triangles) was determined and plotted vs. time. Time courses for $[Y_{122}\bullet]$ (B), $[NH_2Y_{730}\bullet]$ (C), and [spin]_{total} (D) are shown with mono-exponential fits to the data indicated by red lines yielding rate constants of 0.004 ± 0.00083 s⁻¹ (B) and 0.0043 ± 0.0015 s⁻¹ (C) and 0.0045 ± 0.0011 s⁻¹ (D), giving an average rate constant of 0.0043 ± 0.0011 s⁻¹.

Figure S6: Magnified view of the initial 1-2 s of the SF UV-vis traces shown in Fig. 3 for the reaction of $NH_2Y_{731}-\alpha 2$ with $F_3Y_{356}-\beta 2$ in the presence of CDP/ATP.

Figure S7: Magnified view of the initial 1-3 s of the SF UV-vis traces shown in Fig. 3 for the reaction of NH_2Y_{730} - $\alpha 2$ with F_3Y_{356} - $\beta 2$ in the presence of CDP/ATP.

Figure S8: SF UV-vis reactions of NH_2Y_{731} - $\alpha 2$ with F_3Y_{356} - $\beta 2$ in the presence of CDP/ATP monitored over 22 s at pH 6.6 (A), 8.45 (B) and 8.60 (C). SF UV-vis reaction of NH_2Y_{730} - $\alpha 2$ with F_3Y_{356} - $\beta 2$ in the presence of CDP/ATP monitored over 22 s at pH 8.65 (D).

Figure S9: Comparison of the pH rate profiles from the first kinetic phase of NH₂Y• formation vs. steady state dCDP formation. Here, the k_{cat} from the reaction of F₃Y- β 2 and wt α 2 (black dots) has been multiplied by 93 to align the activity point at pH 7.6 and overlaid with the fast phase rate constant (see Fig. 4A) in the reaction of F₃Y- β 2 with NH₂Y₇₃₀- α 2 (blue dots) or NH₂Y₇₃₁- α 2 (red dots).