Supplementary Information

Structure of the VP16 Transactivator Target in ARC/Mediator

Alexander G. Milbradt¹, Madhura Kulkarni^{2,3*}, Tingfang Yi^{1*}, Koh Takeuchi^{1,4}, Zhen-Yu J. Sun¹, Rafael E. Luna¹, Philipp Selenko^{1,4}, Anders M. Näär ^{2,3} and Gerhard Wagner¹

¹Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, ²Massachusetts General Hospital Cancer Center, Building 149, 13th Street, Charlestown, MA 02129, ³Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115.

⁴Present addresses: Biomedical Information Research Center, National Institute of Advanced Industrial Science and Technology, Aomi 2-3-26, Koto, Tokyo, 135-0064 Japan Koh-takeuchi@aist.go.jp, T.K.; Leibniz Institute of Molecular Pharmacology (FMP) Department of NMR-assisted Structural Biology Robert-Roessle-Strasse 10 13125 Berlin, Germany selenko@fmp-berlin.de, P.S.

* These authors contributed equally to this work.

Correspondence should be addressed to A.M.N. (naar@helix.mgh.harvard.edu) or G.W. (gerhard_wagner@hms.harvard.edu).

Supplementary Figure 1. Sequence alignments of the MED25 VBD and VP16 TAD. (**a**) Sequence of the human MED25 VBD aligned with the homologous C- and N-terminal domain of human PTOV1. Secondary structure elements are shown above the sequences. (**b**) Sequence of the VP16 TAD from *Herpes simplex virus I* aligned with sequences of TADs from other viruses. Alignments were visualized with ESPript¹. Conserved residues are highlighted in red.

Supplementary Figure 2. ¹H-¹⁵N-HSQC spectrum of the MED25 VBD with the assigned residue numbers.

Loop β2-β3 435 - 442

Loop β5-β6 500 - 508

Supplementary Figure 3. ¹⁵N T₂ relaxation time measurement of the MED25 VBD. **(a)** ¹⁵N T₂ relaxation times of the free MED25 VBD are plotted against the residue number. Error bars represent s.d. The N- and C-terminus and the long loop between β 1 and β 2 display significantly longer T₂ times, indicating local flexibility. Due to line broadening and peak overlap, T₂ times of the residues forming loop β 5/ β 6 could only be determined for T503. **(b)** The 25 lowest energy structures are shown overlaid on the secondary structure elements. Loop β 2/ β 3 and loop β 5/ β 6 close the barrel from the bottom.

b

	β1			β2		β3	α1	β	4	α2	β5		β6	β7	α3	
	-					-		22-		000000	-			-	ووووو	ll
	10 :	20 :	30 :	40 :	50 	60 :	70 :	80 :	90 :	100	110 :	120 :	130 :	140 :	150 	160 :
MED25 VBD KU70/PDB:1JEQ	GEFGQQSVSNKLLAW -YISKTRKRALS	ISGVLEWQE K P SRL <mark>K</mark> LKLN	KPASVDANTKI	LTRSLPCQVYV -DIVISVGIYN	NHGENL <mark>K</mark> TEQ VQKAI	WPQKLIMQLI DDPGLMLGFK	PQQLLTTLGPL PLVLLKKHH	FRNSRMVQ Y-LRPSLF	FHFTNKDLE VYPEEGSST	SL <mark>K</mark> GLYRIMGNG	FAGCVHFPE VAALC <mark>R</mark> YT-	ITAPCEVRVL -RNIP-PYFV	MLLYSS <mark>KK</mark> KI ALVPQEEPPG	FMGLIPYDQ FQLVFL	SGFVNGIRQVII	ľNH <mark>K</mark> QVQQQKL
KU80/PDB:1JEQ	-PVDM-LLKKYPIVW FVQRRHSIH-W	IQGLLALK IPCRLTIG	;	-NDTAAVQLHF SNLSIRIAAYK	SI	GK-CFSVGFC	RLEAQLEGARR KSSQVQRRF	FMGNQVLK	ALPCSQTE- VFAAAAAV-	ALSSLIHALDDE	MVAIV <mark>R</mark> Y	(PYVL - <mark>K</mark> RAN-PQVG	QIFPPCISPH VAFPHIKYEC	LVYVQL		
	:	:	:	:		:	:	:	:	100	:	:	:	:		:
MED25 VBD	LLLLLLLLEEEEE	EEEEEELLL	LLLLLLLLL	LEEEEEEEEE	ELLLLLHHH	LLLEEEEEEE	<mark>Е</mark> ННННННННН	HLLEEEEE	EEELLLLHH	ІННННННННН	IEEEEELLI	LLLLLLE	EEEELLLLL	EEEEELLH	ннннннннн	AHHHLLLLLL
KU70/PDB: 1JEQ	-HHHHLLLLLL	EEEEELL		-LLEEEEEEL	LLLLI	LLLEEEEEEE	EHHHLLLLL	L-LLLL <mark>EE</mark>	EEELLLHHH	ІНННННННННН	EEEEEEE-	LLLL-LEEE	EEEEELLLLE	EEEEEL	LLHH	
SPOC/PDB: 10W1	-LLLL-HHHHLLEEE	EEEEEEL		-LEEEEEEEE	EELHHHHH	ILLLEEEEEE	ELLHHHHHHHH	LLLEEEEE	EEELHHHH-	HHHHLHHHHHH	EEEEEELI	LEEE	EEELLLLLL	EEEEEEL-		
KU80/PDB: 1JEQ	HHHHLLLLL-E	EEEEEEL]	LLEEEEEEEEE	LI	LL-EEEEEE	EHHHLLHHH	LEEEEEE	EEELHHHH-	ННННННННН	EEEEEE	-LLLL-LEEE	EEEEEELLEE	EEEEEL	LLHH	

Supplementary Figure 4. Structural homology search by DALI². Alignment of amino acid sequences (upper panel) and structural elements (lower panel) with the three structural homologous proteins of MED25 VBD: KU70/PDB: 1JEQ³, SPOC/PDB: 1OW1⁴, KU80/PDB:1JEQ³. Extended regions are highlighted in red and helical portions are shown in blue (lower panel).

Supplementary Figure 5. Isothermal calorimetry titration. (a) Isothermal calorimetry titration of MED25 VBD with VP16 TADn revealed a K_d of 1.6 μ M. (b) Isothermal calorimetry titration of MED25 VBD with VP16 full-length TAD revealed a K_d of approximately 50 nM. The C-terminal portion of the VP16 TAD contributes to the binding to MED25 VBD and likely accounts for the difference in K_d between TADn and TAD.

a

b

Supplementary Figure 6. The MED25 VBD Q451E mutation on β 3 adjacent to the hydrophobic pocket also disrupts binding of full-length VP16 TAD to MED25 VBD. ¹H-¹⁵N-HSQC spectra of free VP16 TAD (**a**), at 1:1 ratio of wild-type MED25 VBD (**b**) and with 1:1.5 excess of Q451E MED25 VBD (**c**) show that VP16 TAD only loosely binds, as seen by minor chemical shift changes, to mutant MED25 VBD without adopting a folded conformation. Far-shifted and broadened signals caused by the addition of wild-type MED25 VBD (**b**), are missing when the mutant MED25 VBD is added to ¹⁵N-labeled VP16 TAD (**c**).

Supplementary Figure 7. ¹H-¹⁵N-HSQC spectra of the VP16 TAD (black signals) and the VP16 TADn (red signals) in the presence of 1.3 equivalents MED25 VBD. Far-shifted resonances overlap for both peptides and are indicated by circles and assignment.

a

Supplementary Figure 8. Mapping the TADc binding site on MED25 VBD. (a) Overlay of ${}^{1}\text{H}{}^{15}\text{N}{}$

Supplementary Figure 9. Wild-type and mutant MED25 VBD displayed comparable level of expression in transfected HEK293T cells when immunoblotted with anti-Flag antibody.

Supplementary Table 1. Ramachandran Plot Summary of the MED25 VBD structure from PROCHECK⁶.

Ramachandran Plot Summary from PROCHECK	
Most favoured regions	89.1%
Additionally allowed regions	10.4%
Generously allowed regions	0.5%
Disallowed regions	0.0%

Supplementary References

- 1. Gouet, P., Courcelle, E., Stuart, D.I. & Metoz, F. ESPript: analysis of multiple sequence alignments in PostScript. *Bioinformatics* **15**, 305-308 (1999).
- 2. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. *J Mol Biol* **233**, 123-138 (1993).
- 3. Walker, J.R., Corpina, R.A. & Goldberg, J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. *Nature* **412**, 607-614 (2001).
- 4. Ariyoshi, M. & Schwabe, J.W. A conserved structural motif reveals the essential transcriptional repression function of Spen proteins and their role in developmental signaling. *Genes Dev* **17**, 1909-1920 (2003).
- 5. Pervushin, K., Riek, R., Wider, G. & Wüthrich, K. Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. *Proc Natl Acad Sci U S A* **94**, 12366-12371 (1997).
- 6. Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. *J Biomol NMR* **8**, 477-486 (1996).