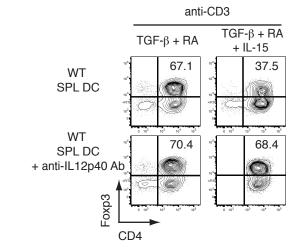
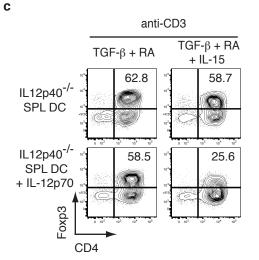
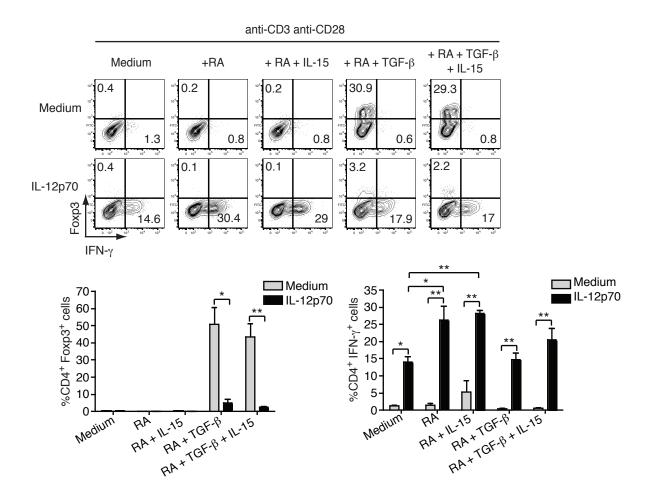
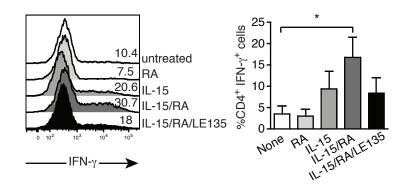

С

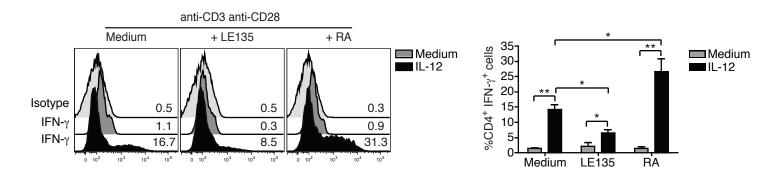




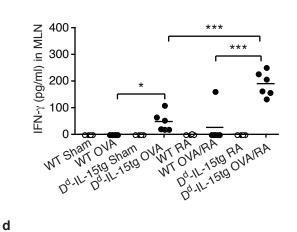



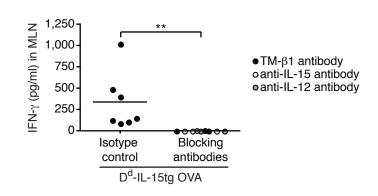



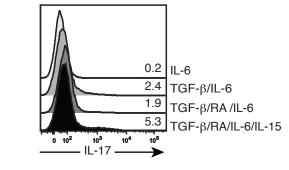


d



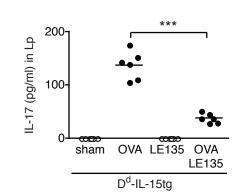


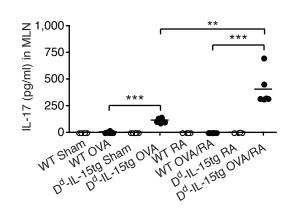


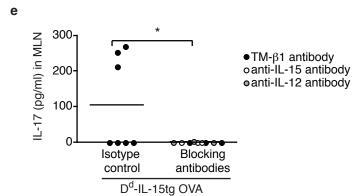




С

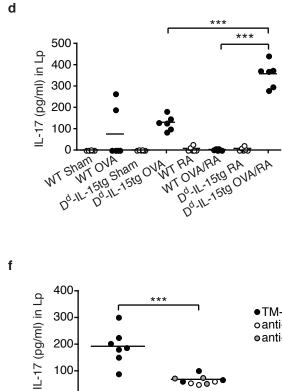






а




b





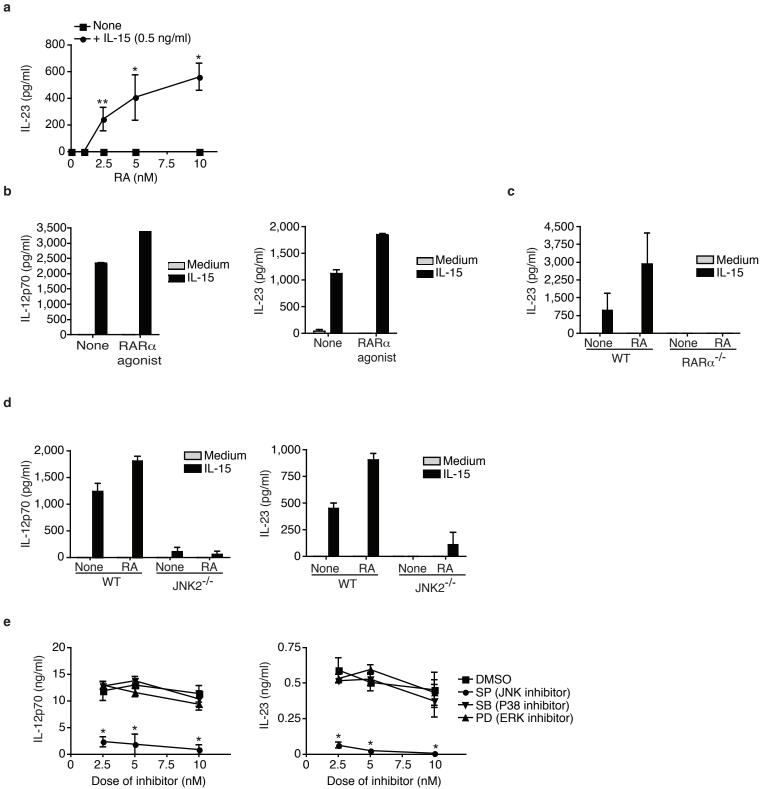


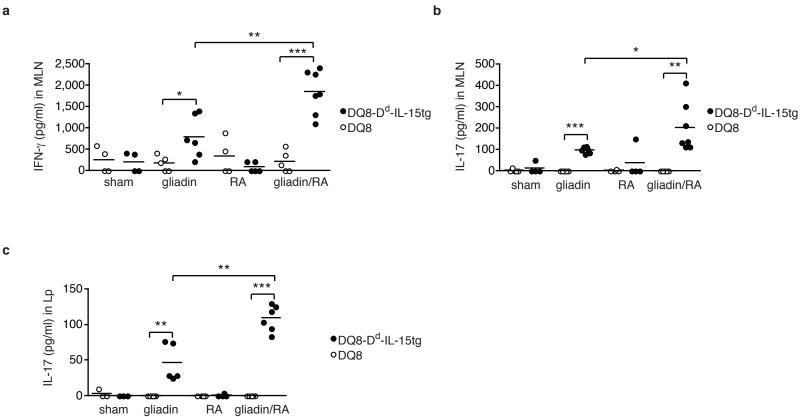


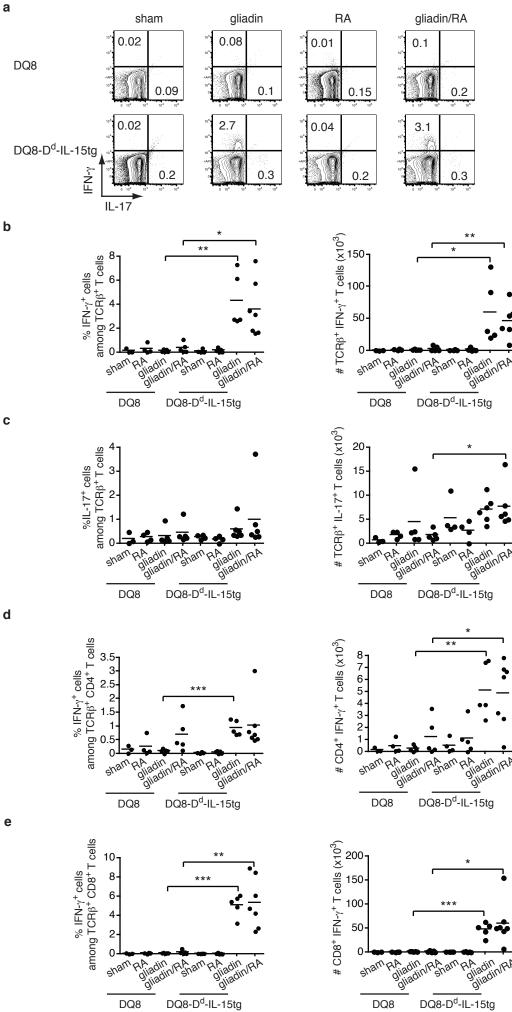

DePaolo et al., Supplementary Figure 7



0


Isotype


control

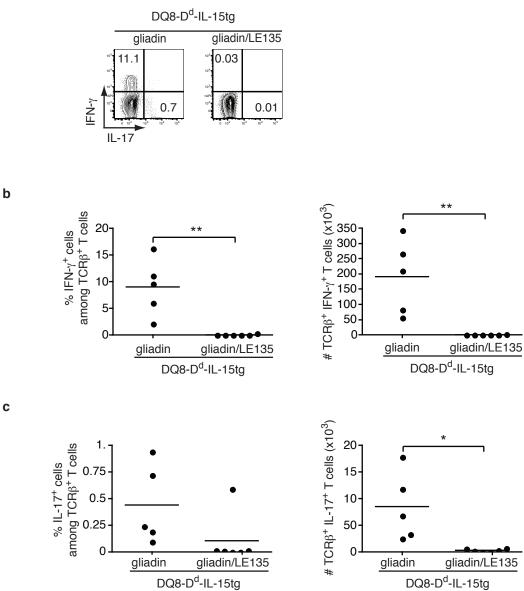

Blocking antibodies

D<sup>d</sup>-IL-15tg OVA

•TM-β1 antibody o anti-IL-15 antibody o anti-IL-12 antibody








giladin RA

ģliadin

gliadin/RA

DePaolo et al., Supplementary Figure 10



#### **Supplementary figures:**

# Figure S1. IL-15-treated DC prevent conversion of naïve T cells into iTregs, whereas IL-15 does not affect iTreg generation in the absence of DC.

**a**,  $10^5$  CD4<sup>+</sup> CD44<sup>lo</sup> Foxp3<sup>-</sup> T cells were cultured with 4 x  $10^4$  MLN DC isolated from WT mice for three days with anti-CD3 alone or combined with IL-15 and TGF- $\beta$ . The percentages of Foxp3<sup>+</sup> cells are indicated. One representative out of two independent experiments is shown. **b**, 2 x  $10^5$  CD4<sup>+</sup> Foxp3<sup>-</sup> T cells were cultured for three days with anti-CD3 and anti-CD28 alone or combined with TGF- $\beta$ , RA, and IL-15. The percentages of Foxp3<sup>+</sup> cells are indicated. One representative out of three independent experiments is shown.

#### Figure S2. Evidence for the role of DC on iTreg conversion in the presence of IL-15

**a**,  $10^5$  CD4<sup>+</sup> Foxp3<sup>-</sup> T cells were cultured with 4 x  $10^4$  MLN DC isolated from WT or IL-2R $\beta$ -deficient mice for three days with anti-CD3 alone or combined with IL-15 and TGF- $\beta$ . The percentages of Foxp3<sup>+</sup> cells are indicated. One representative out of two independent experiments is shown. **b**,  $10^5$  CD4<sup>+</sup> Foxp3<sup>-</sup> T cells were cultured with 4 x  $10^4$  SPL DC isolated from WT or D<sup>d</sup>-IL-15tg mice for three days with anti-CD3 alone or combined with IL-15, TGF- $\beta$  and RA. The percentages of Foxp3<sup>+</sup> cells are shown. Graph depicts pooled data ± s.e.m. from three independent experiments. **c**, SPL DC isolated from WT mice were incubated overnight with IL-15 alone or combined with RA, or RA and a RA receptor antagonist, LE135. Supernatants were added to 2 x  $10^5$  CD4<sup>+</sup> Foxp3<sup>-</sup> T cells cultured for three days with anti-CD3, anti-CD28, TGF- $\beta$  and RA. The percentages of  $Foxp3^+$  cells are indicated in each quadrant. Graph depicts pooled data  $\pm$  s.e.m. from five independent experiments.

#### Figure S3. IL-15 expression in IL-15 transgenic mouse models

**a**, The expression of IL-15 in Lp, IEC, and MLN of WT, D<sup>d</sup>-IL-15tg, and v-IL-15tg was assessed by ELISA. \* P < 0.05, \*\* P < 0.01 (unpaired Student's *t*-test). **b**, The lack of IL-15 transgene expression in IEC of D<sup>d</sup>-IL-15tg mice is due to the fact that the minimal ubiquitous MHC class I H-2D<sup>d</sup> promoter used to drive IL-15 expression is inactive in IEC of C57BL/6 mice. The expression of MHC class I molecules (i.e. H2-D<sup>d</sup>, H2-K<sup>b</sup>, H2-D<sup>d</sup>, open histograms) was assessed by flow cytometry on splenic APC (CD11c<sup>+</sup>), intestinal IEL (CD45<sup>+</sup>) and IEC (CD45<sup>-</sup> CD13<sup>+</sup>) isolated from C57BL/6 mice and on IEC isolated from BALB/c mice. Filled histograms represent the corresponding isotype controls.

### Figure S4. Effect of IL-15 and IL-12 on the generation of Foxp3<sup>+</sup> iTregs

**a**, SPL DC isolated from WT mice were incubated overnight with IL-15 alone or combined with RA or RA and RAR antagonist LE135. Levels of IL-12p70, IL-23, and IL-6 were measured by ELISA. Graph depicts data from at least three experiments performed independently  $\pm$  s.e.m.. **b**, 2 x 10<sup>5</sup> CD4<sup>+</sup> Foxp3<sup>-</sup> T cells were cultured for 3 days with anti-CD3, anti-CD28, TGF- $\beta$ , and RA, in the presence of increasing doses of IL-12p70, or 500 pg/ml IL-12p70 combined with increasing concentrations of IL-23. One representative out of three independent experiments is shown (left panel). Graph depicts pooled data  $\pm$  s.e.m. from three independent experiments (right panel). **c**, 10<sup>5</sup> CD4<sup>+</sup> Foxp3<sup>-</sup> T cells were cultured with 4 x 10<sup>4</sup> SPL DC isolated from IL-12p40-deficient mice

for three days with anti-CD3 alone or combined with RA, TGF- $\beta$  and IL-15 in the presence or absence of IL-12p70. The percentages of Foxp3<sup>+</sup> cells are indicated. One representative out of three independent experiments is shown. **d**, 10<sup>5</sup> CD4<sup>+</sup> Foxp3<sup>-</sup> T cells were cultured with 4 x 10<sup>4</sup> SPL DC isolated from WT mice for three days with anti-CD3 alone or combined with RA, TGF- $\beta$ , and IL-15 in the presence or absence of anti-IL-12p40 antibody. The percentages of Foxp3<sup>+</sup> cells are indicated. One representative out of two independent experiments is shown.

#### Figure S5. Impact of IL-15 on T<sub>H</sub>1 polarization

2 x 10<sup>5</sup> CD4<sup>+</sup> Foxp3<sup>-</sup> T cells were cultured for three days with anti-CD3 and anti-CD28 alone or combined with RA, IL-15, and TGF- $\beta$ , in the presence of 500 pg/ml IL-12p70. The percentages of Foxp3<sup>+</sup> and IFN- $\gamma^+$  T cells are indicated. Bar graphs summarize the percentage of Foxp3-expressing CD4<sup>+</sup> T cells and the percentage of IFN- $\gamma$ -producing CD4<sup>+</sup> T cells obtained from three independent experiments ± s.e.m.. \* *P* <0.05, \*\* *P* <0.01, (unpaired Student's *t*-test).

#### Figure S6. Co-adjuvant effects of RA and IL-15 on T<sub>H</sub>1 polarization.

**a**, WT SPL DC were incubated overnight with IL-15 alone or combined with RA, or RA and LE 135. Supernatants were added to 2 x  $10^5$  CD4<sup>+</sup> Foxp3<sup>-</sup> T cells cultured for three days with anti-CD3 and anti-CD28. The percentages of IFN- $\gamma^+$ -producing CD4<sup>+</sup> T cells from three independent experiments  $\pm$  s.e.m. is shown. **b**, 2 x  $10^5$  CD4<sup>+</sup> Foxp3<sup>-</sup> T cells were cultured for three days with anti-CD3 and anti-CD3 and

T cells are indicated. The graph summarizes the percentages of IFN- $\gamma$ -producing CD4<sup>+</sup> T cells obtained from three independent experiments ± s.e.m.. **c**, WT and D<sup>d</sup>-IL-15tg mice were fed OVA, RA, or a mixture of OVA and RA, five times during ten days. One day after the last feeding, MLN cells were harvested and re-stimulated for 48 h with OVA. Culture supernatants were assayed for IFN- $\gamma$  by ELISA. The results are the means of triplicate samples obtained from two independent experiments. **d**, D<sup>d</sup>-IL-15tg mice were fed OVA and received i.p. injections of anti-IL-12p40, anti-IL-15, or TM $\beta$ -1 (anti-IL-2R $\beta$ ) antibodies or isotype controls. As in (c), the levels of IFN- $\gamma$  in the MLN were assessed by ELISA. When anti-IL-15 and anti-IL-12 treatment experiments were performed in parallel, control mice received a mixture of corresponding isotype controls. Data on individual mice from two independent experiments are shown, except for anti-IL-12 treatment that was performed on three individual mice.

\* *P* <0.05, \*\* *P* <0.01, \*\*\* *P* <0.001 (unpaired Student's *t*-test).

#### Figure S7. Impact of IL-15 on T<sub>H</sub>17 responses

**a**,  $1 \times 10^6$  purified CD4<sup>+</sup> T cells were stimulated with anti-CD3, anti-CD28, and IL-6, in the presence or absence of TGF- $\beta$ , RA and IL-15. One representative out of two independent experiments is shown. **b**, D<sup>d</sup>-IL-15tg mice were fed PBS (sham), OVA, LE135, or a mixture of OVA and LE135. The concentration of IL-17 in Lp culture supernatants was detected by ELISA. The results are the means of triplicate samples obtained from two independent experiments. **c-d**, D<sup>d</sup>-IL-15tg and WT mice were fed PBS (sham), RA, OVA, or a mixture of OVA and RA five times during ten days. One day after the last feeding, MLN (**c**) and Lp (**d**) cells were harvested and re-stimulated with OVA for 48 h and 24 h, respectively. Culture supernatants were assayed for IL-17 by ELISA. The results are the means of triplicate samples obtained from two independent experiments. e-f, D<sup>d</sup>-IL-15tg mice were fed OVA and were treated i.p. with anti-IL-12p40, anti-IL-15, or TM $\beta$ -1 (anti-IL-2R $\beta$ ) antibodies. One day after the last feeding, MLN (e) and Lp (f) cells were harvested and re-stimulated with OVA for 48 h and 24 h, respectively. The concentration of IL-17 in the culture supernatants was detected by ELISA. When anti-IL-15 and anti-IL-12 treatment experiments were performed in parallel, control mice received a mixture of corresponding isotype controls. Data on individual mice from two independent experiments are shown, except for anti-IL-12 treatment that was performed on three individual mice.

\**P*<0.05, \*\* *P* <0.01, \*\*\* *P* <0.001 (unpaired Student's *t*-test).

# Figure S8. The synergistic activation of JNK in DC by RA and IL-15 promotes inflammatory responses.

**a**,  $10^5$  SPL DC were incubated overnight with increasing doses of RA ranging from 1 to 10 nM RA alone, or combined with 0.5 ng/ml IL-15. The production of IL-23 in the culture supernatants was determined by ELISA. Results are mean values ± s.e.m. of three independent experiments. **b**, BMDC isolated from WT mice were stimulated overnight with IL-15 alone or with IL-15 and a RAR- $\alpha$  agonist (AM580). The production of IL-12p70 and IL-23 in the supernatants was measured by ELISA. Results are mean values ± s.e.m. of two independent experiments. **c**, BMDC isolated from WT and RAR $\alpha$ -deficient mice were incubated overnight with IL-15 alone or IL-16 production of the supernatants was measured by ELISA. Results are mean values ± s.e.m. of two independent experiments. **c**, BMDC isolated from WT and RAR $\alpha$ -deficient mice were incubated overnight with IL-15 alone or IL-15 combined with RA. The levels

of IL-23 were measured in the culture supernatants by ELISA. Data are representative of two independent experiments  $\pm$  s.e.m..

**d**, SPL DC isolated from JNK2-deficient mice were incubated overnight with IL-15 alone or in the presence of RA. IL-12p70 and IL-23 were measured in the culture supernatants by ELISA. Data are representative of three independent experiments  $\pm$  s.e.m.. **e**, BMDC were pre-treated for 30 min with PD98059 (MEK1/2 inhibitor), SP600125 (JNK inhibitor), SB203580 (P38 inhibitor), or DMSO control and then incubated with IL-15. IL-12p70 and IL-23 production was determined 18 h later by ELISA. The values are means  $\pm$  s.e.m. from three independent experiments.

\*p<0.05, \*\*p<0.01 (unpaired Student's *t*-test).

### Figure S9. Inflammatory T cells are induced in DQ8-D<sup>d</sup>-IL-15tg mice fed gliadin

DQ8 and DQ8-D<sup>d</sup>-IL-15tg mice were fed PBS (sham), RA, gliadin, or a mixture of gliadin and RA. The MLN (**a-b**) and Lp (**c**) cells were harvested and re-stimulated with gliadin for 48 h or 24 h, respectively. Supernatants were analyzed for IFN- $\gamma$  (**a**) and IL-17 (**b-c**) by ELISA. Data are representative of two experiments performed independently. \**P*<0.05, \*\* *P*<0.01, \*\*\* *P*<0.001 (unpaired Student's *t*-test)

## Figure S10. Both CD4<sup>+</sup> and CD8<sup>+</sup> T cells producing IFN-γ are induced in DQ8-D<sup>d</sup>-IL-15tg mice fed gliadin

DQ8 and DQ8-D<sup>d</sup>-IL-15tg mice were fed PBS (sham), RA, gliadin, or a mixture of gliadin and RA. **a**,  $TCR\beta^+$  T cells isolated from the MLN were analyzed by flow cytometry for IFN- $\gamma$  and IL-17 expression. **b**, The percentages and absolute numbers of

IFN-γ-producing TCRβ<sup>+</sup> T cells in the MLN were determined by flow cytometry. Data are representative of two experiments performed independently. **c**, Percentages and absolute numbers of IL-17-producing TCRβ<sup>+</sup> T cells in the MLN of sham, RA, gliadin, and gliadin/RA fed mice. Data are representative of two experiments performed independently. **d**, The percentages and absolute numbers of IFN-γ-producing CD4<sup>+</sup> (upper panels) T cells in the MLN of fed mice were determined by flow cytometry. Data are representative of two experiments performed independently. **e**, The percentages and absolute numbers of IFN-γ-producing CD8<sup>+</sup> T cells in the MLN of fed mice were determined by flow cytometry. Data are representative of two experiments performed independently. \**P*<0.05, \*\* *P*<0.01, \*\*\* *P*<0.001 (unpaired Student's *t*-test).

## Figure S11. IL-15 and RA synergize to induce IFN-γ-producing T cells in DQ8-D<sup>d</sup>-IL-15tg mice fed gliadin

**a**, TCR $\beta^+$  T cells isolated from the MLN of DQ8-D<sup>d</sup>-IL-15tg mice fed gliadin or a combination of gliadin and LE135 were analyzed by flow cytometry for IFN- $\gamma$  and IL-17 expression. The percentages and absolute numbers of TCR $\beta^+$  T cells producing IFN- $\gamma$  (**b**) and IL-17 (**c**) were determined by flow cytometry. Data are representative of two experiments performed independently. \**P*<0.05, \*\**P*<0.01, (unpaired Student's *t*-test)