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The Geometry of Errera’s Rule. In this section, we show that the
shortest wall dividing a cell into daughter cells of equal size must
be an arc of circle meeting the cell surface at right angle. In order
to provide the reader with a geometric interpretation of this
result, we first describe the division of a polygonal cell by N
connected line segments. We then show that in the limit where
N → ∞ these straight segments converge to an arc of circle.
We finally extend this result to an arbitrary cell geometry using
the calculus of variations.

Division of a cell by a straight line ðN ¼ 1Þ. Let us consider a
polygonal cell divided into two equal parts by a straight line.
The dividing line meets two cell edges at distances l1 and l2 from
their point of intersection O (Fig. S1A). The length of the line L1

and the enclosed area A1 can be expressed as functions of l1, l2
and the angle between the edges θ:

L1 ¼ ðl21 þ l22 − 2l1l2 cos θÞ12; [S1]

A1 ¼
1

2
l1l2 sin θ: [S2]

(Note: although the area A1 includes a small region outside the
cell, the derivation to follow is not affected because the outside
region has fixed area irrespective of the value of l1 and l2.) We
want to find the straight line of shortest length dividing this sector
into a closed surface of area A0. Formally, this requires the mini-
mization of the functional I1ðl1;l2;θÞ ¼ L1ðl1;l2;θÞ − λA1ðl1;l2;θÞ,
where λ is the Lagrange multiplier; that is,

dI1 ¼ dl1

�
l1 − l2 cos θ

L1

−
λ

2
l2 sin θ

�
þ dl2

�
l2 − l1 cos θ

L1

−
λ

2
l1 sin θ

�

¼ 0. [S3]

Because Eq. S3 must be true independently of the values of
dl1 and dl2, we must satisfy the system of equations:

l1 − l2 cos θ
L1

−
λ

2
l2 sin θ ¼ 0; [S4]

l2 − l1 cos θ
L1

−
λ

2
l1 sin θ ¼ 0. [S5]

Solving the system S4, S5 gives l1 ¼ l2 and the value of l1 is
determined by the relation A1 ¼ A0. This result has a simple
geometrical interpretation: The median of the shortest dividing
line is coincident with the bisector of the angle θ.

Division of a sector by two line segments ðN ¼ 2Þ. In this second
case, the same cell is divided by two connected line segments
(Fig. S1B). The first segment (respectively, second) meets the
edge at distance l1 (respectively, l3) from O and defines a triangle
with an opposite angle θ1 (respectively, θ − θ1). The two segments
meet at distance l2 fromO. As above, we can express the length of
the segmented line L2 and area of the enclosed region A2 as a
function of l1, l2, l3, θ, and θ1:

L2 ¼ ðl21 þ l22 − 2l1l2 cos θ1Þ12 þ ðl22 þ l23 − 2l2l3 cosðθ − θ1ÞÞ12; [S6]

A2 ¼
1

2
l1l2 sin θ1 þ

1

2
l2l3 sinðθ − θ1Þ: [S7]

Once again, minimizing the functional I2 ¼ L2 − λA2 leads to a
system of equations:

l1 − l2 cos θ1
L2a

−
λ

2
l2 sin θ1 ¼ 0; [S8]

l3 − l2 cosðθ − θ1Þ
L2b

−
λ

2
l1 sinðθ − θ1Þ ¼ 0; [S9]

l2 − l1 cos θ1
L2a

þ l2 − l3 cosðθ − θ1Þ
L2b

−
λ

2
l1 sin θ1 −

λ

2
l3 sinðθ − θ1Þ

¼ 0; [S10]

l1l2 sinðθ − θ1Þ
L2a

þ l2l3 sinðθ − θ1Þ
L2b

−
λ

2
l1l2 cos θ1 þ

λ

2
l1l3 cosðθ − θ1Þ

¼ 0. [S11]

The system of Eqs. S8–S11 is satisfied for

θ1 ¼ θ − θ1 ¼
θ

2
; [S12]

l1 ¼ l2 ¼ l3: [S13]

Geometrically, each individual segment behaves as if dividing
half of the polygonal cell with shortest length and with its median
going through O as for N ¼ 1.

Division of a sector by N line segments. The problem presented in
the last sections can further be extended to the division of a sector
by N connected segments (Fig. S1C). The final result can be in-
ferred from the results for N ¼ 1 and N ¼ 2. By induction, each
segment will subdivide into two segments of equal lengths with
their medians meeting at O.

Formally, we consider N segments defining N triangles of
angles θi and side lengths li and liþ1. The first and last segments
meet the cell edges at distances l1 and lNþ1 from O, respectively,
and the angles θi must satisfy the constraint ∑iθi ¼ θ. The total
length of the segmented line LN and enclosed area AN are

LN ¼ ∑
N

i¼1

ðl2i þ l2iþ1 − 2liliþ1 cos θiÞ12; [S14]

AN ¼ ∑
N

i¼1

1

2
liliþ1 sin θi: [S15]
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Using the same variational approach, the minimization of IN ¼
LN − λAN leads to the generic relationships

θ1 ¼ … ¼ θN ¼ θ

N
; [S16]

l1 ¼ … ¼ lNþ1: [S17]

The expression of the total length LN as a function of N, θ, and
A0 can be derived by substituting Eqs. S16 and S17 in Eqs. S14
and S15 with the constraint AN ¼ A0.

LN ¼ 2

�
NA0

sinð θNÞ
�
1 − cos

�
θ

N

���1
2

: [S18]

Continuous limit ðN → ∞Þ. In the continuous limit, each point on
the dividing curve has its tangent normal to the line joining it to
the sector’s center. This geometrically defines an arc of circle
centered at O. The length of this curved wall Lc corresponds
to the limit of Eq. S18 when N → ∞.

Lc ¼ lim
N→∞

LN ¼ 2

�
A0θ

2

�1
2

: [S19]

Because we want to compare the length of the straight and the
curved line independently of the area A0, we will consider the
ratio between Lc and Ls ¼ L1.

r ¼ Lc

Ls
¼

�
θ sin θ

2ð1 − cos θÞ
�1

2

: [S20]

The function rðθÞ is always smaller or equal to 1 (Fig. S1D)
proving that the curved wall enclosing a surface of fixed area
A0 is always shorter than the straight line under the same con-
ditions.

Formal approach using the calculus of variations. In the general case,
the cellular boundary can be described by a function f ðxÞ
(Fig. S1E). We attempt to construct a curve of equation yðxÞ
of minimal length enclosing a surface of area A0. This curve is
bound by two points of coordinates ðx1;f ðx1ÞÞ and ðx2;f ðx2ÞÞ.
The length of the dividing wall L and the subsequent area of
the daughter cell A can be written as a function of y, f , x1,
and x2.

L ¼
Z

x2

x1

ð1þ y0ðxÞ2Þ12dx; [S21]

A ¼
Z

x2

x1

yðxÞdx −
Z

x2

x1

f ðxÞdx: [S22]

We want to find the form of the function y that minimizes the
function I ¼ Lþ λA, where λ is the Lagrange multiplier. We in-
troduce the functional Φðx;y;y0Þ as

I ¼
Z

x2

x1

ðð1þ y0ðxÞ2Þ12 þ λyðxÞ − λf ðxÞÞdx; [S23]

¼
Z

x2

x1

ðΦðx;y;y0Þ − λf ðxÞÞdx: [S24]

Considering the family of curves Y ¼ yþ αδy, we have

Y 0 ¼ y0 þ αδy0, X1 ¼ x1 þ αδx1, X2 ¼ x2 þ αδx2 and the functional
IðαÞ writes as

IðαÞ ¼
Z

X2

X1

ðΦðx;Y ;Y 0Þ − λf ðxÞÞdx: [S25]

A necessary condition for IðαÞ to be a minimum when α ¼ 0 is
that I0ðαÞ ¼ dI

dα must be zero when α ¼ 0.

I0ðαÞ ¼
Z

X2

X1

�
∂Φ
∂Y

δyþ ∂Φ
∂Y 0 δy

0
�
dxþ ½Φðx;Y ;Y 0Þ − λf �X2

δx2

− ½Φðx;Y ;Y 0Þ − λf �X1
δx1: [S26]

When α ¼ 0, the integral derivative writes as

I0ð0Þ ¼
Z

x2

x1

�
∂Φ
∂y

δyþ ∂Φ
∂y0

δy0
�
dxþ ½Φðx;y;y0Þ − λf �x2δx2

− ½Φðx;y;y0Þ − λf �x1δx1: [S27]

Integrating by parts, the first term of Eq. S27 becomes

I0ð0Þ ¼
Z

x2

x1

�
∂Φ
∂y

−
d
dx

∂Φ
∂y0

�
δydxþ

�
∂Φ
∂y0

δy
�
x2

−
�
∂Φ
∂y0

δy
�
x1

þ ½Φ − λf �x2δx2 − ½Φ − λf �x1δx1: [S28]

Using the expression of the boundary conditions ðδyÞi ¼
ðf 0 − y0Þδxi þ ϵi, we have

I0ð0Þ ¼
Z

x2

x1

�
∂Φ
∂y

−
d
dx

∂Φ
∂y0

�
δydx

þ
�
∂Φ
∂y0

�
f 0 − y0 þ ϵ2

δx2

�
þΦ − λf

�
x2

δx2

−
�
∂Φ
∂y0

�
f 0 − y0 þ ϵ1

δx1

�
þΦ − λf

�
x1

δx1: [S29]

To have the minimum condition I0ð0Þ ¼ 0 independently of the
values of δx1 and δx2, we must meet a system of three equations
S30–S32. The first equation is known as the Euler–Lagrange
equation and the two next ones are boundary conditions.

∂Φ
∂y

−
d
dx

∂Φ
∂y0

¼ 0; [S30]

�
∂Φ
∂y0

ðf 0 − y0Þ þΦ − λf
�
x1

¼ 0; [S31]

�
∂Φ
∂y0

ðf 0 − y0Þ þΦ − λf
�
x2

¼ 0. [S32]

After substitution of Φ by its expression, the system becomes

d
dx

y0

ð1þ y02Þ12 ¼ −λ; [S33]

�
1þ y0f 0

ð1þ y02Þ12 þ λðy − f Þ
�
x1

¼ 0; [S34]
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�
1þ y0f 0

ð1þ y02Þ12 þ λðy − f Þ
�
x2

¼ 0. [S35]

The Euler–Lagrange equation can be integrated twice and the
boundary conditions can be simplified by using the relationships
yðx1Þ ¼ f ðx1Þ and yðx2Þ ¼ f ðx2Þ. The minimization of I gives two
identities defining an arc of circle meeting orthogonally the
boundary of the mother cell.

ðx − x0Þ2 þ ðy − y0Þ2 ¼
1

λ2
; [S36]

½y0f 0�x1 ¼ ½y0f 0�x2 ¼ −1. [S37]

Note that this result can be extended to three dimensions when
considering the division of a body of volume V by a surface of
area S enclosing a fixed volume V 0. Minimization of the function
I ¼ Sþ λV using the calculus of the variations yields the division
plane should be a surface of constant mean curvature meeting
orthogonally the body’s boundary.

Derivation of MaximumEntropyModel. In this section, we derive the
equations for the distribution of endoplasmic microtubules popu-
lating the cytoplasmic strands of a two-dimensional polygonal cell
with m sides.

We recall xu is the density of microtubules connecting the nu-
cleus to edge u. We posit that the microtubules adopt the distri-
bution with the highest number of configurations. For the discrete
distribution ðx1…xmÞ, the number of configurations is measured
by the Shannon entropy, H:

Hðx1…xmÞ ¼ −∑
m

u¼1

xu lnðxuÞ: [S38]

We use the method of the Lagrange multipliers to find the dis-
tribution maximizing the function Hðx1…xmÞ subject to all the
constraints on the system. Each constraint is given by a function
giðx1…xmÞ, and we are interested in points where giðx1…xmÞ ¼ 0.
The first constraint arises from the fact that the relative densities
xu must account for all microtubules:

g1ðx1…xmÞ ¼ 1 −∑
m

u¼1

xu: [S39]

To account for this first constraint, we construct the Lagran-
gian L1ðx1…xm;αÞ as

L1ðx1…xm;αÞ ¼ −∑
m

u¼1

xu lnðxuÞ þ α

�
1 −∑

m

u¼1

xu
�
; [S40]

where α is a parameter called the Lagrange multiplier.
To find the entropy-maximizing distribution satisfying the con-

straint g1 ¼ 0, we need to solve

∇L1ðx1…xm;αÞ ¼ 0. [S41]

Note that the partial differentiation of L1 with respect to the
Lagrange multiplier α is exactly equal to the first constraint func-
tion g1, that is,

∂L1

∂α
¼ g1ðx1…xmÞ ¼ 0.

By differentiating L1 with respect to the components xu and set-
ting the resulting equations equal to zero, we have

∂L1

∂xu
¼ −1 − lnðxuÞ − α ¼ 0; u ¼ 1…m: [S42]

which yields the distribution

xu ¼ e−1−α; u ¼ 1…m: [S43]

By substituting this distribution in Eq. S39 we find

xu ¼ 1

m
; u ¼ 1…m: [S44]

Thus, maximization of the entropyH subject to the normalization
constraint g1 yields an equiprobable distribution.

The second constraint g2 results from the condition on the cy-
toskeletal dynamics and writes as

g2ðx1…xmÞ ¼ c −∑
m

u¼1

xudu

ρ
; [S45]

where du is the shortest distance between the nucleus and edge u
and c is a constant of order 1.

To account for both constraints g1 and g2, we introduce a sec-
ond Lagrange multiplier β.

L2ðx1…xm;α;βÞ ¼ −∑
m

u¼1

xu lnðxuÞ þ α

�
1 −∑

m

u¼1

xu
�

þ β

�
c −∑

m

u¼1

xudu

ρ

�
: [S46]

Again, the maximum of the function L2ðx1…xm;α;βÞ is found
by taking derivatives with respect to the components xu and set-
ting the resulting equations equal to zero.

∂L2

∂xu
¼ −1 − lnðxuÞ − α − β

du

ρ
¼ 0; u ¼ 1…m: [S47]

This calculation yields a typical distribution xu scaling exponen-
tially with the microtubule length du:

xu ¼ e−1−α−βd
u∕ρ; u ¼ 1…m: [S48]

Here again, the values of α and β must satisfy the two constraint
equations. By analogy with statistical thermodynamics, we intro-
duce the partition function Z−1 ¼ e−1−α. Then, the values of Z
and β must satisfy the system of equations

Z ¼ ∑
m

u¼1

e−βd
u∕ρ cρZ ¼ ∑

m

u¼1

due−βd
u∕ρ: [S49]

Although β could in principle be expressed explicitly in terms
of the microtubule length du, the presence of the unknown para-
meter c makes that step irrelevant. We have thus measured β ex-
perimentally. Future experiments performed on cells with fixed
geometry will allow us to test how β is set at the molecular level.
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Fig. S1. Geometrical properties of the division plane. (A) Division of a polygonal cell by a straight line. (B) Division of a polygonal cell by two connected line
segments. (C) Division of a polygonal cell by N connected line segments. (D) Length ratio between the curved and straight walls as a function of the angle θ. (E)
Division of a polygonal cell of equation fðxÞ by a curve of equation yðxÞ meeting the edges at points ðx1;fðx1ÞÞ and ðx2;fðx2ÞÞ.

A B C D E

Fig. S2. Overview of the molecular detail for plant cell division. (A) Interphase. (B) Preprophase. (C) Mitosis. (D) During early cytokinesis, the new cell plate
expands outward from the cell center. (E) At the end of cytokinesis, the cell plate meets the mother cell at the location of the preprophase band. Red: cortical
microtubules. Blue: intracellular cytoskeleton.

Fig. S3. Configuration space for dividing cells. For each arc position around the cell perimeter (the entire perimeter is normalized to 1), we compute nu-
merically the shortest curves ending at this position and dividing the cell in two regions of equal size (see alsoMovie S3). The potential division planes of the cell
correspond to the arc positions yielding the curves of minimal length for the edge pair under consideration. All possible edge pairs or division types are labeled
with their own color.
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Fig. S4. Division of polygonal cells. (A) Scanning electron micrograph of the shoot apical meristem of the angiosperm Zinnia elegans. (B) Epoxy imprint of the
adaxial face of the frond of the fernMicrosorum punctatum. (C and D) Extracted cellular pattern with cells colored according to the mode of division: from the
shortest planes (black) to the fourth shortest (lightest shade of gray). Cross-hatching denotes cells that did not divide or, in a few cases, divided along a plane
that is not one of the minimal area configurations. (E and F) Closeup of the cellular patterns. The solid lines and dashed green lines represent the observed and
predicted division planes, respectively. The match in most cells is surprisingly accurate given that the predicted position and shape of the division plane is done
without any fitting parameters. When the predicted and observed division planes depart from each other, we commonly observe that Sachs’s rule is at fault;
i.e., the daughter cells are not of equal size. In many cases, correcting for this bias in the size of the daughter cells would bring the observed and predicted
division planes in register.
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Movie S1. Simulation of the growth of the Coleochaete thallus. The development is modeled as a dynamical system using amarginal growth field and Errera’s
rule of cell division; i.e., the cells are divided along the plane of least area that creates two daughter cells of equal size.

Movie S1 (AVI)

Movie S2. Alternative equilibrium configurations for two soap bubbles confined to a quadrant. The displacement of the soap film separating the two bubbles
reveals three equilibrium configurations.

Movie S2 (AVI)
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Movie S3. Numerical exploration of the configuration space. For each arc position around the cell perimeter (the entire perimeter is normalized to 1), we
compute numerically the shortest curves ending at this position and dividing the cell in two regions of equal size. The potential division planes of the cell
correspond to the arc positions yielding the curves of minimal length for the edge pair under consideration. All possible edge pairs or division types are labeled
with their own color.

Movie S3 (AVI)
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