
Supporting Information
Cellmer et al. 10.1073/pnas.1019552108
SI Text
The villin headpiece contains 76 residues, which are usually num-
bered 1–76, with Leu42 being the first residue of the 35-residue
C-terminal subdomain. In this work this subdomain is called
HP35. Many of the studies, particularly those of Raleigh and cow-
orkers, also include a methionine at the N terminus, which is not
present in the naturally occurring sequence, but is present when
the polypeptide is synthesized by recombinant methods (1–3).
This structure is referred to as HP36, with the methionine labeled
residue 41. Here we call this molecule Met-HP35.

Comparison of HP35 Folding Rates from Different Experimental Meth-
ods.Table S1 lists published folding rates of HP35 constructs mea-
sured from laser temperature-jump (T-jump) experiments with
IR and fluorescence detection, triplet-lifetime experiments, and
NMR line-shape analysis.

EquilibriumMeasurements.Circular dichroism measurements were
made with a Jasco 720 spectropolarimeter using 50 μM protein in
a 1 mm quartz cuvette. Data were collected at 222 nm. Each mea-
surement was performed at least three times using a different
stock solution of protein. The GdmCl concentration was deter-
mined by refractometry using an ABBE refractometer (American
Optical). The solutions contained 1 mM Tris(2-carboxyethyl)
phosphine (TCEP) to prevent disulfide formation, and were buf-
fered to pH ¼ 4.9 with 20 mM sodium acetate. The data were fit
with the following equations

Θ222 nm ¼ aþ cKeq

Keq þ 1
Keq ¼ exp

�
m
RT

ð½D� − ½Dmid�Þ
�
; [S1]

where a is the intercept of the folded baseline, c is the intercept of
the unfolded baseline, Θ222 nm is the molar ellipticity at 222 nm,
Keq is the equilibrium constant (¼ku∕kf ), T is the absolute tem-
perature, R is the gas constant, m is the equilibrium sensitivity to
denaturant, [D] is the denaturant concentration, and ½D�mid is the
denaturant concentration where the population of the folded
state is 50%. The fitting parameters a, b, c, m, and ½D�mid were
calculated by minimizing the χ2 parameter

χ2 ¼ ∑
N

i¼1

ðymeas − ycalcÞ2
σ2yi

: [S2]

The weights (σy) were set to the standard deviation of at least
three measurements. Uncertainties in the resulting fit para-
meters,m and ½D�mid, were calculated by fixing the baseline inter-
cepts to their optimum values and finding parameter values that
correspond to a 68% confidence interval. For example, for cal-
culating the uncertainty in m, m was moved from its optimum
value and the data refit allowing ½D�mid to vary. The difference
between the optimum value of m and that corresponding to
the 68% confidence interval is reported as the uncertainty.

Temperature-Jump Measurements. T-jump measurements were car-
ried out on solutions containing 300 μM Cys-HP35(Nle24,His27,
Nle29) or N-acetyl-tryptophanamide (NATA) using a nanose-
cond-laser-temperature-jump instrument very similar to that
described in ref. 4. All solutions were buffered to pH ¼ 4.9 with
20 mM sodium acetate and contained 1 mM TCEP to prevent
disulfide bond formation, and flowed through the illuminated
region to eliminate effects of tryptophan photodamage. Tempera-

ture jumps of approximately 5 °C were generated by Raman shift-
ing pulses of a Nd:YAG fundamental at 1,064–1,560 nm using D2

gas. To ensure a consistent temperature jump in the presence of
changing solvent conditions, the temperature jump was calibrated
using NATA. A frequency-doubled Kr laser with an output at
284 nm was used to excite Trp fluorescence. In each experiment,
four to eight traces of 512 laser shots were collected. Rate con-
stants and amplitudes were calculated by a least-squares fit of the
data to a sum of exponentials and baseline from a NATA trace.
Fig. S1 plots the measured relaxation times as a function of
GdmCl concentration. The uncertainties in the fits were typically
much lower than the experiment-to-experiment variation. The
uncertainties represent the deviation or the standard deviations
from the mean of two to three measurements, respectively, made
with different stock solutions and different temperature-jump
calibrations. Denaturant concentrations of the samples were cal-
culated using refractometry.

At GdmCl concentrations lower than 2.25M, the population of
unfolded molecules was too small to yield measurable kinetic
amplitudes. Thus multiple measurements were made at higher
temperatures and the rate at 10 °C was obtained by extrapolation
using an Arrhenius expression. Measurements at each tempera-
ture were performed three to four times on different days with
different temperature-jump calibrations. Solution conditions,
other than the GdmCl concentration, and the fitting of the mea-
sured traces were the same as reported in Materials and Methods.
Fig. S4 shows the measured relaxation rates, the folding rates,
and the Arrhenius fit of the folding rates. Uncertainties in the
relaxation rates are reported as the standard deviation of repli-
cate measurements. Folding rates were calculated from the equi-
librium constant and the relaxation rate as discussed in the text.
The data were fit to an Arrhenius expression using weighted
linear least-squares. The equilibrium constants were obtained
by fitting CD data (Fig. S3) as a function of temperature. The
following expressions were used to calculate the equilibrium ther-
modynamic parameters,

Θ222 nm ¼ ðaþ bTÞ þ ðcþ dTÞKeq

Keq þ 1
[S3]
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where a is the intercept of the folded baseline, b is the slope of the
folded baseline, c is the intercept of the unfolded baseline, d is the
slope of the unfolded baseline, Θ222 nm is the molar ellipticity at
222 nm, Keq is the equilibrium constant (¼ku∕kf ), T is the tem-
perature, R is the gas constant, ΔH is the enthalpy difference
between the folded and unfolded states, T is the temperature,
and Tf is the temperature where the populations of folded and
unfolded states are equal.

Triplet-Lifetime Measurements. The population of the tryptophan
triplet state was monitored by triplet–triplet absorption at
440 nm using an instrument very similar to that described earlier
(5–7). The sample was excited at 290 nm by a 1-mJ pulse from a
Ce:LiCaF laser pumped by the fourth harmonic of a Q-switched
Nd:YAG laser. The absorbance was probed by monitoring the
transmitted intensities of a split 440-nm diode laser beam using
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a pair of photodiodes. The measured intensities were averaged
over 256 laser shots. A 1.0 cm fluorescence cuvette was used for
the absorbance measurements. All samples contained 100 μM
Cys-HP35(Nle24,Nle29) in 20 mM sodium acetate buffer with
1 mM TCEP at pH ¼ 4.9. Solutions were deoxygenated and
saturated with N2O to scavenge hydrated electrons produced
by tryptophan excitation. Fit parameters are listed in Table S2
and additional traces are found in Fig. S2.
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Fig. S1. Cys-HP35(Nle24,His27,Nle29) relaxation times as a function of [GdmCl]. These are the measured relaxation times from temperature-jump experi-
ments, and were used to calculate the folding times in Fig. 7 assuming a two-state model. Further details regarding the experiments are provided in the
SI Text and in the caption for Fig. 7 in the main text.

A

B

C

D

Fig. S2. Triplet-lifetime decays not shown inmain text. Normalized tryptophan triplet–triplet absorbance at 440 nm as a function of time on a log scale at 10 °C
for 100 μM solutions of Cys-HP35(Nle24,Nle29) containing 20 mM sodium acetate, 1 mM TCEP, and either (A) 1.5 M GdmCl (purple), (B) 3 M GdmCl (blue),
(C) 3.5MGdmCl (green), (D) 4.0MGdmCl (yellow), (E) 5.0MGdmCl (orange), or (F) 5.5MGdmCl (red). The circles are the experimental data and the lines are the
fits with the kinetic model.
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Fig. S3. Equilibrium thermal unfolding curves for 75 μm Cys-HP35(Nle24,His27,Nle29) in 1.5 M GdmCl measured by circular dichroism. The continuous
green line represents a two-state fit to the data. The dashed lines are the folded and unfolded baselines used in the calculation of the fraction of folded
as a function of temperature. The fitted parameters are ΔHm ¼ 15 kcal∕mol, Tm ¼ 340 K, a ¼ −19.4 deg cm2 dmol−1, b ¼ 0.0149 deg cm2 dmol−1 K−1,
c ¼ 3.54 deg cm2 dmol−1, and d ¼ −0.0171 deg cm2 dmol−1 K−1.

Fig. S4. T-jump kinetics for Cys-HP35(Nle24,His27,Nle29) in 1.5 M GdmCl. Relaxation rates (black circles), folding rates (green circles), and Arrhenius fit (green
line) to the folding rates for measurements made at 10 °C in 1.5 M GdmCl, 20 mM sodium acetate, 1 mm TCEP, and pH ¼ 4.9. Using the Arrhenius fit, the data
were extrapolated to 283 K, the temperature of the experiments performed in the main text. This point is represented on the plot by the open circle
(kf ¼ 3.2 × 106 s−1). The Arrhenius parameters are T0 ¼ 300 K, k0 ¼ 2.8 × 106 s−1, and ΔH� ¼ −1;150 cal∕mol.

Fig. S5. Fit of triplet-lifetimemodel to circular dichroism data in simultaneous fit to equilibrium and kinetic data (Fig. 4 and Fig. 7). SeeMaterials andMethods
for details.
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Table S1. Summary of kinetics for HP35 from previous work

Construct Method [GdmCl] M T K Relaxation time, μs τf , μs τu, μs τf∕τu Ref.

Cys-HP-35 triplet lifetime 2.5 303 20 (+6,−4) 31 (+12,−8) 56 (+21,−14) 0.56 (8)*
HP35(His27) T-jump fluorescence 2.5 303 13.0 (±0.3) 21.0 (±0.7) 37 (±1) 0.56 (8)*
Cys-HP-35 triplet lifetime 2.5 313 22 (+13,−6) 50 (+41,−18) 38 (+33,−14) 1.3 (8)*
HP35(His27) T-jump fluorescence 2.5 313 7.9(±0.3) 18.0 (±0.9) 14 (±0.7) 1.3 (8)*
HP35(His27) T-jump fluorescence 0 318 4.4 (±1.0) 4.7 (±1.0) 65 (±13) 0.07 (9)†

HP35(His27) T-jump infrared 0 318 7.4 8.6 57 0.15 (10)‡

Met-HP35 T-jump infrared 0 318 4.8 — — — (1)§

HP35(His27) T-jump fluorescence 0 323 4.2 (±0.4) 4.8 (±0.5) 36 (±3) 0.13 (9)†

HP35(His27) T-jump infrared 0 323 5.6 7.4 31 0.24 (10)‡

Met-HP35 T-jump infrared 0 323 2.3 3.3 7.0 0.47 (2)¶

Met-HP35 NMR 0 341 5.2 (±0.7) 12 (±2) 9.2 (±1.9) 1.3 (3)
HP35 T-jump infrared 0 341 3.0 7.0 5.1 1.4 (10)‡

HP35(His27) T-jump fluorescence 0 342 2.1 (±0.3) 4.9 (±0.7) 3.6 (±0.5) 1.4 (9)†

Calculated assuming a two-state model.
*0.1 M sodium acetate, pH ¼ 4.8.
†0.02 M sodium acetate, pH ¼ 4.9.
‡0.02 M 2-(N-morpholino)ethanesulfonic acid in D2O, pH ¼ 5.5.
§Obtained from the buried Ala16 labeled with 13C18O.
¶0.01 M sodium phosphate in D2O, 0.15 M NaCl, pH ¼ 5.3.

Table S2. Summary of parameters from triplet-quenching measurements

GdmCl [M] log½kuðs−1Þ� log½kqðs−1Þ� log½ksðs−1Þ� log½kf ðs−1Þ� logðΛþÞ logðΛ−Þ a

1.5 4.04 5.36 3.88 5.68 5.87 4.06 0.002
2.25 3.69 5.32 3.86 5.01 5.47 4.02 0.02
3 3.37 5.27 3.85 4.38 5.33 3.96 0.08
3.5 3.59 5.24 3.83 4.39 5.31 4.01 0.11
4 3.70 5.20 3.82 4.29 5.27 4.05 0.17
4.5 3.67 5.16 3.80 4.05 5.21 4.02 0.26
5 3.65 5.12 3.77 3.82 5.16 4.00 0.37
5.5 3.84 5.07 3.75 3.80 5.12 4.08 0.47
6 3.90 5.02 3.72 3.66 5.06 4.10 0.59

The unfolding rate is ku, kq is the quenching rate in the unfolded state, ks is the quenching rate in the
folded state, kf is the folding rate, Λþ is the fast eigenvalue, Λ− is the slow eigenvalue, and a is the fast
amplitude (the slow amplitude is 1-a).
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