Supporting Information

SI Materials and Methods

Bacterial strains, plasmids and growth conditions. *Streptomyces* strains were cultivated on SFM, in YEME and on or in HT media and manipulated as described previously (1). Growth curves, RNA extractions, LC-MS and HPLC analysis were obtained from cultures grown in or on MP5 medium (2). *Escherichia coli* strains were cultivated in LB and SOB liquid medium (3). When needed these antibiotics were added into the cultures: ampicillin, apramycin, kanamycin, spectinomycin at 50μ g/ml, chloramphenicol and nalidixic acid at 25μ g/ml. For λ *red* genes induction, 10mM of filtered L-arabinose was added to the culture.

DNA manipulation. Plasmid and BAC DNA were extracted from *E. coli* by alkaline lysis method (3). Genomic DNA extraction of *Streptomyces* and pulsed-field gel electrophoresis were performed as already described (4). Southern blots were performed with a Hybond-N nylon membrane (Amersham-Pharmacia) and a vacuum transfer system (BioRad), as previously described (5). Amplification of DNA fragments by PCR was performed with *Taq* DNA polymerase (NEB) or Takara polymerase (Fermentas), according to the manufacturer's instructions. PCR products and restriction fragments were purified from agarose gel with the High Pure PCR product purification kit (Roche).

Overexpression of the TCS. The two component system-encoding sequence was amplified by PCR from *S. ambofaciens* ATCC23877 genomic DNA with the primers OE468-F and OE469-R (see Table S10 for sequences). The PCR conditions, the cloning steps into pIB139 and the integration of the recombinant plasmid (pOE-4689, Table S9) in *S. ambofaciens* ATCC23877 were as described for the overexpression of the LAL regulator (see Materials and Methods).

Construction of the glycosyltransferase mutant strain. The REDIRECT system was used to make an in-frame deletion of *samR0481* in *S. ambofaciens* ATCC/OE484 as already described for the deletion of *samR0467* (see Materials and Methods). However, in this case the aac(3)IV + oriT mutagenesis cassette was used as template in the PCR reaction with the primers D481-F and D481-R (Table S10) and the BAC of interest used was BBC (Table S9).

Antimicrobial and antiproliferative tests. The antibacterial activities of the purified stambomycin compounds were first analysed by loading a drop of compounds (mixture of stambomycin A and B or stambomycin C and D; from 1 μ g up to 12.5 μ g) onto a lawn of *Bacillus subtilis* ATCC6633 and *Micrococcus luteus* used as indicator strains. The IC50 and IC90 values were then determined only for

the mixture of stambomycin C/D (the most active fraction) against *Bacillus subtilis* BGSC 1A72, *Mycobacterium smegmatis* ATCC700084 and against clinical isolates of *Enterococcus faecalis* and *Staphylococcus aureus* (strains from Libragen, Toulouse, France). Analyses were also performed against Gram-negative bacteria (*Escherichia coli* and *Pseudomonas aeruginosa*, two clinical isolates from Libragen), against yeast (*Candida albicans* IHEM8060) and filamentous fungi (*Aspergillus fumigatus* GASP4707 and *Fusarium oxysporum* DSM2018).

For the antiproliferative activities and cytotoxity, the IC50 values were determined for stambomycin A/B and stambomycin C/D using human adenocarcinoma (HT29), breast (MCF7), lung (H460) and prostate (PC3) cancer cell lines and ovary sane cell line from an adult Chinese hamster (CHO-K1), respectively. The cell viability was determined by measuring the cellular concentration of ATP using the CellTiter-Glo® Luminescent Cell Viability Assay (Promega, G7573) according to the recommendation of the manufacturer.

Identification of stambomycins by LC-MS comparative metabolic profiling. Streptomyces ambofaciens ATCC23877, ATCC/OE484 and ATCC/OE484/A467 spores were stored in 25% (v/v) aqueous glycerol at -20 °C. 10µl of spores from the stocks of the ATCC23877, ATCC/OE484 and ATCC/OE484/A467 strains were used separately to inoculate MP5 liquid medium and the resulting cultures were grown for 3-4 days at 30 °C and 180 rpm. The cultures were centrifuged for 10 minutes at 4000 rpm and 4°C. The mycelia were collected, extracted with 5 ml of methanol and sonicated for 10 minutes. The resulting suspension was filtered through a spin filter (0.4 μ m) and the filtrate was analysed by LC-ESI-TOF-MS. A Sigma Ascentis C18 column (100 x 2.1mm, 2.7 µm) connected to Dionex 3000 RS-HPLC coupled with a Bruker MaXis UHR-Q-TOF mass spectrometer was used. The flow rate was 0.2 ml/min. Water/0.1% formic acid (solvent A) and methanol/0.1% formic acid (solvent B) were used as mobile phases. The elution profile was: 80% solvent A/20% solvent B for 5 minutes, gradient to 100% solvent B for 10 minutes, 100% solvent B for 5 minutes, equilibrate back to 80% solvent A/20% solvent B. The mass spectrometer was calibrated at the beginning of each run with 10 mM sodium formate and the following settings in positive ESI mode were used. Full scan: 50-2000 m/z, End plate offset: -500 V, Capillary: -4500 V, Nebulizer gas (N₂): 1.6 bar, Dry gas (N₂): 8 L/min, Dry Temperature: 180 °C.

ORF	Product size (aa)	% identity / similarity	Species	Putative function	Proposed role
samR0465	8154			Type I modular PKS	Polyketide biosynthesis
samR0466	3661			Type I modular PKS	Polyketide biosynthesis
samR0467	5771			Type I modular PKS	Polyketide biosynthesis
samR0468	217	84/88	S. griseus (SGR874)	Response regulator	Regulation
samR0469	442	77/84	S. griseus (SGR875)	Histidine kinase	Regulation
samR0470	261	87/93	S. griseus (SGR876)	Putative permease protein	Resistance
samR0471	312	88/93	S. griseus (SGR877)	Putative ABC transporter ATP- binding protein	Resistance
samR0472	244	55/68	S. erythraea	N-dimethyltransferase	D-Mycaminose biosynthesis
samR0473	185	46/59	S. fradiae	Isomerase	D-Mycaminose biosynthesis
samR0474	6333			Type I modular PKS	Polyketide biosynthesis
samRCDS1	3556			Type I modular PKS	Polyketide biosynthesis
samR0475	3157			Type I modular PKS	Polyketide biosynthesis
samR0476	3565			Type I modular PKS	Polyketide biosynthesis
samRCDS2	1569			Type I modular PKS	Polyketide biosynthesis
samR0477	5447			Type I modular PKS	Polyketide biosynthesis
samR0478	414	43/62	S. fradiae	Cytochrome P450	Polyketide hydroxylation
samR0479	401	41/56	R. castenholzii	Cytochrome P450	Polyketide hydroxylation
samR0480	369	74/82	Streptomyces sp. TP- A0274	Aminotransferase	D-Mycaminose biosynthesis
samR0481	418	48/63	M. griseorubida	Glycosyltransferase	D-Mycaminose attachment
samR0482	595	64/75	S. hygroscopicus	Acyl-CoA synthetase	Unknown
samR0483	532	62/75	Micromonopora sp. ATCC39149	Carboxyl transferase	Precursor biosynthesis
samR0484	958	35/47	S. venezuelae (PikD)	Transcriptional activator (LAL)	Regulation
samR0485	255	87/94	S. griseus (SGR200)	Type II thioesterase	PKS editing
samR0486	329	77/84	S. tenebrarius (AprE)	dTDP-glucose-4,6- dehydratase	D-Mycaminose biosynthesis
samR0487	290	74/85	S. avermitilis (AveBIII)	Glucose-1-phosphate thymidyltransferase	D-Mycaminose biosynthesis

Table S1. Properties of genes within the stambomycin biosynthetic cluster. Putative functions of the encoded proteins were deduced from analyses with the BlastP program (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The % identity/similarity for the protein in the database with the highest end-to-end similarity is indicated. The stambomycin cluster is located in the right terminal region of the chromosome which has been fully sequenced (AM238664).

	*	*	****	*	* *	*
AT1	AMIFSGQGS	-53-VVQPA-2	22-VA <mark>GHSQ</mark> GEI-	18-VAL <mark>RS</mark> -70	- PVDYA <mark>SH</mark> SAHV	/E-45-LRSTVEFSA
AT2	GFLFTGQGS	-50-YAQAG-2	22-LV <mark>GHS</mark> IGEL-	18-VSA <mark>RG</mark> -66	-AVSHA <mark>FH</mark> SRLN	ME-40-IREPVRFAD
AT 3	GFLFTGQGS	-50-YAQAG-2	22-LV <mark>GHS</mark> VGEI-	18-VSA <mark>RG</mark> -66	-AVSHA <mark>FH</mark> SRLN	ME-40-VREPVRFAD
AT4	ALLFSGQGS	-50-YAQAG-2	22-LV <mark>GHS</mark> IGEL-	18-VSA <mark>RG</mark> -66	-AVSHA <mark>FH</mark> SRLN	ME-40-VREPVRFAD
AT5	AFLFSGQGA	-50-YTQPA-2	22-LV <mark>GHS</mark> IGEL-	18-VSA <mark>RA</mark> -66	-AVSHA <mark>FH</mark> SRLN	ME-40-IVAPVRFAD
AT6	VFVFPGQGS	-52-VVQPV-2	22-VVGHSQGEI-	18-VAL <mark>RS</mark> -71	-PVDYA <mark>SH</mark> SVQV	/E-45-LRSTVRFEE
AT7	GFLFTGQGA	-51-WTQAG-2	22-LL <mark>GHS</mark> IGEV-	18-VEA <mark>RG</mark> -68	-TVSHA <mark>FH</mark> SALN	1E-46-VRQAVRFAD
AT8	VFVFPGQGS	-52-VVQPV-2	22-VVGHSQGEI-	18-VAL <mark>RS</mark> -71	-PVDYA <mark>SH</mark> SVQV	/E-45-LRSTVRFEE
AT9	AFLFTGQGA	-50-WTQAG-2	22-LL <mark>GHS</mark> IGEI-	18-VAA <mark>RG</mark> -68	-TVSHA <mark>FH</mark> SALN	ME-41-VRETVRFAD
AT10	AFLFTGQGA	-50-WAQAG-2	22-LL <mark>GHS</mark> IGEI-	18-VAQ <mark>RG</mark> -68	-TVSHA <mark>FH</mark> SALN	ME-41-VRETVRFGD
AT11	AFLFTGQGA	-50-WAQAG-2	22-LL <mark>GHS</mark> VGEL-	18-VAA <mark>RG</mark> -68	-TVSHA <mark>FH</mark> SVLN	ME-46-VREAVRFAD
AT12	ALLFSGQGS	-50-YAQAG-2	22-LV <mark>GHS</mark> IGEL-	18-VSA <mark>RG</mark> -66	-AVSHA <mark>FH</mark> SRLN	ME-40-VREPVRFAD
AT13	AFVLPGQGS	-53-VIQPV-2	22-VVGH <mark>S</mark> QGEI-	18-VTH <mark>RS</mark> -71	-RIKGAAHSAVV	/E-45-MRQTVQFAP
AT14	AFVFPGQGG	-53-VTPVV-2	22-VLGH <mark>S</mark> QGEI-	18-VAL <mark>RG</mark> -71	-RVDFS <mark>SH</mark> CAQV	/E-45-LVTPVDLDR
AT15	AFLFSGQGS	-50-YAQAG-2	22-lV <mark>GHS</mark> VGEL-	18-VSA <mark>RG</mark> -66	-AVSHA <mark>FH</mark> SRLN	ME-40-VREPVRFAD
AT16	AFLFSGQGS	-50-YAQAG-2	22-LV <mark>GHS</mark> IGEL-	18-VSA <mark>RG</mark> -66	—avsha <mark>fh</mark> srli	ME-40-VREPVRFAD
AT17	ALLFSGQGS	-50-YAQAG-2	22-LV <mark>GHS</mark> VGEL-	18-VSA <mark>RG</mark> -66	-AVSHA <mark>FH</mark> SRRI	MD-40-VREPVRFAD
AT18	VFVFPGQGS	-53-VVQPV-2	22-VVGH <mark>S</mark> QGEI-	18-VAL <mark>RA</mark> -71	- PVDYA <mark>SH</mark> CAQV	/E-45-LRNTVRFEE
AT19	ALLFSGQGS	-50-YAQAG-2	22-LV <mark>GHS</mark> IGEL-	18-VSA <mark>RG</mark> -66	-AVSHA <mark>FH</mark> SHLN	ME-40-VREPVRFAD
AT20	AFLFTGQGA	-49-HTQPA-2	22-la <mark>ghs</mark> ig <mark>e</mark> l-	18-VAA <mark>RG</mark> -66	-AVSHA <mark>FH</mark> SHLN	ME-42-VRSTVRFAG
AT21	VFVFPGQGS	-51-VVQPV-2	22-VV <mark>GHS</mark> QGEI-	18-VAL <mark>RA</mark> -71	-PVDYA <mark>SH</mark> CAQV	/E-45-LRNTVRFEE
AT 22	VFVFPGQGS	-51-VVQPV-2	22-VVGH <mark>S</mark> QGEI-	18-VAL <mark>RA</mark> -71	- PVDYA <mark>SH</mark> CAQV	/E-45-LRNTVRFEE
AT23	ALLFSGQGS	-50-YAQAG-2	22-LV <mark>GHS</mark> QGEL-	18-VSA <mark>RG</mark> -66	-AVSHA <mark>FH</mark> SRLN	ME-40-VREPVRFAD
AT24	VFVFPGQGS	-51-VVQPV-2	22-VVGH <mark>S</mark> QGEI-	18-VAL <mark>RA</mark> -71	-PVDYA <mark>SH</mark> SAHV	/E-45-LRATVRFED
AT 25	AFVFSGQGA	-51-WTQLG-2	22-la <mark>ghsvg</mark> ev-	18-VAA <mark>RG</mark> -71	-DVSHA <mark>FH</mark> SPRV	/D-45-IRATVRFAD
	Q	Q	GH[LVIFAM]G	R	[FP]H	V malonyl-CoA
	Q	Q	GH[QMI]G	R	SH	V methylmalonyl-CoA

Fig. S1. Sequence alignment of the PKS AT domains. Highly conserved active site residues are marked with an asterisk (6). The boxed residues are diagnostic of substrate specificity, in particular the amino acid underlined in green. The arginine residue underlined in yellow interacts with the carboxyl group of the substrates. The catalytic serine residue is underlined in blue. The consensus sequences for malonyl-CoA and methylmalonyl-CoA-specific AT domains are shown below the alignment. The substrate for AT13 could not be predicted because the circled specificity-conferring residue is different from that found in malonyl- and methylmalonyl-CoA-specific AT domains.

	\downarrow \downarrow	
	• •	
KR2	PHDTVLITGGTGALGARVARHLVCA-57-VVHTAGVLDDGLLTSLTPE-26-FVLFSSVAASFGTAGQASYAAANAFLD	В1
KR3	-DGTVLVTGGTGALGAQVAR-LLAA-61-VVHAAGVLDDGVIDGLTPE-26-FVLFSSFTGAVGTAGQANYAAANAHLD	в1
KR4	-GTVLVTGGTGALGAHTARLLARR-60-VVHAAGTVDDGVIGSLTPG-26-FVLYTSFAGVVGNLGQAAYAAGNAALD	В1
KR5	$\verb PQGTVLITGGTGTLGSLLARHLVEH-62-VVHAAGVADDGVIEALTPE-26-FTVYASASSAFGSPGQANYAAANAFLE PQGTVLITGGTGTLGSLLARHLVEH-62-VVHAAGVADDGVIEALTPE-26-FTVYASASSAFGSPGQANYAAANAFLE PQGTVLITGGTGTLGSLLARHLVEH-62-VVHAAGVADDGVIEALTPE-26-FTVYASASSAFGSPGQANYAAANAFLE PQGTVLITGGTGTLGSLARHLVEH-62-VVHAAGVADDGVIEALTPE-26-FTVYASASSAFGSPGQANYAAANAFLE PQGTVLITGGTGTLGSLARHLVEH-62-VVHAAGVADDGVIEALTPE-26-FTVYASASSAFGSPGQANYAAANAFLE PQGTVLITGGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGT$	В1
KR6	-GTVLVTGGTGAVGAEVARWLAGR-60-VLHAAGVDGVTALDEVDAD-26-FVVFSSGAAVWGGGGQGAYAAGNAFLD	A1
KR7	-GTVLVTGGTGGLGGEVARWLARR-60-VVHAAGVGTPGRLLDTDET-24-FVVFSSIAATWGSGGQGAYAAGNAFLD	A1
KR8	${\tt PDGTVLITGGTGTLGGLLARHLVTE-62-VIHAAGVLDDGVFESMTPE-26-FVLYSSASATLGTGGQANYAAANSFLD}$	В1
KR9	-GTVLVTGGTGALGKRVARWLAER-60-VVHAAGFGQAVPLADTDEA-26-FVVFSSIAATWGSGGQGVYAAANAHLD	A1
KR10	- PGAVLVTGGTGALGAVVARWLADR-60-VVHAAGVLDDGTLDALTPE-26-FVAFSSLAGTVGSAGQGNYAAANAFVD	В1
KR11	- PGTVLVTGGTGALGASVARWLAER-60-VVHAAGVAQSGPVETTRLA-26-FVLFSSIAATWGSGGQALYAAGNAYLD	A1
KR12	$\verb+AEGTVLVTGGTGALGALTARHLVVE-62-VVHAAGILDDGLVESLTED-25-FVMYSSMSGTFGSPGQGNYAAANAYLD-25-FVMYSSMAAANAYLD-25-FVMYSSMSGTFGSPGQGNYAAANAYLD-25-FVMYSSMSGTFGSPGGNYAAANAYLD-25-FVMYSSMSGTFGSPGGNYAAANAYLD-25-FVMYSSMSGTFGSPGGNYAAANAYLD-25-FVMYSSMSGTFGSPGGNYAAANAYLD-25-FVMYSSMSGTFGSPGGNYAAANAYLD-25-FVMYSSMSGTFGSPGGNYAAANAYLD-25-FVMYSSMSTFGSPGGNYAAANAYLD-25-FVMYSSMAAANAYLD-25-FVMYSSMAAANAYLD-25-FVMYSSMAAANAYLD-25-FVMYSSMAAANAYLD-25-FVMYSSMAAANAYLD-25-FVMYSSMAAANAYLD-25-FVMYSSMAAANAYLD-25-FVMYSSMAAANAYLD-25-FVMYSSMAAANAYLD-25-FVMYSSMSGTFGSPGGNAAANAYLD-25-FVMYSSMSGTFGSPGGNAAANAYLD-25-FVMYSSMAAAANAYLD-25-FVMYSSMAAAAAANAYLD-25-FVMYSSMAAAANAYLD-25-FVMYSSMAAAAAANAYLD-25-FVMYSSMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA$	В1
KR13	STVLITGGTGGIGRHLAHHMAAR-56-VIHAAGVAQATALADCGES-24-FVLFSSGAGVWGGAGQAAYAAGNAVLD	A1
KR14	ADGTVLVTGATGTLGSALARHLVRH-61-VVHTAAVLDDGVLAQMTDR-26-FALFSSAAGVLGGAGQANYAAANVFLD	В1
KR15	-GTVLITGGTGALGSRVARWAALA $-$ 56 $-$ VVHAAGVGGLGRLAELTEE $-$ 24 $-$ FVLFGSVAAVWGGAGQAAYAAANARLE	A1
KR16	-GTTLVTGGTGALGAHVARWLADR-56-VVHAAGSGGFGTLDDASEA-26-FVLFSSVSGIWGSGGQAAYGAANAALD	A1
KR17	${\tt PGGTVLITGGTGALGALVARYLVDR-44-VFHLAGVLDDGVATALTPE-24-FVLFSSVSATLGSPGQASYAAANAYLD}$	В1
KR18	-EAVLITGGTGALGAETARMLARR-56-VVHAAGTDPALPLDSTSVP-24-FVVFSSIAGVWGSGGQAAYAAANAHLD	A1
KR19	- GTVLVTGGTGAIGGHVARWLATE-62-VMHTAGLGVLAPLADTGVA-26-VVHFSSIAAMWGVGQHGGYAAGNAYLD	A2
KR20	AHGTVLVTGGTGVLGGRVARHLAAR-62-VVHAAGIVDDGVVTSLTPD-24-FVLFSSASATFGSAGQAGYAAANAVLD	В1
KR21	PVGTVLVTGGTGVLGGLVARHLVTA-57-VVHAAGVLDDGVFESMTPK-23-FVFFSSAGGTFGPAGQANYAAANATLD	В1
KR22	-GTVLVTGGTGGIGAHVARWLAAS-61-VFHAAGIVDSSILDSLTPD-26-FVLFSSLAGVFGSAGEGNYAPGNAFLD	В2
KR23	- P-VLLTGGTGALGGKVARLLAER-56-VVHAAGIVDDGVLDALTPE-24-FVVFSSVAGVIGSAGQGPYAAANAHLD	В1
KR24	-GPVLVTGGTGALGREVARWLARR-56-VVHTAGISTTAPLAGTSPA-25-FVLFSSIAGVWGGGGQAAYAAANAHLD	A1
KR25	-GTVLITGGTGRRGRALATALAAN-55-VVHAVGAGEDTPWTELSPG-26-FVLVSSVTGVWGGTGAAVRAAASARMD	C1
Cons	GXGXXGXXA * * *	

Fig. S2. Sequence alignment of the PKS KR domains. The GXGXXGXXXA consensus sequence in the N-termini is proposed to bind NAD(P)H (7). The residues belonging to the catalytic triad are marked with asterisks. The Y to R and N to S mutations of the catalytic residues in KR25 indicate that it is not active. The arrows indicate the residue predictive of B and A-type alcohol stereochemistry, respectively. The predicted configurations of the α - and β -stereocenters generated by each KR, according to the model of Keatinge-Clay (8), are indicated to the right of the alignment. A1 = 2*R*, 3*S*; A2 = 2*S*, 3*S*; B1 = 2*R*, 3*R*; B2 = 2*S*, 3*R*; C1 = 2*R*.

ER11	VNFRDVLNVLGM	PG-EVLVGGE#	AGVV-67-S	AGESVLV <mark>H</mark>	HAAAGGVGMA	AVQVARHLG
ER16	MNFRDVLNVLGM	PG-EVELGGEA	AGVV-67-A	AGESVLV <mark>H</mark>	<mark>IAAAGGVGM</mark> /	AVQIARHVG
ER4	VNFRDVLIALGQ	PDPTALMGSEA	AGVV-67-S	AGESVLV <mark>H</mark>	<mark>IAAAGGVGM</mark> A	AVQVARHLG
ER7	VNFRDVLIALGM	PD-RAQMGAEA	AGVV-67-R	.PGESVLV <mark>H</mark>	ISAAGGVGM/	AVQLGRHLG
	:**** ·** ·	** :*.**	* * * * *	·******	* : * * * * * * * *	****:.**:*

Fig. S3. Sequence alignment of the PKS ER domains. The highly conserved putative NADPH binding motif is highlighted in yellow. The residue that is predictive of stereochemistry is highlighted in red. A tyrosine residue in this position predicts the 2S configuration. Another residue (usually Val or Ala) in this position predicts the 2R stereochemistry (9).

Fig. S4. TDP-D-mycaminose biosynthetic pathway. Proposed pathway for biosynthesis of TDP-D-mycaminose from α -D-glucose-1-phosphate by putative aminodeoxysugar biosynthetic enzymes encoded by genes within the cluster. For each enzymatic step, the gene product is indicated in bold. The identity/similarity with the corresponding enzymes involved the biosynthesis of the β -D-mycaminose residue of spiramycin are indicated in brackets (10). TTP, thymidine triphosphate; TDP, thymidine diphosphate; NAD⁺, nicotinamide adenine dinucleotide; PMP, pyridoxamine 5'-phosphate; SAM, S-adenosyl-L-methionine.

Fig. S5. Transcriptional analysis of the strain overexpressing the two component system (mutant strain ATCC/OE468-9) and grown in MP5 medium. The expression of four biosynthetic genes (*samR0467*, *samR0465*, *samR0477*, *samR0474*), together with the expression of the regulatory genes *samR0468*, *samR0469* and *samR0484*, were analyzed by RT-PCR using 4µg of total RNA. The constitutively-expressed *hrdB* gene, coding for the major sigma factor, was used as a positive control. Experiments carried out on three separate occasions gave the same result. T1= exponential phase; T2= transition phase; T3= stationary phase.

Fig. S6. High resolution mass spectrometry analysis of stambomycins A/B. Measured spectrum of stambomycins A/B (top panel) and simulated spectrum for $C_{73}H_{134}N0_{22}^+$ (bottom panel).

Fig. S7. High resolution mass spectrometry analysis of stambomycins C/D. Measured spectrum of stambomycins C/D (top panel) and simulated spectrum for $C_{72}H_{132}N0_{22}^{+}$ (bottom panel).

Fig. S8. High resolution mass spectrometry analysis of stambomycin A/B aglycones. Measured spectrum of stambomycin A/B aglycones (top panel) and simulated spectrum for $C_{65}H_{119}O_{19}^{+}$ (bottom panel).

Fig. S9. High resolution mass spectrometry analysis of stambomycin C/D aglycones. Measured spectrum of stambomycin C/D aglycones (top panel) and simulated spectrum for $C_{64}H_{117}O_{19}^{+}$ (bottom panel).

Fig. S10. Summary of COSY NMR correlations observed for stambomycins A-D.

Fig. S11. Summary of NOESY NMR correlations observed for stambomycins A-D.

Fig. S12. Summary of HMBC NMR correlations observed for stambomycins A-D in d₄-MeOH.

Fig. S13. Summary of HMBC NMR correlations observed for stambomycins A-D in d₆-DMSO.

position	δ _C (ppm)	δ _H (ppm)	J _{H-H} (Hz)
1	173.3		
2	44.3	2.52, 2.83	15.0
3	100.0		
4	46.2	1.56	
4-Me	12.4	1.04	
5	81.0	3.66	
1'	104.6	4.44	7.3
2'	70.0	3.54	7.3, 10.5
3'	72.0	3.23	10.5, 10.5
4'	70.8	3.38	9.8, 10.5
5'	74.0	3.42	9.8, 6.2
6'	18.1	1.29	
3'-NMe ₂	42.2	3.03	
6	39.1	1.61, 1.90	
7	70.0	3.83	
8	40.8	1.56	
8-Me	9.3	0.93	
9	79.9	3.90	7.6
10	137.1		
10-Me	12.4	1.65	
11	128.0	6.04	11.0
12	129.9	6.35	15.0. 11.0
13	131.7	5.80	150,69
14	39.8	2.34	69
15	75.8	3 77	017
16	42.6	1.52	
16-Me	7 4	0.94	
17	75 5	3 72	
18	36.1	1 48	
19	23.5	1 33 1 34	
20	38.6	1.55, 1.54	
20	71.1	3 55	
21	/1.1	1.61 1.67	
22	77.5	1.01, 1.07	7.0
23	120.2	4.23	7.0
24 24 Ma	139.2	1.64	
24-1016	12.2	5.22	10.5
25	129.3	2.45	10.5
20	41.7	2.43 1 10 1 77 (1 10 1 78)	
1	32.9(32.3)	1.19, 1.77 (1.19, 1.78) 1.25 (1.42)	
2"	23.7(20.0) 28.2(21.8)	1.53(1.42) 1.12(1.20(1.20))	
5 A''	25 7 (40 2)	1.13, 1.27 (1.27) 1 20 (1 10 1 50)	
4	35.7 (40.2)	1.30 (1.19, 1.50)	
5	50.8 (29.1) 12.1 (22.0)	1.13(1.30)	
0	12.1(23.0) 10.6(22.0)	0.00(0.87)	
1	19.6 (23.0)	0.85 (0.87)	
21	19.1	3.30 2.47	
28	/4.2	3.4/	
29	27.8	1.43, 1.68	
5U 21	30.1 70.1	1.43, 1.70	
51	/0.1	3.83	
32	46.4	1.50, 1.57	
33	66.8	4.06	
34	42.0	1.48, 1.50	
35	72.9	3.74	

Table S2. Assignments of ¹H and ¹³C NMR signals for stambomycins A and B. Carbon atom numbering is shown in Fig. S10. Signals for C-1" to C-7" of stambomycin B are in brackets.

Fig. S14. ¹H NMR spectrum (700 MHz, d₄-MeOH) of stambomycins A/B.

Fig. S15. ¹³C PENDANT NMR spectrum (125 MHz, d₄-MeOH) of stambomycins A/B.

Fig. S16. DQFCOSY NMR spectrum (700 MHz, d₄-MeOH) of stambomycins A/B.

Fig. S17. Expansion of methyl/methylene region of DQFCOSY spectrum of stambomycins A/B.

Fig. S18. HSQC NMR spectrum (700 MHz/175 MHz, d₄-MeOH) of stambomycins A/B.

Fig. S19. HMBC NMR spectrum (700 MHz/175 MHz, d₄-MeOH) of stambomycins A/B.

Fig. S20. Expansion of methyl region of HMBC spectrum of stambomycins A/B.

Fig. S21. NOESY NMR spectrum (700 MHz, d₄-MeOH) of stambomycins A/B.

Fig. S22. TOCSY NMR spectrum (700 MHz, d₄-MeOH) of stambomycins A/B.

Table S3. Assignments of ¹H and ¹³C NMR signals for stambomycins C/D. Carbon atom numbering is shown in Fig. S10. Signals for C-1" to C-6" of stambomycin D are in brackets.

position	δ _c (nnm)	δ _u (nnm)	.J _{н н} (Hz)
1	173.3		
2	113.5	2 52 2 83	15.0
2	100.0	2.52, 2.65	15.0
5	160.0	1 56	
4 4 Me	12.4	1.50	
5	12.4 91.0	2.66	
5 1'	104.6	3.00	7.2
1	70.0	4.44 2.54	7.5
2	70.0	5.34 2.32	7.5, 10.5
3	72.0	5.25 2.29	10.5, 10.5
4	70.8	3.38	9.8, 10.5
5	/4.0	3.42	9.8, 6.2
0	18.1	1.29	
3'-NMe ₂	42.2	3.03	
6	39.1	1.61, 1.90	
7	70.0	3.83	
8	40.8	1.56	
8-Me	9.3	0.93	_
9	79.9	3.90	7.6
10	137.1		
10-Me	12.4	1.65	
11	128.0	6.06	11.0
12	129.9	6.35	15.0, 11.0
13	131.7	5.81	15.0, 6.9
14	39.8	2.34	6.9
15	75.8	3.77	
16	42.6	1.52	
16-Me	7.4	0.95	
17	75.5	3.72	
18	36.1	1.48	
19	23.5	1.32, 1.34	
20	38.5	1.47	
21	71.1	3.55	
22	43.1	1.61, 1.67	
23	77.5	4.23	6.9
24	139.4		
24-Me	12.2	1.64	
25	129.3	5.23	6.5
26	41.9	2.45	010
1"	32.5 (32.4)	1 18 1 79 (1 18 1 79)	
2"	25.8 (26.6)	1.38 (1.37)	
3"	40.3 (35.8)	1.30(1.37) 1.13 1.29(1.31 1.44)	
<i>4</i> ″	29.9 (34.0)	1 30 (1 43 1 49)	
5″	23.1 (29.2)	0.87(1.29)	
5 6''	23.1(29.2) 23.1(11.5)	0.87(0.87)	
27	79.7	3 36	
28	74.2	3 47	
29	27.8	1 43 1 68	
30	36.1	1 / 3 1 70	
31	70.1	3.83	
22	10.1 46 A	1 50 1 57	
32	40.4 66 8	1.50, 1.57	
24	42.0	1 48 1 50	
J+	42.0	1.40, 1.30	

35	72.9	3.74	
36	40.8	1.48	
36-Me	15.6	0.92	
37	29.8	1.28, 1.12	
38	36.0	1.50	
39	76.3	3.72	
40	42.3	1.51	
40-Me	7.0	0.91	
41	75.9	3.71	
42	33.8	1.43, 1.62	
43	22.9	1.43	
44	38.8	1.45, 1.46	
45	70.6	3.67	
46	44.8	1.60, 1.65	
47	71.1	4.28	6.2, 12.9
48	136.7	5.80	15.0, 6.2
49	130.8	5.72	6.2, 15.0
50	72.8	5.43	6.2
51	20.8	1.33	6.2

Fig. S23. ¹H NMR spectrum (700 MHz, d_4 -MeOH) of stambomycins C/D.

Fig. S24. ¹³C PENDANT NMR spectrum (175 MHz, d₄-MeOH) of stambomycins C/D.

Fig. S25. DQFCOSY NMR spectrum (700 MHz, d₄-MeOH) of stambomycins C/D.

Fig. S26. Expansion of methyl/methylene region of DQFCOSY spectrum of stambomycins C/D.

Fig. S27. HSQC NMR spectrum (700 MHz/175 MHz, d₄-MeOH) of stambomycins C/D.

Fig. S28. HMBC NMR spectrum (700 MHz/175 MHz, d_4 -MeOH) of stambomycins C/D.

Fig. S29. Expansion of methyl region of HMBC spectrum of stambomycins C/D.

Laureti et al.

Fig. S30. NOESY NMR spectrum (700 MHz, d₄-MeOH) of stambomycins C/D.

Fig. S31. Summary of key COSY (bold lines) HMBC (arrows) and coupling constant data observed for stambomycin aglycones.

position	δ _C (ppm)	δ _H (ppm)	$J_{\mathrm{H-H}}\left(Hz\right)$
1	173.3		
2	44.2	2.51, 2.75	14.6
3	99.9		
4	47.2	1.36	
4-Me	12.3	1.06	
5	70.1	3.60	
6	39.3	1.45, 1.73	
7	70.1	3.81	
8	40.9	1.60	
8-Me	9.3	0.93	
9	79.6	3.92	7.4
10	136.9	0.02	,
10-Me	11.9	1.65	
11	127.8	6.05	11.2
12	129.5	6.36	15.1.11.2
12	131.2	5 79	151 68
14	39.8	2 34	6.8
15	75.6	3 78	0.0
15	42.7	1 53	
16-Me	74	0.95	
17	75.7	3 72	
18	35.9	1.48	
10	23.3	1 33	
20	38.4	1.55	
20	70.8	3 54	
21	42.9	1.61 1.67	
22	77.2	4 23	73
23	138.7	1.20	1.5
24-Me	12.2	1.67	
25	12.2	5 22	10.2
25	41.8	2.45	10.2
1"	327(326)	1 19 1 77 (1 17 1 81)	
1 2"	254(264)	1 37 (1 36)	
2"	38 1 (32 6)	1.37(1.30) 1 14 1 29 (1 33)	
3 4"	35.6(40.1)	1.14, 1.29 (1.55) 1.30 (1.19, 1.48)	
	30.6 (29.6)	1 13 (1 32)	
5 6"	11.6(22.9)	0.86(0.88)	
7"	195(22.9)	0.85 (0.88)	
, 27	79.4	3 36	
28	73.8	3.48	
29	27.6	1 44 1 67	
30	35.8	1.45, 1.70	
31	55.0 69.6	3.83	
30	46.0	5.05 1.50, 1.57	
32	40.0	1.50, 1.57	

Table S4. Assignments of ¹H and ¹³C NMR signals for the aglycones of stambomycins A/B. Carbon atom numbering is shown in Fig. S10. Signals for C-1" to C-7" of stambomycin B are in brackets.

33	66.6	4.07		
34	41.6	1.48, 1.50		
35	72.5	3.75		
36	41.2	1.48		
36-Me	15.4	0.92		
37	30.4	1.14, 1.29		
38	35.9	1.51		
39	76.1	3.71		
40	42.2	1.51		
40-Me	6.8	0.92		
41	75.6	3.71		
42	33.4	1.43, 1.63		
43	22.7	1.44		
44	38.9	1.45, 1.48		
45	70.5	3.68		
46	44.7	1.59, 1.64		
47	70.9	4.28	6.3, 12.8	
48	136.5	5.78	15.0, 6.3	
49	130.8	5.73	6.4, 15.0	
50	72.9	5.43	6.4,	
51	20.6	1.36	6.4	

Fig. S32. ¹H NMR spectrum (700 MHz, d₄-MeOH) of stambomycin A/B aglycones.

Fig. S33. DQFCOSY NMR spectrum (700 MHz, d₄-MeOH) of stambomycin A/B aglycones.

Fig. S34. HSQC NMR spectrum (700 MHz/175 MHz, d_4 -MeOH) of stambomycin A/B aglycones.

Fig. S35. HMBC NMR spectrum (700 MHz/175 MHz, d₄-MeOH) of stambomycin A/B aglycones.

Fig. S36. TOCSY NMR spectrum (700 MHz, d₄-MeOH) of stambomycin A/B aglycones.

position	δ _C (ppm)	δ _H (ppm)	$J_{H\text{-}H}\left(Hz\right)$
1	172.9		
2	44.2	2.51, 2.75	14.6
3	99.9		
4	47.2	1.36	
4-Me	12.3	1.06	
5	70.1	3.59	
6	39.4	1.45, 1.71	
7	70.0	3.81	
8	40.8	1.61	
8-Me	9.2	0.93	
9	79.6	3.92	7.5
10	136.7		
10-Me	11.9	1.66	
11	127.5	6.05	11.1
12	129.3	6.36	15.0, 11.1
13	131.2	5.79	15.0, 6.8
14	39.6	2.34	6.8
15	75.4	3.78	
16	42.7	1.53	
16-Me	7.3	0.95	
17	75.3	3.72	
18	36.0	1.48	
19	23.1	1.32	
20	38.4	1.45	
21	70.6	3.54	
22	42.8	1.61. 1.67	
23	77.1	4.23	7.3
24	138.6		
24-Me	12.1	1.66	
25	129.4	5.22	10.0
26	41.6	2.44	
1"	32.5 (32.4)	1.19, 1.77 (1.19, 1.80)	
2"	25.6 (27.1)	1.39 (1.41)	
3"	30.6 (32.9)	1.29, 1.29 (1.45)	
4"	40.4 (32.4)	1.21 (1.44)	
5"	22.9 (29.5)	0.88 (1.26)	
6"	22.9 (11.6)	0.88 (0.87)	
27	79.4	3.36	
28	73.7	3.47	
29	27.6	1.44, 1.67	
30	35.7	1 43 1 71	
31	69.5	3 83	
32	46.0	1 51 1 57	
32		4 07	
55	00.7	7.07	

Table S5. Assignments of ¹H and ¹³C NMR signals for the aglycones of stambomycins C/D. Carbon atom numbering is shown in Fig. S10. Signals for C-1" to C-6" of stambomycin D are in brackets.

34	41.6	1.47, 1.51	
35	72.6	3.75	
36	41.6	1.49	
36-Me	15.6	0.93	
37	30.5	1.13, 1.29	
38	35.9	1.50	
39	76.0	3.71	
40	42.1	1.51	
40-Me	6.8	0.91	
41	75.5	3.71	
42	33.4	1.44, 1.62	
43	22.7	1.45	
44	39.1	1.47, 1.51	
45	70.4	3.68	
46	44.7	1.60, 1.63	
47	70.7	4.28	6.4, 12.5
48	136.5	5.78	15.0, 6.4
49	130.7	5.75	6.4, 15.0
50	72.6	5.43	6.4,
51	20.6	1.35	6.4

Fig. S37. ¹H NMR spectrum (700 MHz, d_4 -MeOH) of stambomycin C/D aglycones.

Fig. S38. DQFCOSY NMR spectrum (700 MHz, d₄-MeOH) of stambomycin C/D aglycones.

Fig. S39. HSQC NMR spectrum (700 MHz/175 MHz, d₄-MeOH) of stambomycin C/D aglycones.

Fig. S40. HMBC NMR spectrum (700 MHz/175 MHz, d₄-MeOH) of stambomycins C/D aglycones.

Fig. S41. Model for stambomycin biosynthesis.

The proposed structures of the intermediates assembled by each PKS module are shown attached to the respective ACP domains. The timing of hydroxylation of the propionyl starter unit is unknown and could occur on any of the ACP-bound intermediates, but the hydroxyl group introduced is required for release of the fully-assembled polyketide chain via macrolactonzation.

Fig. S41 cont.

	stambomycins		·····	Compounds	
Organism	A/B C/D		vancomycin	of reference	
Antibacterial activity (IC90, µg/ml):					
Bacillus subtilis BGSC 1A72	ND	33.53 +/- 0.86	0.425+/-0.008		
Enterococcus faecalis LG40	ND	8.65 +/- 0.49	0.970+/-0.003		
Staphylococcus aureus LG21	ND	33.95 +/- 0.16	0.952+/-0.007		
Antiproliferative activity (IC50, µM):					
HT29	1.77 +/- 0.04	1.74 +/- 0.04		1.32 +/- 0.08 ^a	
H460	1.49 +/- 0.03	1.30 +/- 0.13		1.51 +/- 0.12 ^b ; 5.21 +/- 0.22 ^c	
MCF7	>5.34	3.51+/- 0.16		3.69 +/- 0.11 ^d ; 0.40 +/- 0.03 ^e	
PC3	3.39 +/- 0.16	2.79 +/- 0.18		5.64 +/- 0.53 ^d ; 15.44 +/- 0.77 ^f	
Cytotoxicity (IC50, µM):					
CHO-K1	8.47 +/- 0.67	8.46 +/- 0.52		1.99 +/-0.25 ^a	

Table S6. Biological activities of stambomycins A/B and C/D. IC_{90} and IC_{50} indicate the concentrations needed to inhibit the growth of 90% and 50% of cells in the population, respectively. HT29: human colon adenocarcinoma cell line; H460: lung cancer cell line; MCF7: breast cancer cell line; PC3: prostate cancer cell line; CHO-K1: adult Chinese hamster ovary sane cell line. ND: the IC_{90} values for stambomycins A/B were not determined, but these compounds were shown to possess antibacterial activity. Vancomycin was used as positive control in the antibacterial assays. The compounds used as reference for antiproliferative activity or cytotoxicity tests are doxorubicin^a for HT29 and CHO-K1, mycophenolic acid^b and 5-fluorouracyl^c for H460, mitoxantrone^d and CD437^e for MCF7 and mitoxantrone and vinorelbin^f for PC3.

Species	Protein	Function	Reference
S. venezuelae	PikD*	Pikromycin biosynthesis	(11)
S. hygroscopicus	RapH*	Rapamycin biosynthesis	(12)
S. hygroscopicus	Orf6	Type I PKS cluster	(13)
S. noursei	NysRI, NysRII, NysRIII*	Nystatin biosynthesis	(14)
S. cinnamonensis	MonH	Monensis biosynthesis	(15)
S. avermitilis	AveR*	Avermectin biosynthesis	(16)
Streptomyces sp. CK4412	TmcN*	Tautomycetin biosynthesis	(17)
S. albus	SalRI, SalRII	Salinomycin biosynthesis	(18)
S. natalensis	PimR*	Pimaricin biosynthesis	(19)
S. hygroscopicus 17997	GdmRI, GdmRII*	Geldanamycin biosynthesis	(20)
S. hygroscopicus var.	FkbN	FK520 biosynthesis	(21)
Streptomyces sp. FR-008	FscRII, FscRIII, FscRIV	FR-008/candicidin	(22)
S. nodosus	AmphRI, AmphRII,	Amphotericin biosynthesis	(23)
S. platensis Mer-11107	PldR	Pladienolide biosynthesis	(24)
S. ambofaciens	SAMR0484*	Stambomycin biosynthesis	This work
S. narbonensis	NbmM	Narbomycin biosynthesis	AAM88362.1
S. avermitilis	OlmRII, OlmRI	Oligomycin biosynthesis	(25)
Streptomyces sp307-9	TamH [#]	Tirandamycin biosynthesis	(26)
S. nanchangensis	NlmRI	Type I PKS cluster	AAS46340.1
S. aizunensis	Orf30	ECO-02301 biosynthesis	(27)
S. nanchangensis	MeiR	Meilingmycin biosynthesis	(28)
S. sp MP39-85	MlaH	ML-449 biosynthesis	(29)
Streptomyces sp	BecH	BE-14106 biosynthesis	(30)
Nonomuraea	Dbv3	A40926 biosynthesis	(31)
S. hygroscopicus	HbmRII, HbmRI	Herbymicin biosynthesis	(32)
S. lydicus	SlgR2 [#]	Streptolydigin biosynthesis	(33)
S. neyagawaensis	Orf3	Concanamycin A	(34)
Amycolatopsis orientalis	Orf4	ECO-0501 biosynthesis	(35)
S. carzinostaticus	Orf2	Neocarzilin biosynthesis	(36)
S. griseus	Sgr6177	Type I PKS cluster	(37)
S. cyaneogriseus	NemR	Nemadectin biosynthesis	BAF85834.1
S. hygroscopicus	FkbN	FK520 biosynthesis	(21)
S. antibioticus	IdmG	Indanomycin biosynthesis	(38)
S. lasaliensis	Lsd8	Lasalocid biosynthesis	(39)

Table S7. List of 44 LAL proteins from actinomycetes species found in literature involved in known secondary metabolite biosynthesis (of modular PKS). *LAL regulators that have been characterized experimentally. [#]LAL regulators of PKS/NRPS clusters.

Species	Genes
<i>S. albus</i> J1074	fscRII, fscRIII, fscRIV
S. roseosporus NRRL 15998	SSGG_00417; SSGG_05502
S. hygroscopicus ATCC 53653	SSOG_00531; SSOG_00533; SSOG_05729; SSOG_07879
Micromonospora carbonacea ATCC 39149	MCAG_00565; MCAG_05134
Streptomyces sp. AA4	SSMG_05933
S. clavuligerus ATCC 27064	SSCG_03496
Streptomyces sp. C	SSNG_07480
S. viridochromogenes DSM 40736	SSQG_00945; SSQG_00966
Kutzneria sp. 744	KUTG_07746; KUTG_08953; KUTG_09296
S. roseosporus NRRL 11379 (v4)	SSIG_05739
Micromonospora sp. M42	MCBG_00014; MCBG_00015
Streptomyces sp. Mg1	SSAG_08104
Streptomyces sp. E14	SSTG_03938

Table S8. List of putative LAL regulatory genes involved in the regulation of a secondary metabolite gene cluster. The Blastp analysis was obtained using SamR0484 as bait and using the actinomycetes genome database of the Broad Institute

(http://www.broadinstitute.org/annotation/genome/streptomyces_group/MultiHome .html). The genes retained were found nearside a modular PKS (except for SSTG_03938 located within a hybrid PKS-NRPS cluster) and the encoding proteins contain the typical domains of a LAL regulator.

Strains, BAC or plasmid	Principal characteristics ^a	Reference
Strains:		
S. ambofaciens		
ATCC23877	wildtype	(40)
ATCC/pIB139	empty vector integrated in the attB site	This work
ATCC/OE484	Overexpression of the LAL regulator	This work
ATCC/OE468-9	Overexpression of the two component system	This work
ATCC/OE484/Δ467	Overexpression of the LAL regulator and the gene <i>sam</i> R0467 replaced by a kanamycin resistance cassette	This work
ATCC/OE484/Δ481	Overexpression of the LAL regulator and the gene <i>sam</i> R0481 replaced by an apramycin resistance cassette	This work
E.coli		
DH5a	General cloning strain	(41)
ET12567/pUZ8002	Nonmethylating strain with mobilization plasmid for conjugation with Streptomyces	(42)
BW25113/pKD20	Strain used for the PCR-targeting mutagenesis (gam, bet, exo, bla)	(43)
BAC or plasmids:		
BBB	BAC from the genomic library of S. ambofaciens (cat)	(44)
BBC	BAC from the genomic library of S. ambofaciens (cat)	(44)
BBB/ Δ 467:: <i>neo+oriT</i>	samR0467 replaced by a neomycin cassette in BBB (cat, neo)	This work
BBBspec/\Delta467::neo+oriT	<i>cat</i> of BBB/ Δ 467:: <i>neo+oriT</i> replaced by a <i>aadA</i> cassette	This work
BBC/\Delta481::aac(3)IV+oriT	samR0481 replaced by an apramycin cassette in BBC (cat, neo)	This work
BBCspec/ Δ 481:: <i>aac</i> (3) <i>IV</i> + <i>oriT</i>	<i>cat</i> BBC/ Δ 481:: <i>aac</i> (3) <i>IV</i> + <i>oriT</i> replaced by a <i>aadA</i> cassette	This work
pIJ776	oriT, neo	(45)
pIJ778	oriT, aadA	(45)
pGEMT-easy	PCR cloning vector, bla	Promega
pGEMT-0484	pGEMTeasy + samR0484 without promoter region	This work
pIB139	Conjugative and integrative plasmid (<i>oriT</i> $attP_{\phiC31}$ $int_{\phiC31}$ $aac(3)IV$ $ermEp^*$)	(46)
pOE-0484	pIB139 + samR0484	This work
pOE-4689	pIB139 + samR0468-9	This work

Table S9. List of strains, plasmids and BACs used in this work. ^{*a*} *bla*, ampicillin resistance gene; *neo*, kanamycin resistance gene; *aac*(3)*IV*, apramycin resistance gene; *oriT*, origin of transfer; *aadA*, spectinomycin/streptomycin resistance gene; *gam*, inhibitor of the host exonuclease V; *bet*, single-stranded DNA binding protein; *exo*, exonuclease promoting recombination along with *bet*; *cat*, chloramphenicol resistance gene; *attP*_{ϕ C31}, ϕ C31 attachment site from the ϕ C31 phage; *int*_{ϕ C31}, integrase gene of ϕ C31.

Primers	Nucleotide sequence $(5' \rightarrow 3')$	
Overexpression:		
OE484-F	<u>CATATG</u> CTGGTCCATCGAGACGAAC	
OE484-R	TCTAGACTCTGCTCTCCCAAGGCT	
OE468-F	AGG <u>TCTAGA</u> GTCAGCCGAGGAAAC	
OE469-R	<u>CATATG</u> ACGAACGTGTCACGCGCGC	
Deletion:		
D467-F	GGCGATCTCGCGCCGTCAAGTGATTTCGGGGCATTCATGTGTAGGCTGGAGCTGCTTC	
D467-R	CAGAGCGACTCCCAGCGGGCAGGACCGTACATGGCGTCAATTCCGGGGATCCGTCGACC	
D481-F	GGCGGGCTCCGGGCCGCGGGGCCGCGACCCTCCCGTCTGCCTCTCGTCCCGAAGCA	
D481-R	ACTGTTTCCGTCGGCGGGCCCGCCTGGAGGACGACAATGGCGCGCGC	
Transcriptional analysis:		
RT-467-F	GTCGCCGGATCACCGAGGAA	
RT-467-R	AGGTCGCGGAACGCCTTGTC	
RT-465-F	TGCCTGCGGTGCTCCACCAA	
RT-465-R	CGTCGTCTTCTCCTCCATCG	
RT-477-F	GGAACAGCTCGCCGTACTCC	
RT-477-R	CCGAACTCGTCGGCGTATGG	
RT-474-F	ACCGCGCCGGAGGTGAGACA	
RT-474-R	GCTGCTCGCCTGCGTGGACA	
RT-484-F	CTGGAGACCTTCGGGGAGTG	
RT-484-R	TGCCCGAGCACTCCGAAATG	
RT-468-F	GTGGGTCAGGTGCGTCTTGAC	
RT-468-R	ACTGCAAGTGCTGGAGCACG	
RT-469-F	GAGGACGGGAGGGCTGAAGC	
RT-469-R	GCGTGGCATCCGACGCGACCC	
HrdB-F	CGCGGCATGCTCTTCCT	
HrdB-R	AGGTGGCGTACGTGGAGAAC	

Table S10. Oligonucleotide primers used in this work. The underlined nucleotides are *NdeI* and *XbaI* restriction sites. The bold nucleotides are identical to the sequences at the extremities of the *samR0467* (D467-F, -R) and *samR0481* (D481-F, -R) genes, which were deleted.

References

- 1. Kieser T, Bibb MJ, Buttner MJ, Chater KF, & Hopwood DA (2000) Practical *Streptomyces* genetics. *John Innes Fundation, Norwich, United Kingdom.*
- 2. Pernodet JL, Alegre MT, Blondelet-Rouault MH, & Guerineau M (1993) Resistance to spiramycin in *Streptomyces ambofaciens*, the producer organism, involves at least two different mechanisms. *J Gen Microbiol* 139(5):1003-1011.
- 3. Sambrook J, Fritsch EF, & Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd ed. *Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.*
- 4. Leblond P, *et al.* (1996) The unstable region of *Streptomyces ambofaciens* includes 210 kb terminal inverted repeats flanking the extremities of the linear chromosomal DNA. *Mol Microbiol* 19(2):261-271.
- 5. Pang X, *et al.* (2004) Functional angucycline-like antibiotic gene cluster in the terminal inverted repeats of the *Streptomyces ambofaciens* linear chromosome. *Antimicrob Agents Chemother* 48(2):575-588.
- 6. Yadav G, Gokhale RS, & Mohanty D (2003) Computational approach for prediction of domain organization and substrate specificity of modular polyketide synthases. *J Mol Biol* 328(2):335-363.
- 7. Aparicio JF, *et al.* (1996) Organization of the biosynthetic gene cluster for rapamycin in *Streptomyces hygroscopicus*: analysis of the enzymatic domains in the modular polyketide synthase. *Gene* 169(1):9-16.
- 8. Keatinge-Clay AT (2007) A tylosin ketoreductase reveals how chirality is determined in polyketides. *Chem Biol* 14(8):898-908.
- 9. Kwan DH, *et al.* (2008) Prediction and manipulation of the stereochemistry of enoylreduction in modular polyketide synthases. *Chem Biol* 15(11):1231-1240.
- 10. Karray F, *et al.* (2007) Organization of the biosynthetic gene cluster for the macrolide antibiotic spiramycin in *Streptomyces ambofaciens*. *Microbiology* 153(Pt 12):4111-4122.
- 11. Wilson DJ, Xue Y, Reynolds KA, & Sherman DH (2001) Characterization and analysis of the PikD regulatory factor in the pikromycin biosynthetic pathway of *Streptomyces venezuelae*. *J Bacteriol* 183(11):3468-3475.
- 12. Kuscer E, *et al.* (2007) Roles of *rapH* and *rapG* in positive regulation of rapamycin biosynthesis in *Streptomyces hygroscopicus*. *J Bacteriol* 189(13):4756-4763.
- 13. Ruan X, Stassi D, Lax SA, & Katz L (1997) A second type-I PKS gene cluster isolated from *Streptomyces hygroscopicus* ATCC 29253, a rapamycin-producing strain. *Gene* 203(1):1-9.
- 14. Sekurova ON, *et al.* (2004) In vivo analysis of the regulatory genes in the nystatin biosynthetic gene cluster of *Streptomyces noursei* ATCC 11455 reveals their differential control over antibiotic biosynthesis. *J Bacteriol* 186(5):1345-1354.
- 15. Oliynyk M, *et al.* (2003) Analysis of the biosynthetic gene cluster for the polyether antibiotic monensin in *Streptomyces cinnamonensis* and evidence for the role of *monB* and *monC* genes in oxidative cyclization. *Mol Microbiol* 49(5):1179-1190.
- 16. Kitani S, Ikeda H, Sakamoto T, Noguchi S, & Nihira T (2009) Characterization of a regulatory gene, *aveR*, for the biosynthesis of avermetin in *Streptomyces avermitilis*. *Appl Microbiol Biotechnol* 82(6):1089-1096.

- 17. Hur YA, Choi SS, Sherman DH, & Kim ES (2008) Identification of TmcN as a pathway-specific positive regulator of tautomycetin biosynthesis in *Streptomyces sp.* CK4412. *Microbiology* 154(Pt 10):2912-2919.
- 18. Knirschova R, *et al.* (2007) Multiple regulatory genes in the salinomycin biosynthetic gene cluster of *Streptomyces albus* CCM 4719. *Folia Microbiol* (*Praha*) 52(4):359-365.
- 19. Anton N, Mendes MV, Martin JF, & Aparicio JF (2004) Identification of PimR as a positive regulator of pimaricin biosynthesis in *Streptomyces natalensis*. J Bacteriol 186(9):2567-2575.
- 20. He W, Lei J, Liu Y, & Wang Y (2008) The LuxR family members GdmRI and GdmRII are positive regulators of geldanamycin biosynthesis in *Streptomyces hygroscopicus* 17997. *Arch Microbiol* 189(5):501-510.
- 21. Wu K, Chung L, Revill WP, Katz L, & Reeves CD (2000) The FK520 gene cluster of *Streptomyces hygroscopicus* var. *ascomyceticus* (ATCC 14891) contains genes for biosynthesis of unusual polyketide extender units. *Gene* 251(1):81-90.
- 22. Chen S, *et al.* (2003) Organizational and mutational analysis of a complete FR-008/candicidin gene cluster encoding a structurally related polyene complex. *Chem Biol* 10(11):1065-1076.
- 23. Carmody M, *et al.* (2004) Analysis and manipulation of amphotericin biosynthetic genes by means of modified phage KC515 transduction techniques. *Gene* 343(1):107-115.
- 24. Machida K, *et al.* (2008) Organization of the biosynthetic gene cluster for the polyketide antitumor macrolide, pladienolide, in *Streptomyces platensis* Mer-11107. *Biosci Biotechnol Biochem* 72(11):2946-2952.
- 25. Guo J, *et al.* (2010) The pathway-specific regulator AveR from *Streptomyces avermitilis* positively regulates avermectin production while it negatively affects oligomycin biosynthesis. *Mol Genet Genomics* 283(2):123-133.
- 26. Carlson JC, *et al.* (2010) Identification of the tirandamycin biosynthetic gene cluster from *Streptomyces sp.* 307-9. *Chembiochem* 11(4):564-572.
- 27. McAlpine JB, *et al.* (2005) Microbial genomics as a guide to drug discovery and structural elucidation: ECO-02301, a novel antifungal agent, as an example. *J Nat Prod* 68(4):493-496.
- 28. Sun Y, Zhou X, Tu G, & Deng Z (2003) Identification of a gene cluster encoding meilingmycin biosynthesis among multiple polyketide synthase contigs isolated from *Streptomyces nanchangensis* NS3226. *Arch Microbiol* 180(2):101-107.
- 29. Jorgensen H, *et al.* (2010) Insights into the evolution of macrolactam biosynthesis through cloning and comparative analysis of the biosynthetic gene cluster for a novel macrocyclic lactam, ML-449. *Appl Environ Microbiol* 76(1):283-293.
- 30. Jorgensen H, *et al.* (2009) Biosynthesis of macrolactam BE-14106 involves two distinct PKS systems and amino acid processing enzymes for generation of the aminoacyl starter unit. *Chem Biol* 16(10):1109-1121.
- 31. Sosio M, Stinchi S, Beltrametti F, Lazzarini A, & Donadio S (2003) The gene cluster for the biosynthesis of the glycopeptide antibiotic A40926 by *nonomuraea* species. *Chem Biol* 10(6):541-549.

- 32. Rascher A, Hu Z, Buchanan GO, Reid R, & Hutchinson CR (2005) Insights into the biosynthesis of the benzoquinone ansamycins geldanamycin and herbimycin, obtained by gene sequencing and disruption. *Appl Environ Microbiol* 71(8):4862-4871.
- 33. Olano C, *et al.* (2009) Deciphering biosynthesis of the RNA polymerase inhibitor streptolydigin and generation of glycosylated derivatives. *Chem Biol* 16(10):1031-1044.
- 34. Haydock SF, *et al.* (2005) Organization of the biosynthetic gene cluster for the macrolide concanamycin A in *Streptomyces neyagawaensis* ATCC 27449. *Microbiology* 151(Pt 10):3161-3169.
- 35. Banskota AH, *et al.* (2006) Genomic analyses lead to novel secondary metabolites. Part 3. ECO-0501, a novel antibacterial of a new class. *J Antibiot (Tokyo)* 59(9):533-542.
- 36. Otsuka M, Ichinose K, Fujii I, & Ebizuka Y (2004) Cloning, sequencing, and functional analysis of an iterative type I polyketide synthase gene cluster for biosynthesis of the antitumor chlorinated polyenone neocarzilin in "*Streptomyces carzinostaticus*". *Antimicrob Agents Chemother* 48(9):3468-3476.
- 37. Ohnishi Y, *et al.* (2008) Genome sequence of the streptomycin-producing microorganism *Streptomyces griseus* IFO 13350. *J Bacteriol* 190(11):4050-4060.
- 38. Li C, Roege KE, & Kelly WL (2009) Analysis of the indanomycin biosynthetic gene cluster from *Streptomyces antibioticus* NRRL 8167. *Chembiochem* 10(6):1064-1072.
- 39. Migita A, *et al.* (2009) Identification of a gene cluster of polyether antibiotic lasalocid from *Streptomyces lasaliensis*. *Biosci Biotechnol Biochem* 73(1):169-176.
- 40. Pinnert-Sindico S (1954) Une nouvelle espèce de *Streptomyces* productrice d'antibiotiques : *Streptomyces ambofaciens* n. sp. caractères culturaux. [A new species of *Streptomyces* productive of antibiotics: *Streptomyces ambofaciens*. Culture characteristics]. *Ann Inst Pasteur (Paris)* 87(6):702-707.
- 41. Hanahan D (1983) Studies on transformation of *Escherichia coli* with plasmids. *Journal of Molecular Biology* 166:557-580.
- 42. MacNeil DJ, *et al.* (1992) Analysis of *Streptomyces avermitilis* genes required for avermectin biosynthesis utilizing a novel integration vector. *Gene* 111(1):61-68.
- 43. Datsenko KA & Wanner BL (2000) One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. *Proc Natl Acad Sci U S A* 97(12):6640-6645.
- 44. Choulet F, *et al.* (2006) Evolution of the terminal regions of the *Streptomyces* linear chromosome. *Mol Biol Evol* 23(12):2361-2369.
- 45. Gust B, Challis GL, Fowler K, Kieser T, & Chater KF (2003) PCR-targeted *Streptomyces* gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. *Proc Natl Acad Sci U S A* 100(4):1541-1546.
- 46. Wilkinson CJ, *et al.* (2002) Increasing the efficiency of heterologous promoters in actinomycetes. *J Mol Microbiol Biotechnol* 4(4):417-426.