Supplemental Methods: Kinetic Principles, Calculations and Interpretation

According to *MacCoss et al.* (2001), for infusion of the $[{}^{13}C_1]$ methionine tracer, extracellular enrichment is represented by plasma $[{}^{13}C_1]$ methionine (Ep_{13C-Met}) and intracellular enrichment is represented by plasma $[{}^{13}C_1]$ homocysteine (Ep_{13C-Hcy}). The flux of the $[{}^{13}C_1]$ methionine tracer was calculated as:

$$Q_{C} = I_{13C-Met} \cdot ((E_{13C-Met} / Ep_{13C-Hcy}) - 1)$$

As the labeled methyl-group is lost during methyltransferase reactions, the intracellular surrogate homocysteine cannot be used for estimation of intracellular [methyl-²H₃]methionine enrichment. The intracellular [methyl-²H₃]methionine enrichment is therefore estimated on the basis of the measured methionine intracellular/extracellular gradient determined from the [¹³C₁]methionine tracer (Ep_{13C-Hcy} / Ep_{13C-Met}), which is used to adjust the plasma [²H₃]methionine enrichment (Ep_{2H-Met}) to approximate the intracellular [²H₃]methionine enrichment (Ep'_{2H-Met}).

$$Ep'_{2H-Met} = Ep_{2H-Met} \cdot (Ep_{13C-Hcy} / Ep_{13C-Met})$$

With this corrected value for intracellular $[^{2}H_{3}]$ methionine enrichment, the flux of methyl-labeled methionine is calculated as:

$$Q_{M} = I_{2H-Met} \cdot ((E_{2H-Met} / Ep'_{2H-Met}) - 1)$$

The overall rate of homocysteine remethylation (RM) is then calculated as the difference between the fluxes of the methionine carboxyl and methyl groups:

$$RM = Q_M - Q_C$$

The rate of production of ¹³CO₂ provided a direct and specific measurement of the in vivo whole body flux through amino acid oxidation reactions; in the case of methionine, the release of the [1-¹³C]atom reflects the rate of transsulfuration. The rate of ¹³CO₂ release ($F^{13}CO_2$, in units of µmol·h⁻¹·kg⁻¹ body weight) and the rate of transsulfuration (TS, µmol·h⁻¹·kg⁻¹ body weight) were calculated as follows:

$$F^{13}CO_2 = E^{13}CO_2 \cdot (FCO_2 / 0.81) \cdot (1 / W)$$

where: $E^{13}CO_2$ is breath CO_2 enrichment plateau, FCO_2 is the rate of total CO_2 production, and 0.81 is the assumed fraction of CO_2 release from the body pool of bicarbonate and W is body weight (*Robert et al. 1982*).

$$TS = F^{13}CO_2 / Ep_{13C-Hcy}$$

where: $F^{13}CO_2$ is the rate of ${}^{13}CO_2$ release and $Ep_{13C-Hcy}$ is the plateau enrichment of $[{}^{13}C]$ homocysteine in plasma.

The rate of methionine uptake for protein synthesis (S) was calculated as: $S = Q_C - TS$ The rate of transmethylation (TM) is calculated from TS and RM: TM = TS + RM

References:

MacCoss MJ, Fukagawa NK, Matthews DE. Measurement of intracellular sulfur amino acid metabolism in humans. Am J Physiol Endocrinol Metab. 2001 Jun;280:E947-55.

Robert JJ, Bier DM, Zhao XH, Matthews DE, Young VR. Glucose and insulin effects on the novo amino acid synthesis in young men: studies with stable isotope labeled alanine, glycine, leucine, and lysine. Metabolism. 1982 Dec;31:1210-8.