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Supplemental experimental procedures 

Computational model of behavior 

The task consists of three states (first stage: sA; second stage: sB and sC), each with two actions (aA and 

aB). The goal of both the model-based and model-free subcomponents of the algorithm is to learn a 

state-action value function Q(s,a) mapping each state-action pair to its expected future value. On trial t, 

we denote the first-stage state (always sA) by s1,t, the second-stage state by s2,t, the first- and second-

stage actions by a1,t  and a2,t , and the first- and second-stage rewards as r1,t (always zero) and r2,t. 

The model free algorithm was SARSA(λ) temporal difference learning (Rummery and Niranjan, 1994). At 

each stage i of each trial t, the value for the visited state-action pair was updated according to: 
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and    are free learning-rate parameters. (We allow different learning rates    and    for the two task 

stages, to ensure our primary analyses of top-level effects are not affected by any potential difference in 

learning or behavior between the stages. Such effects might arise if there were differences in learning 

from state transitions vs rewards, and because any second-level state/action is sampled less frequently 

than the top-level ones.) Note that, for the first-stage choice,         and the RPE is instead driven by 

the second-stage value,    (         ); conversely at the second stage, we define    (         )   , 

since there is no further value in the trial apart from the immediate reward     . Since this task has only 

two stages per trial, the only effect of the eligibility parameter λ (Sutton and Barto, 1998) is, at the end 

of each trial, to modulate an additional stage-skipping update of the first-stage action by the second-

stage RPE,    (         )     (         )         . Note that this model assumes that eligibility 

traces are cleared between episodes (i.e., that eligibility does not carry over from trial to trial), which 

appears to be a reasonable simplification since eligibility carryover would be inconsistent with the 

episodic structure of the task, about which subjects were instructed; though see Walton et al. 2010) 

In general, a model-based RL algorithm works by learning a transition function (mapping state-action 

pairs to a probability distribution over the subsequent state), and immediate reward values for each 

state, then computing cumulative state-action values by iterative expectation over these. Specialized to 



the structure of the current task, this amounts to, first, simply deciding which first-stage action maps to 

which second-stage state (since subjects were instructed that this was the structure of the transition 

contingencies), and second, learning immediate reward values for each of the second-stage actions (the 

immediate rewards at the first stage being always zero). 

We characterized transition learning by assuming subjects simply chose between the two possibilities: 

 (  |     )       (  |     )     , or, vice versa  (  |     )       (  |     )      (with 

 (  |     )     (  |     ) and  (  |     )     (  |     ), according to whether more 

transitions had so far occurred to    following    plus    following   , or, vice versa, to    following    

plus    following   . (In analyses not reported here, we verified that this scheme, which settles on the 

true transition matrix after the first few trials and is consistent with subjects’ instructions, fit their 

choices better than traditional incremental learning schemes for estimating transition matrices. The 

specific values 0.7/0.3 are chosen without loss of generality; if these are changed, other free parameters 

of the algorithm will rescale to give the same overall choice likelihood.) 

At the second-stage (the only one where immediate rewards were offered), the problem of learning 

immediate rewards is equivalent to that for TD above, since    (         ) is just an estimate of the 

immediate reward r2,t; with no further stages to anticipate, the SARSA learning rule reduces to a delta-

rule for predicting the immediate reward. Thus the two approaches coincide at the second stage, and 

we define         at those states. 

Next, using Bellman’s equation, we define the model-based values of the first level actions as 
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and assume these are recomputed at each trial from the current estimates of the transition probabilities 

and rewards. 

Finally, to connect the values to choices, we define net action values at the first stage as the weighted 

sum of model-based and model-free values     (     )      (     )  (   )   (     ) where 

w is a weighting parameter. At the second stage,              . We then assume the probability 

of a choice is softmax in     :  
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Here, the free inverse temperature parameters    control how deterministic are the choices, and we 

allow    and    to differ between the stages. (This captures any differences in choice reliability between 

the stages; note that this also renders redundant a time-discount parameter.) The indicator function 

   ( ) is defined as 1 if a is a top-stage action and is the same one as was chosen on the previous trial, 

zero otherwise. Together with the free parameter p, this captures first-order perseveration (p > 0) or 

switching (p< 0) in the first-stage choices (Lau and Glimcher, 2005; also visible in Figure 2c). We do not 

include such autocorrelation for the second-stage choices, simply because (since different second-level 



states are visited from trial to trial) choice repetition at the second stage is less likely to play a large role, 

and it is also less clear how best to define it. 

In total, the algorithm contains 7 free parameters (β1, β2, α1, α2, λ, p, w), and nests pure model-based (w 

= 1, with arbitrary α1 and λ) and model-free (w = 0) learning as special cases. 

For neural analysis, we defined a generalized version of Equation 1, measuring RPEs with respect to net 

model-based/model-free values Qnet: 
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and took its partial derivative with respect to the parameter w mixing QTD and QMB into Qnet, which we 

refer to as the “difference regresssor” since it is the difference between δnet computed for w=1 and w=0.  

fMRI procedures 
Functional imaging was conducted using a 1.5T Siemens Sonata MRI scanner to acquire gradient echo 

T2*-weighted echo-planar images (EPI) with blood oxygenation level dependent (BOLD) contrast. We 

employed a special pulse sequence designed to optimize functional sensitivity in OFC (Deichmann et al., 

2003). This consisted of tilted acquisition in an oblique orientation at 30 degrees to the AC-PC line, as 

well as application of a preparation pulse with a duration of 1ms and amplitude of -2mT/m in the 

selection direction. The sequence enabled 36 axial slices of 3mm thickness and 3mm in-plane resolution 

to be acquired with a repetition time (TR) of 3.24s. Coverage was obtained from the base of the 

orbitofrontal cortex and medial temporal lobes to the superior border of the dorsal anterior cingulate 

cortex. Participants were placed in a light head restraint within the scanner to limit head movement 

during acquisition. A field map was also recorded for distortion correction of the acquired EPI images, 

using a double echo FLASH sequence (64 oblique transverse slices, slice thickness = 2 mm, gap between 

slices = 1 mm, TR = 1170 ms, α = 90°, short TE = 10 ms, long TE = 14.76 ms, BW = 260 Hz/pixel, PE 

direction anterior–posterior, FOV = 192×192 mm2, matrix size 64 × 64, flow compensation). A T1-

weighted structural image was also acquired for each subject. 

Preprocessing and data analysis were performed using Statistical Parametric Mapping software 

implemented in Matlab (SPM5; Wellcome Department of Imaging Neuroscience, Institute of Neurology, 

London, UK; and SPM8 for final results visualization and multiple comparison correction). Using the 

FieldMap toolbox (Hutton et al., 2002; Hutton et al., 2004), field maps were estimated from the phase 

difference between the images acquired at the short and long TEs in the FLASH sequence. The EPI 

images were corrected for subject motion by realigning them to the first volume, and simultaneously 

corrected for geometric distortion based on the field map and the interaction of distortion with motion 

(SPM5 “realign and unwarp”; Andersson et al., 2001; Hutton et al., 2002; Hutton et al., 2004). EPI images 

were then spatially normalized to the Montreal Neurological Institute template by warping the subject’s 

anatomical image to an SPM segmentation template (SPM5 “segment and normalize”) and applying 

these parameters to the functional images, resampled into 2x2x2 mm sized voxels, and smoothed using 

an 8 mm Gaussian kernel. 

For statistical analysis, the data were scaled voxel-by-voxel onto their global mean and high-pass-filtered 
using a filter width of 128 secs. 



fMRI analysis 

The fMRI analysis was based around the timeseries of RPEs as generated from the simulation of the 

model over each subject’s experiences. Note that as defined by Equation 1 above, this error is nonzero 

at two timepoints: the onset of the second stage, when      is realized, and at the reward receipt, when 

     is realized. These two RPEs ostensibly train the values that drive the two choices in the task. In 

general, RPE can also be defined at a third point, the start of the trial (the onset of stage 1; see Daw et 

al., 2006; Schonberg et al., 2007; Schonberg et al., 2010), but this is more difficult to define accurately 

enough to analyze parametrically since it depends on the value expectation prior to trial onset, a 

quantity which is not assessed behaviorally. Therefore, we do not include this timepoint in our 

parametric analysis of RPE effects (instead defining nuisance regressors to control variance there), but 

we separately subject activity at this timepoint to a complementary, factorial analysis as a relatively 

independent test of our conclusions (see ROI analyses in main text Experimental Procedures). 

We included the RPE as a parametric regressor modulating impulse events at the second-stage onset 

and reward receipt. The regressor, from Equation 1, corresponds to the generalized model-

based/model-free RPE (Equation 3) computed for the mixing parameter w = 0. We included an 

additional parametric regressor, defined at the same timepoints, containing the partial derivative of this 

timeseries with respect to w. Intuitively, the partial derivative captures how the RPE would change if it 

were computed according to a different value of w (Friston et al., 1998); in this case, it is just the 

difference between the RPEs computed with respect to model-based and model-free action values. 

Since this difference is zero at outcome time, but nonzero at the second-stage onset, to exclude the 

possibility that the difference effect would be confounded by a simple difference in average striatal 

activity between these two events,  we mean-corrected the difference regressor’s values at the 

choicepoint to zero mean within-subject,  and also included an additional nuisance onset at the time of 

outcome reveal so as to capture any difference in mean activity between the choice and outcome 

events.  We included another nuisance onset at thefirst-stage trial onset, modulated by two additional 

parametric regressors, also treated as nuisance effects:  (    |  ) (from Equation 2), as a normalized 

measure of the first-stage action value (Daw et al., 2006), and its partial derivative with respect to w.  

These regressors were then convolved with the canonical hemodynamic response function, and entered 

into a regression analysis against each subject’s fMRI data using SPM. The 6 scan-to-scan motion 

parameters produced during realignment were included as additional nuisance regressors in the SPM 

analysis to account for residual effects of scan to scan motion. To enable inference at the group level, 

the coefficient estimates for the RPE and difference regressors from each individual subject were taken 

to the second-level to allow random effects group statistics to be computed. To test the correspondence 

between behavioral and neural estimates of the model-based effect, we also included the per-subject 

estimate of the model-based effect (w, above) from the behavioral fits as a second-level covariate for 

the difference regressor.  
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