Supporting Information

Lemke et al. 10.1073/pnas.1019383108

Table S1. Operon structure

PNAS PNAS

Promoter	Operon structure	No. of r-protein genes	Total no. of genes
rpsJ (S10)	rpsJ-rplC-rplD-rplW-rplB-rpsS-rplV-rpsC-rplP-rpmC-rpsQ	11	11
<i>rplK</i> (L11-L1)	rplK-rplA	2	2
rpIN (spc)	rpIN-rpIX-rpIE-rpsN-rpsH-rpIF-rpIR-rpsE-rpmD-rpIO-secY-rpmJ	11	12
rpsM (α)	rpsM-rpsK-rpsD-rpoA-rplQ	4	5
rpsL (str)	rpsL-rpsG-fusA-tufA	2	4
rpsA P1 (S1)	rpsA-ihfB	1	2
rpsA P3 (S1)			
rpsP (S16)	rpsP-rimM-trmD-rplS	2	4
<i>rpsT</i> P1 (S20)	rpsT	1	1
rpsT P2 (S20)			
thrS	thrS-infC-rpmI-rplT	2	4
infC P1			
infC P2			
rpml			
rpoZ (ω)	rpoZ-spoT-trmH-recG	0	4
rplJ (ββ')	rplJ-rplL-rpoB-rpoC	2	4
rpsU P2 (S21)	rpsU-dnaG-rpoD	1	3
rrnB P1	rrsB-gltT-rrlB-rrfB	0	4

r-Protein operon structure. The genes proposed to be cotranscribed from the promoters in this study are listed in order. In the case of the *thrS-infC-rpmI-rpIT operon*, several of the promoters are internal to this operon and are not responsible for transcribing it in its entirety.

Table S2. Strains and plasmids used in this work

PNAS PNAS

Strain	Relevent genotype	Promoter- <i>lacZ</i> fusion	Promoter endpoints	Source (Ref.)
VH1000	$RLG3499 = MG1655 \ pyrE^+ \ lacZ^- \ lacl^-$			(1)
RLG4996	VH1000	rrnB P1	-46/+1	(2)
RLG6348	VH1000 dksA::tet	rrnB P1	-46/+1	(2)
RLG4998	VH1000	lacUV5	-59/+36	(3)
RLG8950	VH1000 dksA::tet	lacUV5	-59/+36	(4)
RLG8980	VH1000	rpsJ (\$10)*	-486/+14	This work
RLG8981	VH1000 dksA::tet	rpsJ (\$10)*	-486/+14	This work
RLG9456	VH1000	<i>rplK</i> (L11-L1)	-100/+9	This work
RLG9468	VH1000 dksA::tet	<i>rplK</i> (L11-L1)	-100/+9	This work
RLG9458	VH1000	rplN (spc)	-100/+9	This work
RLG9470	VH1000 dksA::tet	rpIN (spc)	-100/+9	This work
RLG9242	VH1000	rpsM (α)	-100/+9	This work
RLG9243	VH1000 dksA::tet	rpsM (α)	-100/+9	This work
RLG9457	VH1000	rpsL (str)	-100/+9	This work
RLG9469	VH1000 dksA::tet	rpsL (str)	-100/+9	This work
RLG9461	VH1000	rpsA P1 (S1)	-90/+20	This work
RLG9474	VH1000 dksA::tet	rpsA P1 (S1)	-90/+20	This work
RLG9454	VH1000	rpsA P3 (S1)	-100/+20	This work
RLG9466	VH1000 dksA::tet	rpsA P3 (S1)	-100/+20	This work
RLG9240	VH1000	rpsP (\$16)	-100/+12	This work
RLG9241	VH1000 dksA::tet	rpsP (\$16)	-100/+12	This work
RLG9460	VH1000	rps7 P1 (S20)	-100/+20	This work
RLG9473	VH1000 dksA::tet	rps1 P1 (S20)	-100/+20	This Work
RLG9459	VH 1000	rps1 P2 (S20)	-89/+20	This work
RLG9471	VH1000 dksA.:tet	rpsi P2 (520)	-89/+20	This work
RLG9462	VH1000 VH1000 dksA::tot	thrS	-100/+9	This work
		infC P1	-100/+9	This work
	VH1000		-100/+9	This work
RLG9470	VH1000	infC P2	-100/+9	This work
RI G9/177	VH1000 dksA::tet	infC P2	_100/+9 _100/+9	This work
RI G9455	VH1000	rnml (135)	_100/+9 _100/+9	This work
RI G9467	VH1000 dksAtet	rpml (135)	-100/+9	This work
RI G9491	VH1000	$rpoZ(\omega)$	-100/+20	This work
RLG9472	VH1000 dksA::tet	$rpoZ(\omega)$	-100/+20	This work
RLG9492	VH1000	rplJ (BB')	-100/+5	This work
RLG9496	VH1000 dksA::tet	rplJ (ββ')	-100/+5	This work
RLG9495	VH1000	rpsU P2 (S21)	-70/+20	This work
RLG9499	VH1000 dksA::tet	rpsU P2 (S21)	-70/+20	This work
Plasmid	Description		Promoter endpoints	Source
pRLG770	Transcription veg	ctor		(5)
pRLG8447	pRLG770 containing rpsJ (S	510) promoter	-100/+50	This work
pRLG9223	pRLG770 containing rplK (L1	1-L1) promoter	-100/+45	This work
pRLG9225	pRLG770 containing rplN (spc) promoter	-100/+50	This work
pRLG9222	pRLG770 containing rpsM	(α) promoter	-100/+50	This work
pRLG9224	pRLG770 containing rpsL (str) promoter	-100/+50	This work
pRLG9233	pRLG770 containing rpsA P1	(S1) promoter	-90/+50	This work
pRLG9235	pRLG770 containing rpsA P3	3 (S1) promoter	-100/+50	This work
pRLG9234	pRLG770 containing rpsP (S	516) promoter	-100/+3	This work
pRLG9236	pRLG770 containing rpsT P1	(S20) promoter	-100/+50	This work
pRLG9237	pRLG770 containing rpsT P2	(S20) promoter	-89/+50	This work
pRLG9249	pRLG770 containing thr	S promoter	-100/+50	This work
pRLG9450	pRLG770 containing infC	P1 promoter	-100/+50	This work
pRLG9451	pRLG770 containing infC	P2 promoter	-100/+50	This work
pRLG9452	pRLG770 containing <i>rpmI</i> (I	L35) promoter	-100/+50	This work
pRLG9480	pRLG770 containing rpoZ	(ω) promoter	-100/+50	This work
pRLG9481	pRLG770 containing <i>rplJ</i> (ββ') promoter	-100/+5	This work
pRLG9485	pRLG770 containing rpsU	P2 promoter	-70/+50	This work
DIVISB1	Cioning vector for lambda	recombination		(6)

Strains and plasmids used in this study. The asterisks indicate promoter-*lacZ* fusions that were created by ligation of promoter and lambda arm DNA fragments followed by packaging in vitro rather than by recombination and infection in vivo (*Materials and Methods*). Promoter endpoints are numbered relative to the +1 transcription start site (known or predicted).

Table S3.	Promoter sequences	
Promoter	Sequence	Ref.
rpsJ rpIK NIqr Nsar	GTGTCAAAATGCACTGAACGTGAGGAGATAACCCGAAGGCTGTTTACTTAC	(7) (8) (9)
rpsL	TCGTCAGACTTACGGTTAAGCACCCCAGCCAGGATGGTCGGTGGTGGTGGTGGTGGTGGTGGTGGTGGCGTCGGCCATCGGCCATCGGCCGTCGCCCTAAAATTCGGCCGTCCTCATA	(6)
rpsA P1 rpsA P3	TGAAAATTTTCCTTGACGCTCCTCGGAAGAACGTGCGCATCGCCGCGTGCTACAGTTGCAGGGAGGAGGGCTTTAGTGTTAACTTTGAGCGCCGAGATCAAA ACCGAGCGGTAGCGCCACTGGTTCCGGCAGCCGATGCTTTAGTGTTGGGATTCCACCACCTTAAGCATTGAGCAAGTGATTGAAAAAGCGCTACAATA ^C GCCGGCGCCGGAAATTGGCTCTCG	(11)
rpsP	GCGCACTCCGGCAAACTGGCTGCCGCCGCGGCGCTTTTACAGCAGGGGGGTTGGCAACTGTTGCCGCAAAAAATGAGGTAAAATTTTTCGGGGCTTTTTAATATG	(12)
rpsT P1 rpsT P2	TCATTGCCATGGCGCAAATCACGGGGAAGAAACTGACCGCTGCTGCTGCAAATTTTATCGCGGGAAAAGCTGTATTCACACCCCGGCAAGCTGGTAGAATCCTGCGCCATCACTACGTAACGAGT CCATCACTACGTAACGAGTGCCGGGCACATTAACGGCGCGTTATTTGCACAAAATCCATTGACAAAAGAAGGGCTAAAAGGGGCATATTCCTTGGGCCATTTGAATGTCCTAA	(13) (13)
thrS	TTAAGCGTTTTGCTGGTGTACTACAAACGAATTGCGAATCGAATCAATGTGAAACGGAAAGGGTACAATCTCCCCTTTTTTAGTGTTGACATCGCTCAACCGGGGTG	(14)
infC P2	GICTGAATACGTAACGAATTGCCCGAAAAACTACTACTACTGCGGGGCATTCGTGATGGGGGGGG	(14)
rpml	AGTCTGAGAGAAGGCTCTGGAGAAAGCAGAAGAAGCCGGAGTAGACTTAGTCGAGATCAGCCCTAACGCCGAGCCGCGGGTTTGTCGTATAATGGATTACGGCAAATTCC	(14)
Zodı	CGCGCCGAACGTCTGCGCATGAGCCGCCAAAAGCAGCGTCATGACGCTTTAATCAGCAAATTG <u>TTGGCA</u> GACTGAACTTGATTTCAG <u>TATCATG</u> CCCCAGT <u>CA</u> TTTCTTCACCTGTGGAGC	(15)
rplJ	CCACCACCATGGGTGCAGGTGTTGCAGTTGACCAGGCTGGGCTGAGCGCTTCTGTAAACTAATGCCTTTACGTGGGGGGGG	(8)
rpsU P2	CTGGAGAAAGCCTCGTGTATACTCCTCACCCTTATAAAAGTCCCTTTCAAAAAAGGCCGCGGGTGC <u>TTTACA</u> AAGCAGCAGCAGCAGTGAAATAAATTCCGC <u>A</u> CCATTTTGAAATAAGCTGG	(16)
lacUV5 rrnB P1	CTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGGGCTGGTATGTGTGGGGGATAGCGGGATAACAATTTCACACAGGAAACAG TTAAATTTCCTC <u>TTGTCA</u> GGCCGGAATAACTCCC <u>TATAAT</u> GCGCCACC <u>C</u>	(3) (17)
Sequences extended –10 (ref. 15, <i>p</i> 1 pr	s of promoters analyzed in this study. The sequences represent the constructs measured in vivo. The downstream endpoints of the constructs used for the in vitro experiments was +50 in most cases. The -10 , and transcription start sites (known or putative) are underlined. The transcription start sites for <i>rpoZ</i> was mapped by Gentry and B romoter).	0, –35, 3urgess
1. Gaal T, Bartì	tlett MS, Ross W, Turnbough CL, Jr., Gourse RL (1997) Transcription regulation by initiating NTP concentration: rRNA synthesis in bacteria. Science 278:2092-2097.	
2. Paul BJ, et a 3. Barker MM,	al. (2004a) DisA: A critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP. <i>Cell</i> 118 :311–322. (Gaal T, Josaitis CA, Gourse RL (2001) Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation <i>in vivo</i> and <i>in vitro</i> . <i>J Mol Biol</i> 305 :673–688.	
4. Lemke JJ, D 5. Ross W, Tho	Jurtee 1, Gourse RL (2009) DkSA and ppGpp directly regulate transcription of the <i>Escherichia coli</i> flagellar cascade. <i>Mol Microbiol</i> /4:1368–13/9. ompson JF, Newlands JT, Gourse RL (1990) <i>E.coli</i> Fis protein activates ribosomal RNA transcription <i>in vitro</i> and <i>in vivo. EMBO J</i> 9:3733–3742.	
6. Rao L, et al. 7. Olins PO. No	. (1994) Factor independent activation of rrnB P1. An "extended" promoter with an upstream element that dramatically increases promoter strength. J Mol Biol 235:1421–1435. Jomura M (1981) Requilation of the 510 ribosomal protein noneron in E. roli: Nucleotide sequence at the start of the noneron. Cell 26:205–211.	
8. Post LE, Stry 9. Post LE, Arfe	ycharz GD, Nomura M, Lewis H, Dennis PP (1979) Nucleotide sequence of the ribosomal protein gene cluster adjacent to the gene for RNA polymerase subunit beta in Escherichia coli. Proc Natl Acad Sci USA 76:1697–1701 Gene AF Beneser F Nomina M (1978) DNA sequences of normorian regions for the strand soc ribosomal protein normorian protein normorian for the strand soc ribosomal protein normorian for the strand soc ribosomal protein normorian for the strand soc ribosomal protein normorian for the strand soci normal protein normorian for the strand soci ribosomal protein normorian	÷
10. Post LE, Ar	reter AE, record of Nomura M (1900) DNA sequence of the promoter region for the alpha ribosomal protein operation in Excert Carl 251.453-4559.	
11. Pedersen 5 12. Byström A5	2, skouv J, Kajitani M, isininama A (1984) iranscriptional organization of the ripsA operon of extericina coli. Mol Gen Genet 196:135–140. S, von Gabain A, Björk GR (1989) Differentially expressed <i>trmD</i> ribosomal protein operon of <i>Escherichia coli</i> is transcribed as a single polycistronic mRNA species. J Mol Biol 208:575–586.	
13. Mackie GA 14. Wertheime	A, Parsons GD (1983) Tandem promoters in the gene for ribosomal protein S20. <i>J Biol Chem</i> 258:7840-7846. er SJ, Klotsky RA, Schwartz I (1988) Transcriptional patterns for the <i>thrS-infC-rpIT</i> operon of <i>Escherichia coli.</i> Gene 63:309–320.	
15. Gentry DR, 16. Lupski JR, I 17. C142 T44	t, Burgess RR (1986) The cloning and sequence of the gene encoding the omega subunit of Excherichia coli RNA polymerase. Gene 48:33-40. Ruiz AA, Godson (81 (1984) Promotion, termination and anti-termination in <i>proved-fpol</i> macromolecular synthesis operon of <i>E. coli</i> K-12. <i>Mol Gen</i> Genet 195:391-401.	
1/. Csordas-To 18. Cho BK, et	oth t, Boros I, Venetianer P (1979) Structure of the promoter region for the <i>rrn</i> B gene in <i>Escherichia</i> coli. Nucleic Acids Res 7:2189–2197. t al. (2009) The transcription unit architecture of the <i>Escherichia</i> coli genome. <i>Nat Biotechnol</i> 27:1043–1049.	

Lemke et al. www.pnas.org/cgi/content/short/1019383108

PNAS PNAS

3 of 3