
Supporting Information
Xie et al. 10.1073/pnas.1018383108
SI Text
The time-lapse images were processed in three stages: segmen-
tation, aggregate linkage, and data analysis. The image processing
was performed with Matlab using the Image Processing Toolbox
(IPT) and in-house functions.

Image Segmentation. In the segmentation stage, the movie is
processed frame by frame. Each frame image is segmented into
foreground (aggregates) and background. The segmentation
process has five steps: preprocessing (lighting correction), first
Markov random field (MRF)-based segmentation, morphological
operation (open), second MRF segmentation, and final adjust-
ment. A workflow illustration is shown in Fig. S2, and each step is
explained in detail in the following subsections.
Lighting illumination correction. The segmentation stage aims to
separate aggregates fromone another and from the interaggregate
background based on grayscale intensities. The processing starts
with illumination correction to make the background intensity
even throughout the image. We assume that the illumination
distortion generates a smooth surface. Therefore, the idea of il-
lumination correction is to fit a smooth surface on the background
pixels and then, subtract this illumination surface from the original
image to get the illumination-corrected data.
The entire image is 1,200 × 1,600 pixels. First, divide the whole

image into small patches of 200 × 200 pixels. On each patch, use
the IPT function graythresh to find a threshold and then, increase
the threshold by 20% to reduce the contribution of segmentation
errors to the background. Next, the resulting threshold intensity is
used to separate the image patch into foreground and back-
ground. A background mask is then obtained from the combi-
nation of all of the patches and used to extract background pixels
from the whole image. A smooth 2D surface is then fit to the
resulting background intensity with the third-party Matlab func-
tion package gridfit (1). This surface is, thereafter, subtracted
from the original image.
First MRF segmentation. The MRF-based segmentation method is
applied to segment the aggregates from the surrounding area.
Markov random field models provide a robust and unified
framework for segmentation problems. The segmentation is a la-
beling process in which a label fp ε L is assigned to each pixel p ε P.
It is assumed that the labels should vary smoothly almost every-
where but may change dramatically at some places such as object
boundaries. The quality of labeling is given by an energy function
that will be minimized. Finding a labeling with minimum energy
corresponds to themaximum a posteriori probability optimization
problem. To approximately solve this optimization problem, the
fast belief propagation approach (2) is applied to define the MRF
energy function. As a result, an approximate labeling with a min-
imum cost of the energy function is obtained. The segmentation
algorithm is implemented in Matlab. To accelerate the process,
we again divide the illumination-corrected image into small
patches of 200 × 200 pixels, apply graythresh to find a threshold,
and use this threshold to get an initial binary segmentation of
aggregates and background. This initial segmentation is used as
the initial condition for MRF and applied to each patch.
Morphological opening operation. The initial segmentation by MRF
contains multiple aggregates that are very small as well as
aggregates that are connected by narrow segments. To improve
uniformity, imcomplement is used to make the aggregates white
for the foreground, and then, IMT function imopen(bw,ones(11))
is used to remove connections less than 11 pixels across, bwar-
eaopen(bw,300) is used to ignore aggregate regions with fewer

than 300 pixels, and imcomplement is used to reverse the image.
bwareaopen(bw,50) is applied to ignore background regions with
fewer than 50 pixels. As a result, false detection and false con-
nections are removed.
Second MRF segmentation and final adjustment. Because these oper-
ations may also remove the true targets, we used the resulting
segmentation as an initial condition and performed a second-
iteration MRF segmentation. The final adjustment is also a mor-
phological operation step, with bwareaopen(bw,300) used on both
background and foreground to remove small objects.
We found that such two-step processing reliably detects

aggregates at the late stages of aggregation. To ensure that seg-
mentation errors do not significantly affect our analysis, a starting
frame was chosen so that the variation in the numbers of aggre-
gates was limited frame to frame (the running variance with 15
frames was no more than five aggregates). The chosen time of the
starting frame corresponds to ∼13.5 h development and depicts
a time at which quasistable aggregates reliably detectable by the
proposed algorithm are formed.
Link aggregates frame by frame. The aggregate linkage stage aims
to track aggregate movement, shrinkage, and expansion frame
by frame. The linkage algorithm is developed based on two
observations.
First, the initial aggregates can merge, split, or disperse, and

new aggregates might appear. Second, aggregates do not move or
only move a little bit from one frame to the next (5 min real time).
Each aggregate in the starting frame has been numbered, and

the corresponding aggregates on the following frames are traced
and recorded until they disperse or until the end of themovie. The
linkage method is based on the overlap and the distance between
the centroids of aggregates in different frames. The logic is briefly
summarized as follows.

i) If an aggregate has less than 10% overlap with any aggre-
gate in the previous frame, a newly appeared aggregate is
assumed and added to the list.

ii) If an aggregate overlaps with some aggregates in the previous
frame, then one of the following three scenarios occurs.

a) If the distance between the centroids of this aggregate and
the overlapped aggregates in the previous frame is less
than a threshold of 23 μm or 10 pixels, then this aggregate
is assumed to be the same aggregate as the one in the pre-
vious frame, and it is recorded at a new time index as the
same one with an updated centroid location and area size.

b) If the distance is larger than the threshold, splitting or
merging is assumed to occur. In this case, a new merged
or two new split aggregates are added to the list at this
time index with their centroids, area size, and a pointer
directing to the original aggregates from the initial list.

c) The original aggregates at this time index are also updated
to indicate merging if the number of overlaps is one or
splitting if the number of overlaps is more than one.

Finally, based on the linkage map, all aggregates on the starting
frame are labeled as dispersing, merging, or splitting. A seg-
mentation result with a color-coded label is shown in Fig. S3. Red
indicates steady aggregates, yellow indicates dispersing ag-
gregates, blue indicates merging aggregates, and cyan indicates
splitting aggregates. The linkage is manually reviewed and cu-
rated to ensure that the algorithms function properly, especially
for relatively rare events of splitting and merging.

Xie et al. www.pnas.org/cgi/content/short/1018383108 1 of 4

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1018383108/-/DCSupplemental/pnas.201018383SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1018383108/-/DCSupplemental/pnas.201018383SI.pdf?targetid=nameddest=SF3
www.pnas.org/cgi/content/short/1018383108


Feature Definitions. After segmentation and linkage, aggregates
on a specific frame are labeled as dispersing, merging, splitting,
or stable. Feature extraction is performed on the 2D black and
white image. Matlab IPT function regionprops measures a set of
properties for each connected component in the binary image.
Each segmented aggregate is a connected component, and region-
props is used to extract image features for aggregate fate analysis.
The following is a list of eight features (the feature index

number is the same as that in Table 1) from the regionprops
properties.

1) Perimeter: scalar; the distance around the boundary of the
region (i.e., a segmented aggregate).

2) Equivdiameter: scalar that specifies the diameter of a circle
with the same area as the region.

3) Area: scalar; the actual number of pixels in the region.
4) Orientation: scalar; the angle between the x axis and the

major axis of the ellipse that has the same second moments
as the region.

5) Equivalent diameter/perimeter.
6) Solidity: scalar specifying the proportion of the pixels in the

convex hull that are also in the region.
7) Eccentricity: scalar that specifies the eccentricity of the

ellipse that has the same second moments as the region.
The value is between zero and one.

8) Minor axis length/major axis length: minor or major axis
length is a scalar specifying the length (in pixels) of the
minor or major axis of the ellipse that has the same nor-
malized second central moments as the region.

Regionprops property centroid provides a vector that specifies
the center of mass of the region (i.e., an aggregate). The dis-
placement relationship of all aggregates in the field can be
extracted based on their centroids. Then, the nearest neighbor
(NN) of a target aggregate and immediate neighbors at various
directions around the target aggregate can both be extracted. Fig.
S4 illustrates the relationship of the target aggregate (TA), the
nearest neighbor (NNA), and the immediate neighbors at vari-
ous directions around the target (1, 2 . . . 5).
The following is a list of 25 features (the feature index number

is the same as that in Table 1) calculated based on the NN or
immediate neighbors.

1) Distance to the NN/average weighted area of neighbors (i.
e., weighted sum of all areas of neighbors within a circular
neighborhood with one/distance being a weight).

2) Average distance to neighbors.
3) Distance to the NN.
4) Equivalent diameter/distance to the NN.
5) Area/area of the NN.
6) Area/neighboring area.
7) Area/sum of the area of neighbors.
8) Equivalent diameter/average weighted area of neighbors.
9) Area/maximal area of neighbors.
10) Area/median area of neighbors.
11) Area/average area of neighbors.
12) Area/minimal area of neighbors.
13) Distance to the NN/equivalent diameter.
14) Neighboring area (area of circular neighborhood filled with

aggregates).
15) Sum of distance to neighbors.
16) Weighted sum area of neighbors.
17) Sum of equivalent diameter of neighbors.
18) Sum of area of neighbors.
19) Area of the NN.
20) Minimal area of neighbors.
21) Average weighted area of neighbors.
22) Median area of neighbors.
23) Maximal area of neighbors.

24) Average equivalent diameter of neighbors.
25) Average area of neighbors.

Feature Clustering. A set of 33 features encompassing multiple
aspects of each aggregate was automatically detected for more
than 150 aggregates from the last frame of a time-lapse movie.
The Matlab statistics toolbox (ST) function corr (Spearman type)
is used to compute a correlation coefficient matrix between
feature values. The Spearman rank correlation assesses how well
the relationship between two variables can be described using
a monotonic function, linear or nonlinear, to capture the in-
terdependence of two different features such as area and
equivalent diameter.
The ST function linkage creates an agglomerative hierarchical

cluster tree from the correlation coefficient matrix. We use
linkage(CCoeff,’average’,’euclidean’) to get four major classes
and apply the ST function dendrogram to draw the clustering
tree shown in Fig. 2. The features divide into four major clusters
representing features associated with the proximity of the ag-
gregate to neighbors (1–3), various size parameters (4–15), pa-
rameters of the aggregate’s neighbors (17–28), and image shape
and topology (30–33) (Fig. 2).

Mutual Information and Support Vector Machine Analysis. Having
feature and fate labels for all aggregates, we used information
theory and machine learning approaches to connect features and
fate (3). Normalized mutual information, NMI ¼ IðD;FiÞ=HðDÞ,
was used to find single features that correlate with aggregate fate
(Eqs. 1 and 2). To estimate mutual information, the probability
distribution of aggregate dispersal pðdÞ, a probability distribution
of the given feature (i = 1 . . . 33) pðf iÞ, and the joint probability
distribution between the dispersal and a given feature pðd; f iÞ are
all estimated based on 1D and 2D histograms using Matlab
function histc.
Support Vector Machine (SVM) analysis was used to test

whether multiple feature combinations can better predict the
fate of an aggregate (4). SVMs have been widely suggested for
binary classification. The linear SVM defines a hyperplane in the
feature space, which separates the training examples of the two
classes. The problem of determining the hyperplane can be
formulated as a convex quadratic programming problem. If the
classes are not linearly separable, by relaxing the constraints and
introducing a slack parameter, a similar quadratic programming
problem can be formulated and solved. The SVM analysis is
based on Matlab bioinformatics toolbox (BT) functions svmtrain
and svmclassify.
In the analyzed movie, there are 160 examples of steady

aggregates and 91 examples of dispersing aggregates available for
training and testing. Each example is represented by a multidi-
mensional (up to 33D) feature vector. In each case, 75% of the
data is used to train SVM, whereas the remaining 25% is used to
estimate the prediction error rate. The data index is randomly
permutated, and the experiments have been repeated 30 times
using different combinations of training and testing data to reduce
the training bias and estimate SE. The error rate is defined as the
percentage of cases (both false positive and false negative) where
dispersal is not correctly predicted by a threshold model.
Any single feature or feature combination vector can be used to

run the SVM to test whether they predict the fate of transitional
aggregates. Because all combinations of the 33 features are too
many to test, only a selected set of combinations are tested in this
analysis. First, every single feature is tested and the features are
sorted based on their average prediction error from the lowest to
the highest. The size related feature generates the lowest error
rate, consistent with the mutual information analysis. Then, the
combination of the top one to k (k = 1 . . . n) features based on
the sorting are tested, and the results are shown in Fig. 3C.

Xie et al. www.pnas.org/cgi/content/short/1018383108 2 of 4

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1018383108/-/DCSupplemental/pnas.201018383SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1018383108/-/DCSupplemental/pnas.201018383SI.pdf?targetid=nameddest=SF4
www.pnas.org/cgi/content/short/1018383108


1. D’Errico J (2005) Surface Fitting using gridfit, available at Matlab Central, http://www.
mathworks.com/matlabcentral/fileexchange/8998.

2. Felzenszwalb PF, Huttenlocher DP (2006) Efficient belief propagation for early vision.
Int J Comput Vis 70:41–54.

3. Wireman JW, Dworkin M (1975) Morphogenesis and developmental interactions in
myxobacteria. Science 189:516–523.

4. Nariya H, Inouye M (2008) MazF, an mRNA interferase, mediates programmed cell
death during multicellular Myxococcus development. Cell 132:55–66.

0 10 20 30

0.2

0.4

Aggregate center displacement, m

F
re

qu
en

cy

Merged
Stable

m

Fig. S1. Displacement distribution of merging aggregates and stable aggregates. For each merging aggregate, the displacement of its center from the
starting frame (13.5 h) to the frame preceding merger is recorded. For each merged aggregate, displacement of the randomly selected stable aggregate center
for the same time interval is recorded. The histogram of the resulting displacements is then computed for merged and stable aggregates. For stable ag-
gregates, the sampling is repeated 10,000 times to compute mean histogram, and SDs are shown as error bars. For the overwhelming majority of samples
(∼90%), distributions of displacements of stable and merged aggregates are equivalent based on Kolmogorov–Smirnov test with P = 0.05.

Fig. S2. The workflow illustration of the two-stage MRF-based image segmentation process.

Fig. S3. A segmentation result of an aggregation image at 13.5 h with color-coded coloring (black, stable aggregates; red, dispersing aggregates; green,
merging aggregates; blue, splitting aggregates).

Xie et al. www.pnas.org/cgi/content/short/1018383108 3 of 4

http://www.mathworks.com/matlabcentral/fileexchange/8998
http://www.mathworks.com/matlabcentral/fileexchange/8998
www.pnas.org/cgi/content/short/1018383108


Fig. S4. The target aggregate (TA), the nearest neighbor (NNA), and the immediate neighbors (1–5) at various directions around the target. Note that, in each
direction, we only consider the immediate neighbor.

Movie S1. A sample of the developmental aggregation movie used in our analysis.

Movie S1

Xie et al. www.pnas.org/cgi/content/short/1018383108 4 of 4

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1018383108/-/DCSupplemental/sm01.avi
www.pnas.org/cgi/content/short/1018383108

