Supplementary Data

SUPPLEMENTARY FIG. S1. Evidence that activation of Na⁺-Ca²⁺ exchange system is not responsible for hydrogen peroxide (H₂O₂)-induced glutamate receptor-independent neuronal injury. Summary data demonstrating the lack of protection against H2O2-induced glutamate receptor-independent neuronal injury by blockers of the Na⁺-Ca²⁺ exchange system. Neurons were treated with $100 \,\mu M \,H_2O_2$ in the absence or presence of $10 \,\mu M$ 2-(2-(4-(4-nitrobenzyloxy)phenyl)ethyl)isothiourea (KB-R7943) or 100 µM benzamil for 1 h in the presence of (5R,10S)-(+)-5-Methyl-10,11-dihydro-5Hdibenzo[a,d]cyclohepten-5,10-imine, 6-cyano-7-nitroquinoxaline-2,3-dione and nimodipine. Relative lactate dehydrogenase (LDH) release was measured 6 h after the H_2O_2 exposure. One hour treatment with $100 \,\mu M \, H_2 O_2$ in the absence of KB-R7943 or benzamil induced 0.41 ± 0.02 of relative LDH release (n = 4). In the presence of $10 \,\mu M$ KB-R7943 or $100 \,\mu M$ benzamil, relative LDH release by $100 \,\mu M \, H_2 O_2 \, was \, 0.44 \pm 0.04$ and 0.42 ± 0.03 , respectively. n = 4 wells in each group, p > 0.05between H₂O₂ alone and H₂O₂ with KB-R7943 or benzamil.

SUPPLEMENTARY FIG. S2. Hydroxyl radicals are not glutamate receptorresponsible for H₂O₂-induced independent neuronal injury. (a) Summary bar graph showing the lack of protection on H₂O₂-induced neuronal injury by hydroxyl radical scavenger dimethyl sulfoxide (DMSO). Various concentrations of DMSO were added into culture wells 10 min before and during 1 h incubation with $100 \,\mu M H_2O_2$. Relative LDH release was measured 6 h after exposure of neurons to H₂O₂ in the absence or in the presence of DMSO. In the absence of DMSO, 1h exposure to $100 \,\mu M \, H_2O_2$ induced a relative LDH release of 0.49 ± 0.09 (n = 4). In the presence of 0.1%, 0.5%, or 2% of DMSO, the relative LDH release was $0.46\pm0.04,\ 0.47\pm0.09,$ or 0.44 ± 0.03 , respectively (n = 4 wells in each group, p > 0.05between control and different DMSO groups). Addition of 2% DMSO in the control medium did not affect the background LDH release. (b) Summary data showing the lack of protection on H₂O₂-induced neuronal injury by membrane permeable iron chelator deferoxamine (DFO). Neurons were incubated with the medium containing $100 \,\mu M$ DFO $10 \,\text{min}$ before and during the exposure to $100 \,\mu M \, H_2 O_2$. LDH release was measured 6h after H₂O₂ exposure. In the absence of DFO, 1 h exposure to H_2O_2 induced a relative LDH release of 0.39 ± 0.03 at 6 h. In the presence of $100 \,\mu M$ DFO, the relative LDH release was 0.45 ± 0.02 (n = 8 in each group, p > 0.05).