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1 MCMC conditionals

Our model (2) can be written in matrix notation as
Y; = Bi(X;)b; + €, 1)

whereY,; = (Yj1, ..., Y;,) denotes the x 1 vector of measurements of all probes in arigfyom

a given chromosome) anB;(X) is ann x K basis matrix of step functions with corresponding
coefficientsb; of size K x 1. We assume that the random effebt@re normally distributed with
mean3 and covariance? ;.

The MCMC sampling shall proceed in the following steps.

1. Sampling the regression coefficients;, 3): Since we are working in a Gaussian prior
and likelihood framework, our conditional distributiorar fthe regression coefficients are
Gaussian. Specificallyp; for each array; are sampled from their conditional distribu-
tion N(u; ,%; ), whereB; is the basis matrix in (L)y;, = 0;°%; {B]Y; + £, '8} and
S = o3{B{B; +%,'}"!. Suppose\* = (Ai,...,\x.), denote the current vector of
latent variables for the current modgl, i.e., a vector of 1’s indicating to which of the three
mixtures the elements of belong. The conditional distribution @f after integrating oub
(asb has a normal kernel) is dependent on the mixture to whichdhesponding segment

for 3, belongs:



e If it belongs to a neutral mixture the conditional is still armal 5;|\? = 1,rest ~
NWEio? E%io)
e If it belongs to a loss mixture the conditional is a trunctedmal 5|\, = 1,rest~

N(ps,, X5 )U (=K €e)

e If it belongs to a gain mixture the conditional is a trunctestmal 3, |\ = 1, rest~

N (g, 25)U (€45 k),

whereps = S5{(02%,) ! >, AiBlY;} andXy = {0 M, — o 25,1 >0, Ax !
whered; = (3,' + BI B;)™! u3, andyj, are diagonal elements pf; and), respectively.
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. Sampling of the variance componeris?, 3, ): With anZg(a,, b.) prior for all i, the con-
ditional distribution ofo? is ZG[(M + K)/2 + a., {(SSY; + SSb;)/2 + 1/b.} '] where
SSY; = (Y; — Xib)T(Y; — X;b;) and SSh; = (b; — 8)7%, 1 (b; — B). We assume that
the diagonal elements &f, = diag(o?,, . . ., 0?x) have a (conjugate) i.i.dLG(a,, b,) prior
with a corresponding posteriary, ~ ZG[M/2 + a,, {>_,((bix — Br)?/202) + 1/by} 1]
We set the hyperparameters of the inverse-gamma distiibtti be(1, 1) to impart little

information.

. Sampling the mixture paramete(x;, 7, ) have multinomial and Dirichlet posteriots; ~

(1. == mofo 4 fr ~ i -
Multi <17 ST S T mm) andm ~ Dir(myg + s_, T + So, T30 + S ), respec

tively, wheref, are the corresponding mixture density apd= Zle ke

. We use the following RIMCMC algorithm to sample the numdned location of break
points. Following Green (1995) and Denisenal. (1998) we include three types of moves

in our algorithm: BIRTH, in which we add a new segment loaatidEATH in which we



delete a segment location; and MOVE, in which we relocategensat location, with corre-
sponding prior probabilitie® g, pp, par) Wherep,, = 1—(pp+pp). The challenging aspect
of the algorithm is comparing models in the RIMCMC sampldg dcceptance probability
for a proposed move from modah (of say, dimensiork’) to M* (if dimensionK*) for a

reversible jump algorithm in its most general form is

ain {1, SO A A
CHYIM) p(M) a(MTM) "

the ratio of marginal likelihoods, prior distributions apposal distributions together with
a Jacobian termJ|. We focus on each of the ratios one by one. Here the likelitratid

is based on the marginal likelihogt{Y| M), whereM = (8,¢, K, X\, %, o) which has

a closed form since we can integrate out the random effedticieats b; using its Gaus-
sian specification. We further integrate out the populatesel coefficients3 using the
Gaussian-ronrod quadrature method, because the Gaussiaal Is preserved due to the
normal/uniform mixture construction. Note that the pragbsnodelM* depends on the
variance components, ando?. In order to accept/reject a model based on its segments, we
need to minimize the effects of these variances on the aamceptprobability. Specifically,
we will assumer? = o at the current sampled value. BecadzeandY:; may be of dif-
ferent dimensions, we cannot assume that they are equale\oywe can assume that they
are equal in the elements corresponding to the segments aormnboth models and con-
dition only on those elements. Following Bigelow and Dung2®08), we can integrate out
the additional variance parameter from the marginal [i@dd via a numerical integration
procedure such as a Laplace approximation, yielding ourcopate marginal likelihood

asf(Y|M), whereM = (¢, K, \). Now suppose a BIRTH step is proposed to add another



segment/cutpoint, thus going from dimensign— K + 1. Our prior ratio is given by

p(M”) _ p(K + 1)p(Cr 41| K + Dp(Ax 1)K + 1)
p(M) p(K)p(Cr | K)p( Ak | K) '

Note that the ratio of the priors ok cancels out because the multinomial prior does not
depend ori. Using the prior in the ratio of prior on cutpoints turns cwbe K +1/7 — K,

while the first ratio depends on the prior we adoptfor

To identify candidate change point locations, we followkd following algorithm. We
preprocessed the individual samples via the CBS algoriishenet al.2004) and obtained
a candidate set of change points for each sample. We furtliedaa few probe locations to
the right and left of the location of the change points by dnava Poisson random variable,
with a mean depending on the length of the segment, to offfaiWe seta, the tuning
parameter in the CBS algorithm, such that we obtain a largdyeu of segments, for instance

a = 0.01. We then set our candidate change pointsét te | J; 7.

The proposal ratio involves both the BIRTH and the DEATH stejVhile adding a new
segment location we use the proposal dengityt*|M) = (ps/T — K)q(X"). This is made
up of the probability of actually attempting a BIRTH stepatiger with that of choosing the
particular new value ., givency. This can be done ifi" — K ways, ascx.; must be
distinct to theK elements of’x and there are only’ possibilities in total. The probability
of proposing the reverse moved&M | M*) = (pp/K + 1)q(A), which is the probability of

proposing a DEATH step and then choosing the proposed charigeto remove.

The key step here is specifying the propaga*|\), since the RIMCMC algorithm suffers
from slow convergence if the proposal rarely leads to patam@lues with high likelihood.
To this effect, we choose our proposal based on our likeihmansiderations, which can

improve convergence in practice. In a BIRTH step we break/argsegment into two seg-



ments but choose a change point, sgguch that a new segment is formed between genome
locations(c,, ¢,) with ¢, < ¢,, to the right of the proposed change point. Denote the méxtur
indicator for thisnewsegment to b&*, which can take three possible values (corresponding
to a three component mixture) with probabilitf = p(\; = 1),h = 1,2,3. We define
;= f(Y|N, =1)/>, f(Y|X\ = 1) wheref is the (approximate) marginal likelihood as
we described above. Thus our proposal dengity'|\) is just a multinomial density with
probabilitiesp;. The reverse proposalA|\*) is computed similarly, conditional on the
current marginal model likelihood. The MOVE step is eas\csiit does not involve a di-
mension jump; hence we can sample the parameters using epgdisrHastings algorithm

or an independence sampler. Finally, note that since oersile jump step involves only

jumps on discrete parameters we do not need a Jacobian tenaitd¢h the dimensions.

2 MCMC specifics

2.1 Sensitivity to priors

To study the effect of prior specification on the number offrcfegpointsi’, we re-ran our analyses
for different priors on K, specifically using negative biniaiand Poisson distributions, as an
alternative to our default uniform prior. Figure 1 shows W€MC trace plots for the aCGH data

from chromosome 1 for the SC group (see Section 6 in manuxcfipe priors we used were,

1. Discrete Uniform prior:w(K) ~ U(0,..., Kmax), With Kmax = 196, which was the

cardinality of the candidate change pointetThis distribution has a mean of 98 segments.

2. Negative Binomial Distributiont(K) ~ NB(r, p) with » = 1, p = 0.01 which has a mean

at 99, similar to the discrete uniform distribution.



3. Poisson priorr(K) ~ Poig\) with A = 98, with mean equal to 98, same as the uniform

distribution.

The left panels show the trace plots of 10000 MCMC iteratimngy’, with uniform, negative
binomial and Poisson priors (top to bottom) All seemed toveoge around a value of60 change
points for this data, indicating relative insensitivityttoe prior distribution. Plotted on the right
panels are the corresponding kernel density estimatesqgddbt burn-in samples, discarding the
first 5000 samples. We use a thinning factor of 5, thus basimgrderence on 1000 samples.
The mean and standard deviation/offor the three priors were: 158.29 (1.95), 158.69 (2.10) and

157.90 (1.98) respectively - no significant difference i@ tumber of segments.

2.2 MCMC convergence and diagnostics

Usual convergence diagnostic methods, such as Gelman did @992) do not apply in our case
since we are moving within a (potentially) infinite model spand the parameters are not common
to all models. Instead we assess MCMC convergence via ttategd X and the log likelihoods,
which have a coherent interpretation throughout the mauietes (Brooks and Giudici, 2000). We
also ran multiple chains with diverse starting values ahsesdmed to converge reasonably. Figure
2 shows the trace plots of (top panel) and log-likelihood (bottom panel) using twoelse
starting values plotted in red and blue colors for the daienfchromosome 1 for the SC group

(see Section 6 in manuscript). We observe reasonable ganve and mixing on both fronts.



3 Additional simulations results

3.1 Comparison of sensitivities

Table 1 contains the sensitivities of the three methodslspprevalence and noise level for various
cutoff values of the false positive rate (1-specificity=8).0.10, 0.20). The BDSAcgh performed
much better than cghMCR for all valuesofand H-HMM for 7 = 0.2, 0.3. H-HMM performed
remarkably well forr = 0.1 but the performance degraded with increasing-or higher preva-
lences, the BDSAcgh was competitive to the cghMCRrfer 0.1, 0.2 and performed much better

at the high noise levels = 0.3.

3.2 Performance a function of CNV length

We also assessed the performance of BDSAcgh as a functioNdfléngth. In our simulations
the widths of shared aberrations were generated from a gatistnédution with parameters:, b)
and is parameterized such that the mean/ts We set(a,b) = (2.5,0.05) such that the mean
of the distribution is50 and the99% interval corresponded t¢5, 168) rounded to the nearest
integer. Thus the range of shared aberrations could varstantially, accommodating both large
and short segments. We then define the followijig10] as “fine” segments,10, 25] probes as
short segment$25, 65] probes as medium length and65 probes as long segments Note that the
25th and 75th quantile of the gamma distribution is 25 ande8pectively. We then calculated the
sensitivity of detecting a true aberration as a functionegfrsent length and the results are plotted
in Figure 3. We used a threshold value corresponding to a figedificity of 0.90, for calling an
aberration for all the methods: BDSAcgh, cghMCR with reenoe rate of 0.5, and cghMCR with
recurrence rate of 0.2 shown in white, light gray and darly twaxs respectively.

Overall, we noticed that our method performed better thdiMsgR in detecting aberrations,



across all segment lengths and noise scenarios. In parti@DSAcgh has higher sensitivity in
detecting short and medium length segments as comparetikdGig, especially in the high noise
scenario. In addition, BDSAcgh has marginally higher gansi in detecting longer segments
than shorter, which is as expected since we have more prolestiimate copy number changes
in those segments. With a recurrence rate set of 0.2, cghMgeR ckally well in the low noise
scenario as compared to 0.5 recurrence rate, and margimallyfor fine and short segments.
However, its performance marginally decreased for mediadh lang segments, especially for
7 =0.3.

Also, shown in Figure 4 is the histogram of the segment lendt#termined by BDSAcgh for
chromosome 1 for SC group. The minimum segment length fouas lWand maximum was 295
probes long, with a median length was 5 probes. This show8BMD&Acgh is flexible in finding

small as well long segments.

3.3 Effect of tuning parameters on cghMCR algorithm

We also assessed the performance of the cghMCR algorithrheotuhing parameters: rate of
recurrence and: (the parameter that controls the number of segments in CB§heha more
number of segments). The varied the rate of recurrence @értevels (0.2,0.4,0.5,0.8,1) and
across 5 levels as (0.01,0.05,0.2,0.5,0.9). The correlpgrAUC are shown in Table 2. The
performance of the cghMCR algorithm is somewhat robust &xifigation ofa but drastically
changes with recurrence rate, especially for higher valui€sl). Thus, the cghMCR algorithm is
not robust to mis-specification of recurrance rate, whiledntrast, our proposed method does not

require specification of any such parameters.



3.4 Performance at lower prevalances

We re-ran our simulations, for both BDSAcgh and cghMCR, Widl® samples and at lower preva-
lences (0.05,0.10) and the results are shown in Figure 5pifewalence of 0.05 neither method
does well in detecting shared aberrations for all noiseates (AUC~ 0.5). For prevalence of
0.10, BDSAcgh does better than cghMCR at all noise scenhtibs/ith much less power com-
pared to those at prevalences of 0.2 and higher. The penfmeraf BDSAcgh across prevalences

in the range (0.2-1) is similar to the results presented cti®e5 in the paper.

4 H-HMM implementation

To compare our method to the H-HMM method of Shah et. al. (20@7used the MATLAB im-
plementation of the method provided by the authorsap : //people.cs.ubc.ca/ ~ sshah/acgh/index.html.
We used all the default settings in the caa@ tiSampleHHMMSynthetic.m, to analyze our simu-

lated data except that we changed 0.8, which the authors used in their simulation study. The

code outputs posterior probabilities corresponding ts,logutral, gain and undefined for every

probe location. We used these posterior probabilities anied the threshold from 0 to 1 to obtain

the ROC curves.
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Table 1. Simulation Study: The entries in the body of thedalk the sensitivities for the three
methods -cghMCR. H-HMM and BDSAcgh and for various levelsiofse,r = {0.1,0.2,0.3},
and various cut-off values of false positive rate (FPR)05, 0.10,0.20}. Columns 4-8 correspond
to the varying degrees of prevalence with the overall seitgitn column 9.

Prevalence

T FPR Method 0.2 0.4 0.6 0.8 1 Overall

cghMCR | 0.1451 | 0.6707 | 0.9673 | 0.9894 | 0.9978 | 0.6984
0.05 | H-HMM 0.8779 | 0.9536 | 0.9724 | 0.9124 | 0.8266 | 0.9419
BDSAcgh | 0.9153 | 0.9310 | 0.8997 | 0.9381 | 0.8735| 0.9492

cghMCR | 0.2029 | 0.6916 | 0.9701 | 0.9901 | 0.9978 | 0.7267
0.1 | 0.10 | H-HMM 0.9570 | 0.9678 | 0.9989 | 0.987 | 0.9683 | 0.9816
BDSAcgh | 0.9604 | 0.9484 | 0.9856 | 0.9638 | 1.0000 | 0.9636

cghMCR | 0.3186 | 0.7334 | 0.9757 | 0.9916 | 0.9978 | 0.7709
0.20 | H-HMM 0.9866 | 0.9810 | 1.0000 | 0.9932| 1.0000 | 0.9931

BDSAcgh | 0.9648 | 0.9541 | 0.9872| 0.9678 | 1.0000 | 0.9676

cghMCR | 0.1247 | 0.4803 | 0.3652 | 0.8284 | 0.9954 | 0.4788
0.05 | H-HMM 0.1264 | 0.2887 | 0.3534 | 0.3878 | 0.3078 | 0.2289

BDSAcgh | 0.3133 | 0.6069 | 0.8879 | 0.9303 | 0.9263 | 0.6696

cghMCR | 0.1937 | 0.5152 | 0.4396 | 0.8405 | 0.9957 | 0.5180
0.2 | 0.10 | H-HMM 0.2410 | 0.4598 | 0.4478 | 0.5164 | 0.5484 | 0.4309

BDSAcgh | 0.4318 | 0.7339 | 0.9464 | 0.9387 | 0.9367 | 0.9650

cghMCR | 0.3318 | 0.5766 | 0.5059 | 0.8566 | 0.9963 | 0.5939
0.20 | H-HMM 0.4141| 0.6473 | 0.5835| 0.6781 | 0.8345 | 0.6263

BDSAcgh | 0.5947 | 0.8259 | 0.9523 | 0.9455 | 0.9437 | 0.9689

cghMCR | 0.0751 | 0.5073 | 0.5354 | 0.4907 | 0.7162 | 0.3825
0.05 | H-HMM 0.0635 | 0.07023| 0.0889 | 0.1187 | 0.1292 | 0.0843

BDSAcgh | 0.1203 | 0.5836 | 0.8678 | 0.8479 | 0.8002 | 0.7112

cghMCR | 0.1288 | 0.5413 | 0.5697 | 0.5105 | 0.7651 | 0.4243
0.3 | 0.10 | H-HMM 0.1279 | 0.1405 | 0.1779| 0.2152| 0.2505 | 0.1687

BDSAcgh | 0.2115| 0.7221 | 0.9658 | 0.8922 | 0.9318 | 0.8982

cghMCR | 0.2363 | 0.6002 | 0.6193 | 0.5546 | 0.8263 | 0.5330
0.20 | H-HMM 0.2531| 0.2882 | 0.3241| 0.3851 | 0.4123 | 0.3125

BDSAcgh | 0.3023 | 0.7636 | 0.9737 | 0.9042 | 0.9393 | 0.9094




Table 2: The entries in the body of the table are the AUC forcthleMCR over varying values of
noise () and tuning parameters @nd recurrance).

Recurrance

T o 0.2 0.4 0.5 0.8

[

0.01| 0.9758| 0.8985| 0.8326| 0.0084
0.05] 0.9756| 0.8996| 0.8390| 0.0083
0.1 0.20| 0.9770| 0.8958| 0.8390| 0.0104
0.50| 0.9735| 0.8830| 0.8324| 0.0063

0.90| 0.9526| 0.8414/| 0.7529| 0.0022

0.01] 0.9036| 0.7796| 0.7072| 0.0214
0.05] 0.9236| 0.8055| 0.7518| 0.0188
0.2] 0.20| 0.9377| 0.8379| 0.7600| 0.0112
0.50| 0.9283| 0.8409| 0.7721| 0.0178
0.90| 0.8654| 0.7718| 0.6913| 0.0019

0.01] 0.7860| 0.7302| 0.6755| 0.0242
0.05| 0.8461| 0.7616| 0.7125| 0.0131
0.3 | 0.20| 0.8889| 0.8107| 0.7534| 0.0077
0.50| 0.8917| 0.8336| 0.7687| 0.0087

o O O O oo o o o o|lo o o o o

0.90| 0.8364| 0.7749| 0.6887| 0.0006




02
o018
016
014
P13
M 01
008
006
004t
002
. . . . . . . . .
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 150
teration
Negative Binomial Prior
T T T o
160 016
140 014
120 012
1001 01
M
80 008
60 006
0 004
2 002
. . . . . . . . .
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 150
eration
Poisson Prior
T 02
180 018
140 016
014t
1200
o12f
100
¥ 01
8ol
008
601
006
a0r 0041
2 002
. . . . . . . . .
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 150
teration

Figure 1: Prior specification on the number of changepoini$ie left panels show the MCMC
trace plots of the parametéf, the number of changepoints, with different prior speciiazs:
uniform, negative binomial and Poisson (top to bottom). fight panel show the corresponding
density estimates ok using 1000 post burn-in samples.
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Figure 2: Top panel: shown are the MCMC traceplotfofusing two diverse starting values
corresponding to red and blue respectively. Bottom parna:cbrresponding chains of the log-
likelihood values
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Figure 3: Performance as function of segment leng8hown are the sensitivities (vertical axis)
with the standard error bars for the BDSAcgh (in white), c@®with recurrence rate of 0.5
(in gark gray) and cghMCR with recurrence rate of 0.2 (intighay) as function of increasing

segment length (horizontal axis). The top panel isifor 0.1 (low noise), middle panel is for

7 = 0.2 (medium noise), and bottom panel is for= 0.3 (high noise).
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Figure 4: Histogram of segment lengths found by BDSAcgh fsomosome 1 for the SC group.
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Figure 5:Simulation studyShown here the bar graphs of the mean area under the curv&sjAU
with the standard error bars for the BDSAcgh (in red) and cGiRin yellow). The vertical axes
are the mean AUC with the horizontal axes sorted by incrggsiavalence. The leftmost panel is
for 7 = 0.1 (low noise), middle panel is for = 0.2 (medium noise), and rightmost panel is for
7 = 0.3 (high noise).



