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1 MCMC conditionals

Our model (2) can be written in matrix notation as

Yi = Bi(Xi)bi + ǫi, (1)

whereYi = (Yi1, . . . , Yin) denotes then× 1 vector of measurements of all probes in arrayi (from

a given chromosome) andBi(X) is ann × K basis matrix of step functions with corresponding

coefficientsbi of sizeK × 1. We assume that the random effectsbi are normally distributed with

meanβ and covarianceσ2
ǫiΣb.

The MCMC sampling shall proceed in the following steps.

1. Sampling the regression coefficients,(bi, β): Since we are working in a Gaussian prior

and likelihood framework, our conditional distributions for the regression coefficients are

Gaussian. Specifically,bi for each arrayi are sampled from their conditional distribu-

tion N(µ∗

bi
, Σ∗

bi
), whereBi is the basis matrix in (1),µ∗

bi
= σ−2

ǫi Σ∗

bi
{BT

i Yi + Σ−1

b β} and

Σ∗

bi
= σ2

ǫi{B
T
i Bi + Σ−1

b }−1. Supposeλ∗ = (λ1∗, . . . , λK∗), denote the current vector of

latent variables for the current modelK, i.e., a vector of 1’s indicating to which of the three

mixtures the elements ofβ belong. The conditional distribution ofβ after integrating outb

(asb has a normal kernel) is dependent on the mixture to which the corresponding segment

for βk belongs:
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• If it belongs to a neutral mixture the conditional is still a normal βk|λ
0
k = 1, rest ∼

N(µ∗

βi0
, Σ∗

βi0
)

• If it belongs to a loss mixture the conditional is a truncted normalβk|λ
−

k = 1, rest∼

N(µ∗

βi
, Σ∗

βi
)U(−κ−, ǫ−)

• If it belongs to a gain mixture the conditional is a truncted normalβk|λ
+

k = 1, rest∼

N(µ∗

βi
, Σ∗

βi
)U(ǫ+, κ+),

whereµ∗

β = Σ∗

β{(σ
2
ǫiΣb)

−1
∑

i AiB
T
i Yi} andΣ∗

β = {σ−2

ǫi MΣ−1

b − σ−2

ǫi Σ−1

b

∑

i AiΣ
−1

b }−1

whereAi = (Σ−1

b + BT
i Bi)

−1 µ∗

βi
andΣ∗

βi
are diagonal elements ofµ∗

β andΣ∗

β respectively.

µ∗

βi0
= µ∗

βi
∗ τ2

τ2+Σ∗

βi

andΣ∗

βi0
=

τ2Σ∗

βi

τ2+Σ∗

βi

2. Sampling of the variance components,(σ2
ǫi, Σb): With anIG(aǫ, bǫ) prior for all i, the con-

ditional distribution ofσ2
ǫi is IG[(M + K)/2 + aǫ, {(SSYi + SSbi)/2 + 1/bǫ}

−1] where

SSYi = (Yi − Xibi)
T (Yi − Xibi) andSSbi = (bi − β)T Σ−1

b (bi − β). We assume that

the diagonal elements ofΣb = diag(σ2
b1, . . . , σ

2
bK) have a (conjugate) i.i.d.IG(aσ, bσ) prior

with a corresponding posterior,σ2
bk ∼ IG[M/2 + aσ, {

∑

i((bik − βk)
2/2σ2

ǫi) + 1/bσ}
−1].

We set the hyperparameters of the inverse-gamma distribution to be(1, 1) to impart little

information.

3. Sampling the mixture parameters:(λk, πk) have multinomial and Dirichlet posteriors,λk ∼

Multi
(

1; π−f−
P

h πhφh
, π0f0

P

h πhφh
, π+f+

P

h πhφh

)

andπ ∼ Dir(π10 + s−, π20 + s0, π30 + s+), respec-

tively, wheref• are the corresponding mixture density ands• =
∑K

k=1
λk•

4. We use the following RJMCMC algorithm to sample the numberand location of break

points. Following Green (1995) and Denisonet al. (1998) we include three types of moves

in our algorithm: BIRTH, in which we add a new segment location,; DEATH in which we

2



delete a segment location; and MOVE, in which we relocate a segment location, with corre-

sponding prior probabilities(pB, pD, pM) wherepM = 1−(pB+pD). The challenging aspect

of the algorithm is comparing models in the RJMCMC samples. The acceptance probability

for a proposed move from modelM (of say, dimensionK) to M∗ (if dimensionK∗) for a

reversible jump algorithm in its most general form is

min

{

1,
f(Y|M∗)

f(Y|M)

p(M∗)

p(M)

q(M|M∗)

q(M∗|M)
|J|

}

,

the ratio of marginal likelihoods, prior distributions andproposal distributions together with

a Jacobian term|J |. We focus on each of the ratios one by one. Here the likelihoodratio

is based on the marginal likelihoodf(Y|M), whereM = (β,~c, K, λ, Σb, σ
2
ǫ ) which has

a closed form since we can integrate out the random effect coefficients bi using its Gaus-

sian specification. We further integrate out the populationlevel coefficientsβ using the

Gaussian-ronrod quadrature method, because the Gaussian kernel is preserved due to the

normal/uniform mixture construction. Note that the proposed modelM∗ depends on the

variance componentsΣb andσ2
ǫ . In order to accept/reject a model based on its segments, we

need to minimize the effects of these variances on the acceptance probability. Specifically,

we will assumeσ2
ǫ = σ2∗

ǫ at the current sampled value. BecauseΣb andΣ∗

b may be of dif-

ferent dimensions, we cannot assume that they are equal. However, we can assume that they

are equal in the elements corresponding to the segments common to both models and con-

dition only on those elements. Following Bigelow and Dunson(2008), we can integrate out

the additional variance parameter from the marginal likelihood via a numerical integration

procedure such as a Laplace approximation, yielding our approximate marginal likelihood

asf(Y|M), whereM = (~c, K, λ). Now suppose a BIRTH step is proposed to add another
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segment/cutpoint, thus going from dimensionK → K + 1. Our prior ratio is given by

p(M∗)

p(M)
=

p(K + 1)p(~cK+1|K + 1)p(λK+1)|K + 1)

p(K)p(~cK |K)p(λK |K)
.

Note that the ratio of the priors onλ cancels out because the multinomial prior does not

depend onK. Using the prior in the ratio of prior on cutpoints turns out to beK +1/T −K,

while the first ratio depends on the prior we adopt forK.

To identify candidate change point locations, we followed the following algorithm. We

preprocessed the individual samples via the CBS algorithm (Olshenet al.2004) and obtained

a candidate set of change points for each sample. We further added a few probe locations to

the right and left of the location of the change points by drawing a Poisson random variable,

with a mean depending on the length of the segment, to obtainTi. We setα, the tuning

parameter in the CBS algorithm, such that we obtain a large number of segments, for instance

α = 0.01. We then set our candidate change point set toT =
⋃

i Ti.

The proposal ratio involves both the BIRTH and the DEATH steps. While adding a new

segment location we use the proposal densityq(M∗|M) = (pB/T −K)q(λ∗). This is made

up of the probability of actually attempting a BIRTH step together with that of choosing the

particular new valuecK+1 given~cK . This can be done inT − K ways, ascK+1 must be

distinct to theK elements of~cK and there are onlyT possibilities in total. The probability

of proposing the reverse move isq(M|M∗) = (pD/K + 1)q(λ), which is the probability of

proposing a DEATH step and then choosing the proposed changepoint to remove.

The key step here is specifying the proposalq(λ∗|λ), since the RJMCMC algorithm suffers

from slow convergence if the proposal rarely leads to parameter values with high likelihood.

To this effect, we choose our proposal based on our likelihood considerations, which can

improve convergence in practice. In a BIRTH step we break a given segment into two seg-
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ments but choose a change point, say,cp such that a new segment is formed between genome

locations(cp, cq) with cp < cq, to the right of the proposed change point. Denote the mixture

indicator for thisnewsegment to beλ∗, which can take three possible values (corresponding

to a three component mixture) with probabilityp∗h = p(λ∗

h = 1), h = 1, 2, 3. We define

p∗h = f(Y|λ∗

h = 1)/
∑

l f(Y|λ∗

l = 1) wheref is the (approximate) marginal likelihood as

we described above. Thus our proposal densityq(λ∗|λ) is just a multinomial density with

probabilitiesp∗h. The reverse proposalq(λ|λ∗) is computed similarly, conditional on the

current marginal model likelihood. The MOVE step is easy since it does not involve a di-

mension jump; hence we can sample the parameters using a Metropolis Hastings algorithm

or an independence sampler. Finally, note that since our reversible jump step involves only

jumps on discrete parameters we do not need a Jacobian term tomatch the dimensions.

2 MCMC specifics

2.1 Sensitivity to priors

To study the effect of prior specification on the number of changepointsK, we re-ran our analyses

for different priors on K, specifically using negative binomial and Poisson distributions, as an

alternative to our default uniform prior. Figure 1 shows theMCMC trace plots for the aCGH data

from chromosome 1 for the SC group (see Section 6 in manuscript). The priors we used were,

1. Discrete Uniform prior:π(K) ∼ U(0, . . . , Kmax), with Kmax = 196, which was the

cardinality of the candidate change point setT . This distribution has a mean of 98 segments.

2. Negative Binomial Distribution:π(K) ∼ NB(r, p) with r = 1, p = 0.01 which has a mean

at 99, similar to the discrete uniform distribution.
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3. Poisson prior:π(K) ∼ Pois(λ) with λ = 98, with mean equal to 98, same as the uniform

distribution.

The left panels show the trace plots of 10000 MCMC iterationsfor K, with uniform, negative

binomial and Poisson priors (top to bottom) All seemed to converge around a value of160 change

points for this data, indicating relative insensitivity tothe prior distribution. Plotted on the right

panels are the corresponding kernel density estimates of the post burn-in samples, discarding the

first 5000 samples. We use a thinning factor of 5, thus basing our inference on 1000 samples.

The mean and standard deviation ofK for the three priors were: 158.29 (1.95), 158.69 (2.10) and

157.90 (1.98) respectively - no significant difference in the number of segments.

2.2 MCMC convergence and diagnostics

Usual convergence diagnostic methods, such as Gelman and Rubin (1992) do not apply in our case

since we are moving within a (potentially) infinite model space and the parameters are not common

to all models. Instead we assess MCMC convergence via trace plots ofK and the log likelihoods,

which have a coherent interpretation throughout the model space (Brooks and Giudici, 2000). We

also ran multiple chains with diverse starting values and all seemed to converge reasonably. Figure

2 shows the trace plots ofK (top panel) and log-likelihood (bottom panel) using two diverse

starting values plotted in red and blue colors for the data from chromosome 1 for the SC group

(see Section 6 in manuscript). We observe reasonable convergence and mixing on both fronts.
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3 Additional simulations results

3.1 Comparison of sensitivities

Table 1 contains the sensitivities of the three methods split by prevalence and noise level for various

cutoff values of the false positive rate (1-specificity=0.05, 0.10, 0.20). The BDSAcgh performed

much better than cghMCR for all values ofτ and H-HMM for τ = 0.2, 0.3. H-HMM performed

remarkably well forτ = 0.1 but the performance degraded with increasingτ . For higher preva-

lences, the BDSAcgh was competitive to the cghMCR forτ = 0.1, 0.2 and performed much better

at the high noise levelsτ = 0.3.

3.2 Performance a function of CNV length

We also assessed the performance of BDSAcgh as a function of CNV length. In our simulations

the widths of shared aberrations were generated from a gammadistribution with parameters(a, b)

and is parameterized such that the mean isa/b. We set(a, b) = (2.5, 0.05) such that the mean

of the distribution is50 and the99% interval corresponded to(5, 168) rounded to the nearest

integer. Thus the range of shared aberrations could vary substantially, accommodating both large

and short segments. We then define the following:[1, 10] as “fine” segments,(10, 25] probes as

short segments,(25, 65] probes as medium length and> 65 probes as long segments Note that the

25th and 75th quantile of the gamma distribution is 25 and 65 respectively. We then calculated the

sensitivity of detecting a true aberration as a function of segment length and the results are plotted

in Figure 3. We used a threshold value corresponding to a fixedspecificity of 0.90, for calling an

aberration for all the methods: BDSAcgh, cghMCR with recurrence rate of 0.5, and cghMCR with

recurrence rate of 0.2 shown in white, light gray and dark gray bars respectively.

Overall, we noticed that our method performed better than cghMCR in detecting aberrations,
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across all segment lengths and noise scenarios. In particular, BDSAcgh has higher sensitivity in

detecting short and medium length segments as compared to cghMCR, especially in the high noise

scenario. In addition, BDSAcgh has marginally higher sensitivity in detecting longer segments

than shorter, which is as expected since we have more probes to estimate copy number changes

in those segments. With a recurrence rate set of 0.2, cghMCR does really well in the low noise

scenario as compared to 0.5 recurrence rate, and marginallywell for fine and short segments.

However, its performance marginally decreased for medium and long segments, especially for

τ = 0.3.

Also, shown in Figure 4 is the histogram of the segment lengths determined by BDSAcgh for

chromosome 1 for SC group. The minimum segment length found was 1 and maximum was 295

probes long, with a median length was 5 probes. This shows that BDSAcgh is flexible in finding

small as well long segments.

3.3 Effect of tuning parameters on cghMCR algorithm

We also assessed the performance of the cghMCR algorithm on the tuning parameters: rate of

recurrence andα (the parameter that controls the number of segments in CBS - higher α more

number of segments). The varied the rate of recurrence across 5 levels (0.2,0.4,0.5,0.8,1) andα

across 5 levels as (0.01,0.05,0.2,0.5,0.9). The corresponding AUC are shown in Table 2. The

performance of the cghMCR algorithm is somewhat robust to specification ofα but drastically

changes with recurrence rate, especially for higher values(0.8,1). Thus, the cghMCR algorithm is

not robust to mis-specification of recurrance rate, while incontrast, our proposed method does not

require specification of any such parameters.
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3.4 Performance at lower prevalances

We re-ran our simulations, for both BDSAcgh and cghMCR, with100 samples and at lower preva-

lences (0.05,0.10) and the results are shown in Figure 5. Forprevalence of 0.05 neither method

does well in detecting shared aberrations for all noise scenarios (AUC≈ 0.5). For prevalence of

0.10, BDSAcgh does better than cghMCR at all noise scenariosbut with much less power com-

pared to those at prevalences of 0.2 and higher. The performance of BDSAcgh across prevalences

in the range (0.2-1) is similar to the results presented in Section 5 in the paper.

4 H-HMM implementation

To compare our method to the H-HMM method of Shah et. al. (2007) we used the MATLAB im-

plementation of the method provided by the authors athttp : //people.cs.ubc.ca/ ∼ sshah/acgh/index.html.

We used all the default settings in the codemultiSampleHHMMSynthetic.m, to analyze our simu-

lated data except that we changedǫ = 0.8, which the authors used in their simulation study. The

code outputs posterior probabilities corresponding to loss, neutral, gain and undefined for every

probe location. We used these posterior probabilities and varied the threshold from 0 to 1 to obtain

the ROC curves.
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Table 1: Simulation Study: The entries in the body of the table are the sensitivities for the three
methods -cghMCR. H-HMM and BDSAcgh and for various levels ofnoise,τ = {0.1, 0.2, 0.3},
and various cut-off values of false positive rate (FPR):{0.05, 0.10, 0.20}. Columns 4-8 correspond
to the varying degrees of prevalence with the overall sensitivity in column 9.

Prevalence

τ FPR Method 0.2 0.4 0.6 0.8 1 Overall

0.1

0.05

cghMCR 0.1451 0.6707 0.9673 0.9894 0.9978 0.6984

H-HMM 0.8779 0.9536 0.9724 0.9124 0.8266 0.9419

BDSAcgh 0.9153 0.9310 0.8997 0.9381 0.8735 0.9492

0.10

cghMCR 0.2029 0.6916 0.9701 0.9901 0.9978 0.7267

H-HMM 0.9570 0.9678 0.9989 0.987 0.9683 0.9816

BDSAcgh 0.9604 0.9484 0.9856 0.9638 1.0000 0.9636

0.20

cghMCR 0.3186 0.7334 0.9757 0.9916 0.9978 0.7709

H-HMM 0.9866 0.9810 1.0000 0.9932 1.0000 0.9931

BDSAcgh 0.9648 0.9541 0.9872 0.9678 1.0000 0.9676

0.2

0.05

cghMCR 0.1247 0.4803 0.3652 0.8284 0.9954 0.4788

H-HMM 0.1264 0.2887 0.3534 0.3878 0.3078 0.2289

BDSAcgh 0.3133 0.6069 0.8879 0.9303 0.9263 0.6696

0.10

cghMCR 0.1937 0.5152 0.4396 0.8405 0.9957 0.5180

H-HMM 0.2410 0.4598 0.4478 0.5164 0.5484 0.4309

BDSAcgh 0.4318 0.7339 0.9464 0.9387 0.9367 0.9650

0.20

cghMCR 0.3318 0.5766 0.5059 0.8566 0.9963 0.5939

H-HMM 0.4141 0.6473 0.5835 0.6781 0.8345 0.6263

BDSAcgh 0.5947 0.8259 0.9523 0.9455 0.9437 0.9689

0.3

0.05

cghMCR 0.0751 0.5073 0.5354 0.4907 0.7162 0.3825

H-HMM 0.0635 0.07023 0.0889 0.1187 0.1292 0.0843

BDSAcgh 0.1203 0.5836 0.8678 0.8479 0.8002 0.7112

0.10

cghMCR 0.1288 0.5413 0.5697 0.5105 0.7651 0.4243

H-HMM 0.1279 0.1405 0.1779 0.2152 0.2505 0.1687

BDSAcgh 0.2115 0.7221 0.9658 0.8922 0.9318 0.8982

0.20

cghMCR 0.2363 0.6002 0.6193 0.5546 0.8263 0.5330

H-HMM 0.2531 0.2882 0.3241 0.3851 0.4123 0.3125

BDSAcgh 0.3023 0.7636 0.9737 0.9042 0.9393 0.9094



Table 2: The entries in the body of the table are the AUC for thecghMCR over varying values of
noise (τ ) and tuning parameters (α and recurrance).

Recurrance

τ α 0.2 0.4 0.5 0.8 1

0.1

0.01 0.9758 0.8985 0.8326 0.0084 0

0.05 0.9756 0.8996 0.8390 0.0083 0

0.20 0.9770 0.8958 0.8390 0.0104 0

0.50 0.9735 0.8830 0.8324 0.0063 0

0.90 0.9526 0.8414 0.7529 0.0022 0

0.2

0.01 0.9036 0.7796 0.7072 0.0214 0

0.05 0.9236 0.8055 0.7518 0.0188 0

0.20 0.9377 0.8379 0.7600 0.0112 0

0.50 0.9283 0.8409 0.7721 0.0178 0

0.90 0.8654 0.7718 0.6913 0.0019 0

0.3

0.01 0.7860 0.7302 0.6755 0.0242 0

0.05 0.8461 0.7616 0.7125 0.0131 0

0.20 0.8889 0.8107 0.7534 0.0077 0

0.50 0.8917 0.8336 0.7687 0.0087 0

0.90 0.8364 0.7749 0.6887 0.0006 0
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Figure 1: Prior specification on the number of changepoints:The left panels show the MCMC
trace plots of the parameterK, the number of changepoints, with different prior specifications:
uniform, negative binomial and Poisson (top to bottom). Theright panel show the corresponding
density estimates ofK using 1000 post burn-in samples.
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Figure 2: Top panel: shown are the MCMC traceplot ofK using two diverse starting values
corresponding to red and blue respectively. Bottom panel: the corresponding chains of the log-
likelihood values
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Figure 3: Performance as function of segment length:Shown are the sensitivities (vertical axis)
with the standard error bars for the BDSAcgh (in white), cghMCR with recurrence rate of 0.5
(in gark gray) and cghMCR with recurrence rate of 0.2 (in light gray) as function of increasing
segment length (horizontal axis). The top panel is forτ = 0.1 (low noise), middle panel is for
τ = 0.2 (medium noise), and bottom panel is forτ = 0.3 (high noise).
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Figure 4: Histogram of segment lengths found by BDSAcgh for chromosome 1 for the SC group.
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Figure 5:Simulation study:Shown here the bar graphs of the mean area under the curves (AUCs)
with the standard error bars for the BDSAcgh (in red) and cghMCR (in yellow). The vertical axes
are the mean AUC with the horizontal axes sorted by increasing prevalence. The leftmost panel is
for τ = 0.1 (low noise), middle panel is forτ = 0.2 (medium noise), and rightmost panel is for
τ = 0.3 (high noise).


