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S| Methods

Materials. The Escherichia coli signal recognition particle (SRP)
and SRP receptor (SR) GTPases (Ffh and FtsY, respectively)
and the 4.5S RNA were expressed and purified as described pre-
viously (1, 2). All the experiments in this work used SRP, which
is the complex of Fth bound to the 4.5S RNA. Truncated FtsY
(47-497) was used in all the fluorescence and EPR measurements
except for the charge reversal mutant FtsY (RRLRR). The abil-
ities of FtsY (47-497) to interact with SRP and respond to the
cargo are similar to those of full length FtsY (1). Mutant Fth
and FtsYs were constructed using the QuickChange mutagenesis
procedure (Stratagene). All the mutant proteins were expressed
and purified using the same procedure as that for the wild-type
proteins. Fluorescent dyes N-(7-dimethylamino-4-methylcoumar-
in-3-yl)maleimide (DACM) and BODIPY-FL-N-(2-aminoethyl)-
maleimide were from Invitrogen.

RNCgsq Purification. Homogeneous RNCpo was generated from
in vitro translation using membrane free cell extract prepared
from MREG600 cells and was purified by affinity chromatography
and sucrose gradient centrifugation as described previously (3, 4).
Purified RNCgq serves as a functional cargo in protein targeting
because it can bind SRP, trigger factor, and the secYEG translo-
con complex (4). In quantitative assays, purified RNCgo exhib-
ited the same affinity for SRP as those measured with RNCs that
do not contain an affinity tag (5).

Fluorescence Labeling. For FRET measurements, DACM and
BODIPY-FL were used to label single-cysteine mutants of Ffh
and FtsY, respectively, as described previously (2). Labeled pro-
tein was purified as described (2), and the efficiency of labeling
was typically >95% with a background of <5%.

Spin Labeling. Single-cysteine mutants of FtsY [in 20 mM HEPES
(pH 8.0), 150 mM NaCl and 2 mM EDTA] were incubated with a
10-fold molar excess of dithiothreitol (DTT) at room tempera-
ture for 1-2 h to reduce any disulfide bonds. DTT was removed
by gel filtration chromatography. The reduced and degassed
proteins (approximately 100pM) were labeled with a 3- to 5-fold
molar excess of methanethiosulfonate spin label (MTSSL) (Tor-
onto Research Chemicals) at room temperature in the dark for
2-3 h. Excess MTSSL was removed by gel filtration chromatogra-
phy. The labeling efficiency was determined by EPR using the
TEMPO calibration curve (Bruker user manual), and was typi-
cally >80% with <5% background as assessed from the cysteine-
less wild-type protein using the same procedure. All the spin-
labeled proteins were tested for interaction with SRP using the
GTPase assay; only the spin-labeled FtsY mutants that did not
substantially disrupt activity were used for EPR measurements.

EPR Conditions. EPR measurements were carried out in SRP buf-
fer [5S0 mM KHEPES, pH 7.5, 150 mM KOAc, 2 mM Mg(OAc),,
2 mM DTT, 0.01% Nikkol] to determine the local mobility of 23
spin-labeled FtsY mutants in apo-FtsY, in the early intermediate,
and in the stable complex. For apo-FtsY, 75-100 pM spin-labeled
protein was used to obtain the EPR spectra. The early intermedi-
ate was formed by mixing 30 pM spin-labeled FtsY with 90 pM
SRP in the presence of GDP. Based on the affinity of the early
intermediate (K4 ~ 4-10 uM) (2), >90% of labeled FtsY formed
the early complex with SRP under these conditions. The stable
complex was formed by mixing 30 pM spin-labeled-FtsY with
60 pM SRP in the presence of 5’-guanylylimido-diphosphate
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(GMPPNP). Over 99% of labeled FtsY formed a stable complex
with SRP under these conditions, according to the K values of
the stable complex of approximately 16-30 nM (2).

Time-Resolved (TR)-FRET Conditions. Donor-only measurements
were carried out in SRP buffer in the presence of 5 or 1 pM
DACM-labeled SRP for the early and stable complexes, respec-
tively. For the early intermediate, 5 pM DACM-labeled SRP and
50 pM BODIPY-FL-labeled SR were mixed together in the pre-
sence of GDP. For the stable complex, 1 pM DACM-labeled SRP
and 8 pM BODIPY-FL~-labeled SR were mixed in the presence of
GMPPNP. Under these conditions, formation of both complexes
was complete after a 20-min incubation at room temperature
in dark.

Numerical Analysis for TR-FRET Measurements. The measured short
and long timescale data were spliced together, and the combined
traces were compressed logarithmically before the fitting process
(70 points per decade). The splicing and compression did not
introduce artifacts to the interpretation of data (6). Analyses
of the TR-FRET data can be described as a numerical inversion
of a Laplace transform [I(¢) = Y, P(k) exp™], in which I(¢) is
fluorescence intensity, k is the fluorescence decay rate constant,
and P(k) is the probability of a specific k (7, 8). In this work, two
algorithms were used to invert the kinetics data with regulariza-
tion methods that also impose a nonnegativity constraint, P(k) >
0 (Vk). The first method, based on the least-squares (LSQ) fitting,
used a MATLAB algorithm (LSQNONNEG) (Mathworks) that
minimizes the sum of the squared deviations (y?) between ob-
served and calculated values of I(¢), subject to the nonnegativity
constraint. This algorithm produces the narrowest P(k) distribu-
tions and smallest values of y? with relatively few nonzero com-
ponents. The second method is based on the maximum entropy
(ME) theory. The information theory proposes that the least-
biased solution to the inversion problem is to minimize y*> and
maximize the breadth of P(k) (9). This regularization condition
can be met by maximizing the Shannon-Jaynes entropy of the
rate-constant distribution {S = -, P(k) In[P(k)]} while satisfy-
ing the nonnegativity constraint. ME fitting generated stable and
reproducible numerical inversions of the kinetics data. The bal-
ance between x> minimization and entropy maximization is
evaluated by the L-curve analysis, which yielded upper limits for
the widths of P(k) consistent with experimental data. The P(k)
distributions from ME fitting were broader than those obtained
with LSQ fitting but exhibited maxima at similar locations.

Both methods were used to generate the decay rate distribu-
tion P(k). A coordinate transformation using the Forster relation
(Eq. S1) was then used to convert the probability distribution
of the decay rates k to the donor-acceptor distances r, thus gen-
erating the donor-acceptor distance distribution P(r):

/6
r=R0(£—1)1 . [S1]

The Forster radius, R, for the DACM/BODIPY-FL pair is
approximately 47 A. The value of k, was obtained from donor-
only measurements, which gave a nearly single-exponential
(>90%) fluorescence decay kinetics for all three positions in this
study. At distances larger than 1.5 R,, energy transfer does not
take place efficiently, whereas at distances less than approxi-
mately 13 A, the Forster model does not reliably describe FRET
kinetics. Therefore, our TR-FRET measurements can provide
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information about donor-acceptor distances only in the range of
13-70 A.

Fluorescence Anisotropy Measurements. Anisotropy measurements
used excitation and emission wavelengths of 380 and 470 nm for
DACM and 450 and 518 nm for BODIPY, respectively. Fluores-
cence anisotropy was calculated according to Eq. S2:

(Iyy =G xIyy)
R=—""—"""2 S2
(Iyy +2G x1Iyy)’ [52]

in which I}, and I}, are the vertically and horizontally polarized
emission intensities when the sample is vertically excited, and G is
the grating factor that corrects for the wavelength response to
polarization of the emission optics and detectors, defined as
G = Iy /1y, where Iy, and Iy are the vertically and horizon-
tally polarized emission intensities when the sample is horizon-
tally excited.

Contribution of Dipole Orientation and Fluorophore Linkers to
Distance Distribution. Fluorescence anisotropy measurements
showed that both the donor and acceptor fluorophores exhibited
low anisotropy values comparable to the free dye when they were
incorporated into the proteins (Table S1). This strongly suggests
that the labeled fluorophores are relatively free rotamers with
randomized orientations. Hence, the orientation factor, k2, can
be approximated by (k)2 = 2/3. In addition, the distance distri-
bution can be widened and/or shifted by the fluorophore linkers.
For DACM, the linker length is short and very rigid; thus, the
primary contribution of the linker is to shift the measured dis-
tances by approximately 5 A. BODIPY-FL has a long (six carbon
bonds) and flexible linker that will widen the distance distribu-
tion. This effect was estimated as one effective Gaussian chain
with the parameter, ri"*r = | /I x1,, in which L and Ip are
the contour and persistence lengths of the fluorescence linker,
respectively (10). This yielded an estimated "’ value of ap-
proximately 7 A for BODIPY-FL. Molecular docking simulations
confirmed that the fluorophore linkers caused less than 7 A de-
viations in the measured distances.

GTPase Assay. The assay to measure the stimulated GTP hydrolysis
reaction between SRP and SR was performed and analyzed
as described (1). Briefly, reactions were carried out in SRP buffer
in the presence of a small, fixed amount of SRP (100-200 nM),
varying amounts of SR, and saturating GTP (100-200 pM). The
observed rate constants (k,psq) Were plotted against SR concen-
tration and fit to Eq. S3,

[SR]
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in which k., is the maximal rate-constant at saturating SR con-
centrations, and K,,, is the concentration required to reach half
saturation. Because k., is at least 100-fold faster than the rate of
SRP+SR complex disassembly, the rate constant k., /K,, in this
assay is rate-limited by and therefore equal to the rate of stable
SRP*SR complex formation (1). No DTT was present in the
reactions involving spin-labeled proteins.

Docking. The ClusPro 2.0 docking server was used to generate
docking models for the early intermediate (11). This program
was chosen because it emphasizes the number of energy-
preferred structures in the docking cluster and is therefore
particularly suitable to generate an ensemble of conformations
for the early intermediate. During the docking, E. coli Ffh was
set as a static receptor while E. coli FtsY was set as a ligand that
searched for the best docking position with the receptor.

The initial docking positions were generated by the fast Four-
ier transform method without using the FRET distances as
constraints; and the resulting docking positions were clustered
according to their root-mean-square deviations. The best energy
conformations were sorted as clusters via a filter that was set to an
energy function that favors electrostatic interactions. The ranking
of the clusters was determined by the number of structures that
each cluster contained. The top five clusters had 89, 88, 65, 59,
and 46 structures, respectively. The top two clusters, named “G”
and “N,” were chosen for further analyses.

Brownian Dynamics. BrownDye was used for Brownian dynamics
calculations (12). Adaptive Poisson-Boltzmann solver was used
to calculate the electrostatic potentials (13). Partial atomic
charges and atomic radii were assigned from the PARSE para-
meter set. The dielectric constants were assigned to be 4 in
the protein interior and 78 in the exterior. Grids were assigned
with dimensions of 193 X 193 x 193 points. Temperature was set
to 298 K, and ionic strength was set to 100 mM. Brownian dy-
namics trajectories were started at a minimum intermolecular se-
paration that still gave spherically symmetric forces. The number
of trajectories to estimate the association rate constants varied
from 40,000 to 100,000 depending on how fast the rates were.
The reaction criterion was specified by the atom-contact pairs
defined by the structure of the complex. All the intermolecular
nitrogen—oxygen pairs within 0.55 nm were considered as within
the reaction criterion. A series of simulations with different levels
of reaction criteria were generated by systematically tuning the
required atom-contact number from 3 to 7. Three structures were
used for this analysis to obtain the association rate constants: the
central structure of the G cluster, the central structure of the N
cluster, and the crystal structure of the stable complex.
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Fig. S1. The mobility of spin labels on SR changed upon formation of the early intermediate, stable complex, or both. (A and B) Spin-labeled SR were screened
using the GTPase assay. The activities of spin-labeled (SL) SRs in interaction with SRP were analyzed using the GTPase assay (see S/ Methods). Two kinetic
parameters were assessed: the GTPase rate constants of the SRPeSR complex (k,; in A) and the association rate constants for stable SRPeSR complex assembly
(as determined by k.t /K, in B; see S| Methods). Spin-labeled SR’s that were defective in either property by a factor of 5 or more were not used for EPR studies
(open bars). Only the spin-labeled SR’s that were functional in interacting with SRP (gray bars) were used for EPR measurements shown in Cand D. (C) Spectra of
additional spin probes in SR that changed mobility upon formation of either the early intermediate or the stable complex. Three different classes were defined
in the text based on probe mobility changes. The mobility of spin label was analyzed from the central line width (AHy) and the breadth of the spectra, and are
summarized in Fig. 1B. Black, blue, and red denote the free protein, the early intermediate, and the stable complex, respectively. (D) EPR spectra of spin probes
in SR that exhibited no significant changes in mobility upon formation of either complex. Color-coding is the same as in C.
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Fig.S2. Residues 1237, Q425, and N426 (green), which changed EPR spectra specifically in the stable complex, are at the conserved motifs (yellow) that mediate
NG-domain rearrangement.
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Fig. S3. Fluorescence decay of donor (DACM)-labeled SRP (C76) under different experimental conditions. The black, blue, and red curves represent the decay
curves for donor-only, the early intermediate, and the stable complex, respectively. The linear decay of the donor-only sample could be described by a single

decay rate constant. In contrast, the decay curves in both the early intermediate and stable complex deviated from linearity and were described by multiple
decay rate constants.
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Fig. S4. Distance distributions derived from least-squares analyses of the TR-FRET data for each FRET pair in the early intermediate (blue), stable complex (red),
and early intermediate bound with cargo (green).
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Fig. S5. Charge complementarity between N domains of SRP and SR are essential for the stability of the early intermediate and the kinetics of stable complex
assembly. (A) Sequence alignment of SRP and SR homologues. The residue numbering is for the E. coli SRP and SR proteins. Conserved positive and negative
residues are denoted in blue and red, respectively. (B) The R36E:R49E:K56E (RK3E) mutation in SRP generated a negatively charged surface in the SRP N domain
(Left), and the RRLRR mutation in SR generated a moderately positively charged surface in the SR N domain (Right). (C) The stabilities of the early intermediates
formed by mutant SRP and SRs were determined by equilibrium titrations. Nonlinear fits of data to Eq. 1 (main text) gave Ky values of 4.0 uM for WT:WT (wild-
type SRP and SR), 50.1 pM for RK3E:WT [mutant SRP (RK3E) and wild-type SR], and 20.1 pM for RK3E:RRLRR [mutants SRP (RK3E) and SR (RRLRR)]. (D) The
kinetics of stable complex assembly, determined using the GTPase assay as described in S Methods. Nonlinear fits of the data gave k,; /K, values of 0.72 x 108,
0.056 x 106, 0.080 x 10°, and 0.31 x 106 M~"s~", respectively, for the interaction between the wild-type proteins (WT:WT), wild-type SRP and mutant SR (WT:
RRLRR), mutant SRP and wild-type SR (RK3E:WT), and the charge reversal SRP and SR mutants (RK3E:RRLRR).
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Fig. S6. The N and G groups represent possible conformations within the ensemble of the early intermediate. (A and B) Spin probes that changed mobility
upon formation of the early intermediate are close to the interaction surface of either the N (magenta residues) or the G (red residues) group. The SRP NG
domain is in gold, and the SR NG domain is in green. (C—E) Distance distributions of the three pairs of FRET probes predicted by a combination of the docking
structures in the N and G groups.

SRP SR

Movie S1. SRPeSR assembly: This movie summarizes the complex assembly process between the SRP and SR GTPases based on information from biochemical,
biophysical, and crystallographic analyses and molecular docking simulations.

Movie S1 (MOV)
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Table S1. Anisotropy measurement for DACM and BODIPY-FL fluorophores

DACM DACM SRP C173  DACM SRP C235 DACM SRP C76

Anisotropy  0.09188 0.09494 0.12368 0.05234
BODIPY  BODIPY SR C345 BODIPY SR C487 BODIPY SR C242
Anisotropy  0.03232 0.05752 0.09678 0.07122
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