

Supplemental Figure 1. Isolation and Characterization of *dcl1-14*.

(A) DCL1 gene structure and the T-DNA insertion site of dcl1-14.

(B) 4-week old *dcl1-14* (top) and 8-week old *dcl1-14* (bottom) showed abnormal leaf development and reproductive development, respectively.

(C) miRNA levels in Col-0 and *dcl1-14*. Total RNAs were extracted from inflorescences. U6 was the loading control.

Supplemental Figure 2. Expression Analysis of APC8.

(A) Expression of *APC8* was determined by RT-PCR. Ro, roots; Se, seedlings; Le, leaves; Cf, closed flower buds; Of, open flowers; Pi, unpollinated pistils; Po, mature pollen; Si, siliques. The RT (–) control PCR was performed with *UBQ5* primers.

(B) Promoter reporter analysis (*pAPC8-GUS*) in different tissues.

(C) Promoter reporter analysis (*pAPC8-NLSGFP*) during male gametophyte development. Microspores or pollen at different developmental stages from at least 10 *qrt1-2* plants harboring the *pAPC8::NLS3X-GFP* construct were analyzed. (a), (c), (e) DAPI staining of unicellular microspores (a) bicellular pollen (c) and tricellular pollen (e). (b), (d), (f) *pAPC8-NLSGFP* signals of unicellular microspores (b) bicellular pollen (d) and tricellular pollen (f). Scale bar, 10 μ m.

Supplemental Figure 3. Overexpression of APC8 in Male Germline Disrupts Seed Set Development and HTR10 Expression in *apc8*- Mature Pollen.

(A) Total RNA was extracted from 1-d-old open flowers of T2 progenies from five independent T1 lines (No. 2, 8, 11, 14, and 22) that ectopically expressed *APC8* driven by the HTR10 promoter, and was then used for qPCR analysis. The expression level of *APC8* in wild type was set to 1. Standard deviations were plotted from three replicates. The expression level was normalized to that of *UBQ5*.

(B) Seed set analysis of the plants shown in A. Standard deviations were calculated from seed counts of 10 siliques for each plant.

(C) Homozygous *pHTR10:HTR10-mRFP* transgenic plants were crossed into *apc8-1*, then F3 homozygotes of *pHTR10:HTR10-mRFP* in *apc8-1* were analyzed. No expression (white arrows) or single sperm-specific expression (blue arrows) was detected in *apc8-1*.

Supplemental Figure 4. Mature miRNA Levels and *MIR159* Transcription in *apc/c* Mutants.

(A) More miRNA accumulation in Col-0, *apc8-1*, *apc13-2*, and APC8 *apc8-1* (the *pAPC8:APC8-YFP* construct was introduced into *apc8-1*). Total RNAs were extracted from inflorescences. U6 was the loading control.

(B) *ProMIR159a, b, c-NLSGFP* reporter in uninucleate microspores from WT and *apc13-2* plants. Fifteen individual T1 plants in WT or the *apc13-2* background were examined. Scale bar, 10 μm.

(C) The accumulation of *GFP* mRNA from the pollen of a representative transgenic plant with single copy insertion for each genotype in Figure 5C and Supplemental Figure 4B was determined by qPCR. The *GFP* mRNA levels were normalized to those of *UBQ5* and compared to Col-0. Standard deviations were calculated from three technical replicates. 3 more independent transgenic plants with single copy insertion for each genotype yielded nearly identical results.

Supplemental Figure 5. Expression of Known miRNA Biogenesis Genes in apc8-1.

(A) Expression of known critical miRNA biogenesis genes in *apc8-1* was determined by qPCR.

(B) DCL1-YFP and HYL1-YFP in *apc8-1*. pDCL1:DCL1-YFP and pHYL1:HYL1-YFP transgenic plants were crossed into *apc8-1*, then F3 homozygotes harboring transgenes were analyzed. One example relative to each genotype was shown here.

(C) HEN1 and AGO1 accumulation in *apc8-1* by immunoblotting. Total protein was extracted from inflorescences, Hsc70 was the loading control. Two biological replicates were done for each.

Supplemental Figure 6. Increased *CYCB1;1* Expression in *apc8-1* and *apc13-2*.

(A) Accumulation of CYCB1;1-GFP in mature pollen from *apc13-2*. Arrows showed accumulated CYCB1;1-GFP in VN and SN. Scale bar, 10 μm.

(B) CYCB1;1-GFP levels in WT and *apc8-1* by immunoblotting. *pCYCB1;1:CYCB1;1-GFP* was introduced into WT (1, 2, and 3, Col-0) and *apc8-1* (4, 5, and 6), then total protein was extracted from inflorescences of individual T3 plants with single copy insertion. Hsc70 was the loading control. At least two biological replicates were done for each.

APC8F2	TTCGACCAGGTTGAAATCATG	Genotyping
APC8R2	TTGTTCAGTTTCAAAGCTCTCC	Genotyping
APC8F1	CACCCTGTCATACATAACCAACCAAC	Complementation
APC8R1	AATAGGAAAATGCTCGAGATCC	Complementation
APC8R7	AGCAGAAGCAGAAACTGAGAG	Promoter
		analysis
APC8F3	CGCGGATCCGCGATGGTCTCTAAAGAGTGTTGCCG	Yeast
		complementation
APC8R3	CGCGGATCCGCGCTAAATAGGAAAATGCTCGAGATCC	Yeast
		complementation
APC8F11	CGGGTAGAAGATATGGAGCTCTATTCTAATGTTCTG	D to E
APC8R11	CAGAACATTAGAATAGAGCTCCATATCTTCTACCCG	D to E
APC8F6	GTTACCTTCCGTTGGCTTCTC	RT-PCR
APC8R6	CTCAGGTCTGTACTTATCAG	RT-PCR
miR159aF1	CACCCTCCGGAACTCTAATCGGAT	Promoter
		analysis
miR159aR1	CTTCCATCGTCAGATCAAGATC	Promoter
		analysis
miR159bF1	CACCCCCAGGTGGATCTTTTATATT	Promoter
		analysis
miR159bR1	GAAGAGTGAAGCCATTAAAGG	Promoter
		analysis
miR159cF1	CACCTAATTCCGGTTCGAGCAAATA	Promoter
		analysis
miR159cR1	CGAAGAGAAGAGAATGATATG	Promoter
		analysis
miR159aF2	GGCTTTTACTCTTCTTTGGATTGA	qPCR
miR159aR2	CACGCTAAACATTGCTTCGGA	qPCR
miR159bF2	ATGGCTTCACTCTTCTTTGGATTG	qPCR

Supplemental Table 1. Primers Used in This Study.

miR159bR2	CCTACTCAAGATCCATCATCCAT	qPCR
miR159cF2	AGCTCCTTTTCTTCTTCTTCTTAAT	qPCR
miR159cR2	CGTCTTCTCGTAAATAAACAACATT	qPCR
miR159aF3	AGCTCTACTTCCATCGTCAGAT	ChIP-PCR
miR159aR3	CTCTCTATCTATCATTTCTTCC	ChIP-PCR
miR159bF3	GACTCCCTCTTTCTTCTCATT	ChIP-PCR
miR159bR3	CTTATATATGGTTCGAAACAGG	ChIP-PCR
miR159bF4	GGTTCTTTCTGAGTCAAATTGT	ChIP-PCR
miR159bR4	GAGCTCTTCCTCTTCTTCC	ChIP-PCR
miR159cF3	GACAATAAGATTTACTGCCAAA	ChIP-PCR
miR159cR3	GTTACACTTGAAGAACGAATGT	ChIP-PCR
miR166aF1	TGGCTCTCTCCACTACTCAA	ChIP-PCR
miR166aR1	GACAACAGTCCCCTCAAAA	ChIP-PCR
miR167aF1	CGACCCTTAAACTCTCCATAA	ChIP-PCR
miR167aR1	ACTTCACCGTAGCAGATCAA	ChIP-PCR
miR171aF1	TGCTTTGGTAGTAGATGAGGTT	ChIP-PCR
miR171aR1	CGTGTGTGGTCAGGTAAGAT	ChIP-PCR
Actin2F1	GAGAGATTCAGATGCCCAGAAGTC	ChIP-PCR
Actin2R1	TGGATTCCAGCAGCTTCCA	ChIP-PCR
CYCB1;1F1	CACCGGAAGCTTCATCTTATTCTTTTACC	Protein fusion
CYCB1;1R1	AGCAGATTCAGTTCCGGTCAAC	Protein fusion
CYCB1;1F2	CTTGACAGTTCCGACTCATT	qPCR
CYCB1;1R2	AATAGCCAGTGTGATGCTTG	qPCR
miR156	GTGCTCACTCTCTTCTGTCA	Probe
miR159	TAGAGCTCCCTTCAATCCAAA	Probe
miR164	TGCACGTGCCCTGCTTCTCCA	Probe
miR166	GGGGAATGAAGCCTGGTCCGT	Probe
miR167	TAGGTCATGTTGGCAGTTTCA	Probe
miR168	ATTCGGTTGGTGCAGGGCGGG	Probe
miR171	GATATTGGCGCGGCTCAATCA	Probe

miR172	CTCCGTAGTAGTTCTAAGTGT	Probe
miR173	GTGATTTCTCTCTCGAAGCGAA	Probe
miR319	GGGAGCCTCCCTTCAGTCCAA	Probe
U6	AGGGGCCCATGCTAATCCTTCCTC	Probe
DUO1F	CTGACGAAGAGAGGACTGTG	RT-PCR, qPCR
DUO1R	AGATTTGGGATTGAAACTCG	RT-PCR, qPCR
DUO3F	CTCTGACGATGAGATGATGGA	RT-PCR, qPCR
DUO3R	CCAAACTGTGAGATGGTCGTT	RT-PCR, qPCR
UBQ5F	GGTGCTAAGAAGAGGAAGAAT	RT-PCR, qPCR
UBQ5R	CTCCTTCTTTCGGTAAACGT	RT-PCR, qPCR
GFP_F	GCAGGAGAGAACCATCTTC	qPCR
GFP_R	CGTTGTGGGAGTTGTAGTTGT	qPCR
DCL1F	ATTGGGAAAATAGTGACAGC	qPCR
DCL1R	TCAAAGGTTGTTGCTTACAG	qPCR
HYL1F	CAGTAAAGAGGAGGAAGTCG	qPCR
HYL1R	ACACCAGAGGAAACATCAGT	qPCR
HEN1F	GTTCCATCCTTGAGTTTGAC	qPCR
HEN1R	GTTTTCTTCTTGGGTTTCTG	qPCR
AGO1F	TGGACCACCGCAGAGACAAT	qPCR
AGO1R	CATCATACGCTGGAAGACGACT	qPCR