
Supplemental Figure 1: Venn diagram summarising numbers of genes showing significant different 
expression for different combinations of treatment terms in the MAANOVA fixed model. 
For each fixed term of the MAANOVA model – Day, Time of Day, and the Interaction between 
these factors, each gene was assessed for differential expression associated with that term relative 
to the biological (between-plant) variability using an F-test.  After applying a false discovery rate 
multiple testing correction, the numbers of genes with significant test statistics for different 
combinations of terms (individual terms only, pairs of terms, all three terms) are shown.  The 
expression profile for an exemplar gene has been plotted for each combination of significant terms.  
Those with just a significant effect of Day show a smooth pattern within each Day, but either a 
general trend across the complete time course or a strong change in expression levels at some point 
during the time course.  Those with just a significant effect of Time of Day show a strong diurnal 
pattern, but no change in expression between days.  Those with just a significant Interaction effect 
have a diurnal pattern for some period during the time course which is not present at other times.  
Genes with multiple significant terms show the appropriate combinations of these patterns. 
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Supplemental Data. Breeze et al. (2011). Plant Cell 10.1105/tpc.111.083345. 



AT5G02810 PSEUDO-RESPONSE REGULATOR 7 (PRR7)
AT4G08920 CRYPTOCHROME 1 (CRY1)
AT2G43010 phytochrome interacting factor 4 (PIF4)
AT1G09570 PHYTOCHROME A (PHYA)
AT2G46830 CIRCADIAN CLOCK ASSOCIATED 1 (CCA1)
AT1G01060 LATE ELONGATED HYPOCOTYL (LHY)

AT5G60100 ARABIDOPSIS PSEUDO-RESPONSE REGULATOR 3 (APRR3)
AT2G40080 EARLY FLOWERING 4 (ELF4)
AT3G22231 PATHOGEN AND CIRCADIAN CONTROLLED 1 (PCC1)
AT3G46640 PHYTOCLOCK 1 (PCL1)
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Supplemental Figure 2. Expression patterns of selected genes showing Time-of-Day 
changes only. 
Genes that showed a significant Time-of-Day variation but no variation due to Day were 
clustered and selected examples are illustrated. 
A.  Morning genes showing higher expression in morning (a) samples. Examples shown 

have roles in the circadian clock and light signalling.  
B.  Afternoon genes showing higher expression in the afternoon (p) samples. Examples 

shown have a role in the circadian clock.  

Supplemental Data. Breeze et al. (2011). Plant Cell 10.1105/tpc.111.083345. 
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Supplemental Figure 3. Expression patterns of selected genes during leaf senescence. Data 
for the 11 time point series are shown.  
A.  Expression of selected autophagy genes during leaf senescence. Arrow shows parallel 

increase in expression at 29 DAS. 
B.  Cytoskeleton genes showing increased expression late in senescence shown by the arrow.  
C.  Expression patterns of chlorophyll degradation genes during senescence. Arrow shows the 

the parallel increase in expression of each gene at 29 DAS 
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GO:	  Photosynthesis	  
(46/78	  genes)	  

GO:	  Response	  to	  
JA	  s;mulus	  
(24/122	  genes)	  	  

	  GO:	  Response	  to	  
	  ABA	  s;mulus	  
(67/230	  genes)	  

Time	  of	  first	  differen2al	  expression	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Time	  of	  maximum	  absolute	  gradient	  

Supplemental Figure 4. Gradient analysis on selected groups of genes 

Differentially expressed genes with GO term annotation ‘photosynthesis’ (A & B); ‘Response to 
JA stimulus’ (C & D) and ‘Response to ABA stimulus’ (E & F) were examined using the 
Gradient analysis tool for time of first differential expression (A, C and E) and time of 
maximum absolute gradient (B, D and F). (Number of differentially expressed genes versus 
total number of genes annotated for each GO term are shown in brackets) 
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ABA	   ABA	   ABA	  

JA	   JA	  SA	  

ethylene	   ethylene	  

Supplemental Figure 5. Expression patterns of selected hormone biosynthesis genes 

Gene expression patterns (from GeneViewer, 11 timepoint data set) for selected genes 
involved in hormone biosynthesis. 
ABA biosynthesis genes AAO3 (At2g27150), AAO4 (At1g04580, NCED (At3g14440); SA 
biosynthesis gene, ICS2 (At1g18870); JA biosynthesis genes LOX3 (At1g17420), OPR3 
(At2g06050) and ethylene biosynthesis genes ACS2 (At1g01480), ACS7 (At4g26200). 

Supplemental Data. Breeze et al. (2011). Plant Cell 10.1105/tpc.111.083345. 
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Supplemental Figure 6. Representation of the experimental design for the microarray experiment.  

Supplemental Data. Breeze et al. (2011). Plant Cell 10.1105/tpc.111.083345. 



Supplemental Figure 6. Representation of the complex loop design used for the 
microarray experiment.  

Treatment codes indicate whether the sample was taken at 7h (a) or 14 h (p), the 
occasion on which the sample was taken (01 to 11; i.e. 19 to 39 DAS), and the 
arbitrary biological replicate label (a, b, c or d), so that code La04c indicates the 
sample collected on the fourth sampling occasion at the 7h time point from biological 
replicate c.  Arrows link the pairs of samples appearing together on a microarray 
slide, with the arrow point indicating labelling with Cy5 and the arrow start indicating 
labelling with Cy3.  Red arrows indicate arrays forming short (11 array) timecourse 
loops for each arbitrarily labelled biological replicate for either 7h or 14 time points.  
Blue arrows indicate arrays forming an 88 array loop providing comparisons between 
samples collected at different time points, for different arbitrarily labelled biological 
replicates and on different sampling occasions. Each of these arrays directly 
compares a sample collected at the 7h time point with one collected at the 14h time 
point. 

Supplemental Data. Breeze et al. (2011). Plant Cell 10.1105/tpc.111.083345. 



GO ID Clusters 1-24 (Down) corrected p-value

9536 plastid 0.00E+00

5737 cytoplasm 0.00E+00

34357 photosynthetic membrane 1.00E-100

3824 catalytic activity 8.94E-32

15979 photosynthesis 2.74E-31

9543 chloroplast thylakoid lumen 9.58E-26

30090 photosystem 1.41E-22

9532 plastid stroma 5.70E-19

6082 organic acid metabolic process 1.36E-17

33014 tetrapyrrole biosynthetic process 2.37E-16

19684 photosynthesis, light reaction 3.27E-16

6520 amino acid metabolic process 6.19E-15

9523 photosystem II 7.46E-14

15995 chlorophyll biosynthetic process 6.51E-13

5975 carbohydrate metabolic process 2.12E-12

10287 plastoglobule 3.46E-11

9522 photosystem I 3.20E-08

9657 plastid organization and biogenesis 5.94E-08

9765 photosynthesis, light harvesting 8.75E-06

15977 carbon utilization 1.62E-05

9654 oxygen evolving complex 1.15E-04

30675 Rac GTPase activator activity 1.73E-04

6633 fatty acid biosynthetic process 3.54E-04

9085 lysine biosynthetic process 3.68E-04

43572 plastid fission 3.68E-04

9767 photosynthetic electron transport 7.37E-04

9628 response to abiotic stimulus 7.60E-04

19685 photosynthesis, dark reaction 8.05E-04

5840 ribosome 8.52E-04

16117 carotenoid biosynthetic process 8.65E-04

9538 photosystem I reaction center 1.38E-03

9416 response to light stimulus 1.44E-03

GO ID Clusters 27-48 (Up) corrected p-value

42221 response to chemical stimulus 2.89E-11

51869 response to stimulus 5.40E-11

9737 response to abscisic acid stimulus 6.76E-08

6950 response to stress 1.02E-07

46872 metal ion binding 1.04E-07

6914 autophagy 1.04E-07

9628 response to abiotic stimulus 5.81E-07

6970 response to osmotic stress 7.08E-07

9725 response to hormone stimulus 1.06E-05

9651 response to salt stress 1.63E-05

9415 response to water 2.11E-05

44248 cellular catabolic process 2.74E-05

9414 response to water deprivation 3.80E-05

9607 response to biotic stimulus 1.11E-04

30528 transcription regulator activity 1.14E-04

16602 CCAAT-binding factor complex 1.25E-03

6724 lipid catabolic process 1.32E-03

5478 transporter activity 2.27E-03

42594 response to starvation 2.50E-03

9723 response to ethylene stimulus 8.00E-03

10189 vitamin E biosynthetic process 9.91E-03

Supplemental Table 1. Enriched GO terms in genes down or up regulated during senescence.

Enriched GO terms in the 2849 down regulated genes and the 3292 upregulated genes were identified using 

BiNGO and GO_full annotation (Maere et al. , 2005).  Significantly overepresented terms with a p-value less than 

0.05  following a Benjamini and Hochberg false discovery rate correction are shown. 

Supplemental Data. Breeze et al. (2011). Plant Cell 10.1105/tpc.111.083345.



Gene 

name AGI 

22 time 

point 

cluster 

number

Upregulated 

in ANAC092 

inducible OX 

line* Function

RNS1 AT2G02990 38 yes RIBONUCLEASE 1 (RNS1)

MT1C AT1G07610 38 yes MT1C (metallothionein 1C)

ARR16 AT2G40670 40 yes ARABIDOPSIS RESPONSE REGULATOR 16 (ARR16)

PMI AT1G62760 41 yes

invertase/pectin methylesterase inhibitor family 

protein

TBP1-1 At5g13820 41 yes TELOMERIC DNA BINDING PROTEIN 1 (TBP1)

MYB78 At5g49620 41 no myb domain protein 78 (AtMYB78)

SS3 AT1G74000 41 yes STRICTOSIDINE SYNTHASE 3 (SS3)

NAC84 At5g14000 41 yes

Arabidopsis NAC domain containing protein 84 

(ANAC084)

AMC6 AT1G79320 41 yes metacaspase 6 (AtMC6)

AMC9 AT5G04200 41 yes metacaspase 9 (AtMC9)

PMZ At3g28210 41 no PMZ; FUNCTIONS IN: zinc ion binding

BFN1 AT1G11190 41 yes BIFUNCTIONAL NUCLEASE I (BFN1)

ATG8H AT3G06420 42 yes autophagy 8h (ATG8H)

NAC55 At3g15500 42 no

ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN 

55 (ANAC055)

GLY1 AT1G15380 42 yes

lactoylglutathione lyase family protein / glyoxalase I 

family protein

NAC10

2 At5g63790 42 no

ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN 

102 (ANAC102)

SEN AT1G19200 42 yes senescence-associated protein-related

MYB2 At2g47190 42 no MYB DOMAIN PROTEIN 2 (MYB2)

ERF At4g29100 42 no ethylene-responsive family protein

SRG1 AT1G17020 42 yes SENESCENCE-RELATED GENE 1 (SRG1)

PAP20 AT3G52780 42 yes

ATPAP20/PAP20; acid phosphatase/ protein 

serine/threonine phosphatase

ILR3 At5g54680 43 no iaa-leucine resistant3 (ILR3)

STZ At1g27730 43 no salt tolerance zinc finger (STZ)

RD26 At4g27410 44 no RESPONSIVE TO DESICCATION 26 (RD26)

NAC19 At1g52890 44 no

Arabidopsis NAC domain containing protein 19 

(ANAC019)

NAC83 AT5G13180 45 yes

ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN 

83 (ANAC083)

NAC92 At5g39610 45 yes

ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN 

92 (ANAC092)

SINA At3g13672 45 yes seven in absentia (SINA) family protein

APG8A AT4G21980 45 yes AUTOPHAGY 8A (APG8A)

* data from Balazadeh et al., 2010

Supplemental Table 2.  Genes included in the vBSSM model shown in Figure 9.

Supplemental Data. Breeze et al. (2011). Plant Cell 10.1105/tpc.111.083345.



Supplemental Methods 

Experimental design for microarray experiment 

 A novel experimental design strategy, based on the principle of the “loop design” (Kerr 
and Churchill, 2001), was developed to enable efficient extraction of information about key 
sample comparisons using a two-colour hybridisation experimental system. With 88 distinct 
samples (four biological replicates at each of 22 time points) to be compared, the experimental 
design included 176 two-colour microarray slides, allowing four technical replicates of each 
sample to be observed. Including both biological and technical replicates was essential given 
our interest in assessing the significance of differential expression relative to the biological 
variability, and therefore in identifying the relative sizes of these two sources of variation, and 
learning about the level of biological variability. The design takes account of the intended 
factorial structure (Day crossed with Time of Day) to be included in the analysis and, whilst not 
optimal, aims to provide good information about all fixed effects to be included in the model 
(including the effect of differences between biological replciates). Half of the slides were devoted 
to assessment of changes in gene expression between time points, using a simple loop design 
to link 11 samples from either the 7h time points or the 14h time points across the 11 sampling 
days, directly comparing samples collected on adjacent sampling days (i.e. 19 DAS with 21 
DAS, 27 DAS with 29 DAS, etc.), and directly comparing the samples collected at 39 DAS with 
those collected at 19 DAS. Four separate loops were constructed for the 7h time points and four 
for the 14h time points, using the arbitrary biological replicate labelling to identify the samples to 
be included in each loop (Supplementary Figure S6– red arrows). The remaining slides provided 
assessment of differences between the 7h and 14h samples and between the arbitrarily labelled 
biological replicates, with some further assessment of changes between sampling days. All 
direct comparisons (pairs of samples hybridised together on a slide) were between 7h and 14h 
samples collected on adjacent sampling days (i.e. 19 DAS with 21 DAS, etc.), including 
comparisons between samples collected at 39 DAS and at 19 DAS, and between different 
arbitrarily labelled biological replicates.  These 88 comparisons formed a single loop connecting 
all 88 treatments, therefore ensuring that the design was fully connected (allowing each sample 
to be compared with every other sample) (Figure S6– blue arrows). This design approach also 
removed any potential for dye bias, with each sample being labelled twice with Cy3 and twice 
with Cy5. The order in which the 176 slides were hybridized and scanned was randomised to 
minimise the impact on differences between samples of any potential variation in the processing 
conditions. 

Data analysis and prediction methods using MAANOVA 

 A local adaptation of the MAANOVA (MicroArray ANalysis Of VAriance) package (Wu et 
al., 2003) was used to analyse the quantified microarray data, providing data quality assurance, 
within slide normalization through LOWESS data transformation, mixed model fitting and 
identification of genes showing significant differential expression via (approximate) F tests of 
fixed (treatment) terms included within the model. MAANOVA was selected to analyse the data 
because it is able to provide an accurate analysis of the effects on gene expression of multiple 
sources of variation (both fixed, treatment, terms, and random sources of background variation) 
in the experimental design, harnessing the power of direct comparisons between pairs of 
samples obtained using two-channel microarrays (Churchill, 2004). In order to prepare the data 
for mixed model fitting, the quality of the data is first maximised through a series of graphical 
comparisons, quantified using some simple statistical tests. We have made a number of 
improvements to the quality-checking functions of MAANOVA, including the quantification of 
effects using simple statistical tests, which have dramatically improved our ability to identify 
problems within the data and correct them at an experimental level prior to formal analysis. 
Types of artefacts which can be identified include: arrays with a dye bias; saturated or 
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underexposed spots; printing problems with specific arrays, such as probe smearing; non-
specific binding regions of arrays; and location specific dye bias. With the additional 
functionality we have introduced we are also able to assess the quality of individual technical 
replicates for each sample by making comparisons between them, allowing the identification 
of suspect technical replicates for individual genes and the quantile estimation of more 
realistic values for these replicates, thus reducing the background variation (noise) and 
improving the ability to detect differential expression. Once the data had been thus cleaned, 
they were corrected for spatial variation within each slide, such as background noise and 
location specific dye bias, by a series of LOWESS transformations. 
           Fitting the mixed model to the observed data was done in two stages, as implemented 
in the MAANOVA package.  The first stage effectively normalizes the data for overall variation 
of responses between arrays, between dyes and between combinations of arrays and dye, 
averaged across all the genes included on the arrays.  The second stage takes the residuals 
from this first stage fitted model and fits a per gene model to assess for the effects of the 
different samples (treatment combinations, included as fixed terms in the model) on the 
response for each gene, allowing for gene-by-array and gene-by-dye variation (included as 
random terms in the model).  The mixed model, fitted on a per gene basis can be represented 
as: 

 Y = µ + Dye + Array + (Day * TimeOfDay) / BioRep + ε 

in which Y is the residual gene expression value obtained from the first stage model fitting, µ 
is related to the average intensity of the gene throughout the experiment, Dye and Array are 
the random model terms, representing the gene-by-array and gene-by-dye variation, Day is 
the fixed model term representing variation in response between different sampling days, 
TimeOfDay is the fixed model term representing variation in response between different times 
of day (am and pm samples), “Day * TimeOfDay” indicates that both the main effects of these 
two terms and the interaction between them (allowing for different effects of time of day on 
different sampling days) are included in the model, BioRep is the fixed model term 
representing variation in response between biological replicates collected at each time point 
(with “/ BioRep” indicating that this fixed term is nested within the combinations of Day and 
TimeOfDay), and ε is measurement error which is unaccountable by other terms of the model 
(essentially variation  between technical replicates for each sample, having allowed for 
variation between arrays and dyes for each gene). It can be argued that differences between 
biological replicates should be considered as a random effect in the mixed model, and, 
indeed, we were interested in assessing the variation between sampling times relative to the 
variability between biological replicates. However, subsequent modeling of gene networks 
required estimates of true biological replicates, so that the fitted model needed to allow 
estimation of the responses for each biological sample, and hence biological replicate needed 
to be included as a fixed effect term nested within the sampling time treatment combinations.  
Equally, it can be argued that differences between dyes should be considered as a fixed effect 
within the mixed model framework, because of the limited number of levels for this term.  We 
took the pragmatic approach that dye represented a “nuisance” source of variability that we 
were not directly interested in, and so choose to include it as a random effect.  In addition to 
the tests for significant differential expression due to each fixed effect term, output from the 
MAANOVA analysis can generate a single estimated expression score for each gene in each 
biological replicate at each time point, a necessary output for subsequent modeling of gene 
networks. 

 The resulting fitted mixed model allows extraction of fixed term estimates, which 
additively describe the expression levels of genes (based on the model formulae defined 
above).  The amount of variation caused by each fixed term (Day, TimeOfDay, interaction 
between these terms, and nested biological replicates) was compared with the estimate of 
underlying (between technical replicate) variation using an F-test, with significant test statistics 
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Indicating significant variation in gene expression caused by these model terms.  This 
provided a separate F statistic for each fixed model term for each spot of the array.  Of 
more direct interest was to identify the significance of the time-course fixed model terms 
(Day, TimeOfDay and the interaction between these terms) relative to the pooled biological 
replicate variability rather than the underlying technical replicate variability. These 
approximate F statistics were easily obtained, based on the estimated variances calculated 
for each fixed effect term (including the nested between biological replicate term), by 
dividing the F statistic of each time-course fixed model term by the F statistic of the nested 
biological replicate term for each gene, cancelling out the estimated underlying (between 
technical replicate) variation included in the denominator of each original F statistic.  
Comparing these approximate F statistics to the appropriate F-distribution (based on the 
numerator degrees of freedom for the original F statistics) allows a significance level (p-
value) to be associated with each F-test, representing the probability that the gene is 
showing a change in expression due to that term by chance alone, allowing for the level of 
variability between biological replicates for that gene. A multiple testing correction was 
applied to these F-tests using a step-down false discovery rate controlling procedure 
(Benjamini & Liu, 1999; Westfall et al., 1998) to calculate adjusted p-values under an 
overall false discovery rate of p=0.05. Having fitted the mixed model to each gene, 
predicted means were calculated for each of the 88 samples, either assuming the full 
treatment model (including effects of Day, Time of Day, the interaction between them and 
the nested biological replicates) to produce a 4-replicate 22 time point data set for each 
gene, or assuming a reduced treatment model (including just effects of Day and the nested 
biological replicates) to produce a 8-replicate 11 time point data set for each gene. These 
data sets were then used in subsequent analyses. 
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 Gaussian Process regression and gradient analysis.  
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Gaussian Processes

Using repeated microarray measurements, the gene
expression of a particular gene over times t ∈
{t1, . . . , tN} may be experimentally measured, de-
noted y. For such experimental measurements it is
often sensible to assume the underlying expression
has been corrupted by some noise:

y = f(t) + � (1)

where f(t) represents the unobserved true gene-
expression profile, and where � represents indepen-
dent Gaussian noise with zero-mean and covariance
σ2
nI. If the function, f(.) was explicitly known, then

the conditional probability of the observation set y
given the function, f , may be calculated as:

y|f ∼ N (f ,σ2
nI) (2)

In most cases, however, this latent function is un-
known, with the function itself the object of in-
terest. In these situations, it is often sensible to
place a Gaussian process prior directly over the func-
tion. A Gaussian process is defined a collection
of random variables, any finite number of which
have a joint Gaussian distribution (Rasmussen and
Williams. 2006), denoted,

f(t) ∼ GP(m(t), k(t, t∗)) (3)

where

m(ft) = E[f(t)] (4)

k(t, t∗) = E[(f(t)−m(t)))(f(t∗)−m(t∗))] (5)

denote the mean and covariance respectively.
A particular point of interest is making predictions

about the process at times t∗ given a set of training
times t = {t1, . . . , tN} and corresponding observed
(noisy) gene-expression, y = {y1, . . . , yN}. This can
be achieved by noting the full joint distribution is
written,

�
y
f∗

�
∼ N

�
0,

�
K(t, t) + σ2

nI K(t, t∗)
K(t∗, t) K(t∗, t∗)

��
(6)

which, by Bayes’ rule suggests:

f∗|y, t, t∗ ∼ N (µµµ, C̄) (7)

where

µµµ = K(t∗, t)[K(t, t) + σ2
nI]−1y

C̄ = K(t∗, t∗)−
K(t∗, t)[K(t, t) + σ2

nI]−1K(t∗, t)

Consequently, it is possible to make predictions about
the (unnoisy) behaviour of genes at times t∗, condi-
tioned upon experimental observations.

Covariance Function and Hyperparam-

eter Selection

Making predictions about the underlying process
at a particular time is dependent upon the choice
of covariance function. For simplicity, the covari-
ance function is chosen to be that of the isotropic
squared-exponential covariance function (Rasmussen
and Williams. 2006) such that the ith column of the
jth row is calculated:

K(ti, tj) = σ2
f exp

�
− 1

2l2
(ti − tj)

2

�
(8)

where H = {l,σ2
f ,σ

2
n} are tunable hyperparameters

representing the length-scale of the process, the pro-
cess variance and noise variance respectively. In this
manner, the covariance and therefore the predictions
are explicitly dependent upon the choice of hyper-
parmeters. By noting that the training data is drawn
form the Gaussian distributions, y ∼ N (0,K +σ2

nI),
the marginal likelihood of the GP is computed for
any set of hyperparameters as,

log p(y|t,H) = −1

2
yT (K + σ2

nI)−1y − 1

2
log |K + σ2

nI|

−n

2
log 2π. (9)

The choice of hyperparameter may therefore be cho-
sen to maximise this marginal likelihood

Ĥ = argHmax p(y|t,H), (10)

using e.g., a gradient based approach (Rasmussen and
Williams. 2006).



Derivative Predictions using Gaussian

Processes

The derivative of a Gaussian process is itself a Gaus-
sian process (Rasmussen and Williams, 2006; Solak
et al., 2003). Given a set of training data, y observed
for times t it should be possible to make predictions
about the function derivative ˙f∗ at times t∗ by noting
the joint distribution can be written:

�
y
˙f∗

�
∼ N

�
0,

�
K(t, t) + σ2

nI
∂K(t,t∗)

∂t∗
∂K(t∗,t)

∂t∗
∂2K(t∗,t∗)

∂t∗∂t∗

��

(11)

By Bayes’ rule the conditional distribution is thus
calculated:

˙f∗|t,y, t∗ ∼ N (µµµ, C̄) (12)

where

µµµ =
∂K(t∗, t)

∂t∗
[K(t, t) + σ2

nI]−1y

C̄ =
∂2K(t∗, t∗)

∂t∗∂t∗
− ∂K(t∗, t)

∂t∗
[K(t, t) + σ2

nI]−1 ∂K(t, t∗)

∂t∗

Thus, as in section it is possible to make predictions
about the (unnoisy) derivative behaviour of genes
at times t∗, conditioned upon experimental observa-
tions.

Hypothesis Testing at time t

Using the methods described in section and it should
be possible to calculate the (distribution over) gradi-
ents for each gene at each time point in the time
course. In particular the conditional distribution of
the gradient at time t∗ given all experimental obser-
vations is a Gaussian distribution calculated accord-
ing to Equation (12). Where temporal measurements
are of sufficiently high resolution, a gene may be char-
acterised as being switched-on (strong positive gra-
dient), switched-off (strong negative gradient) or in
a steady-state (zero gradient) depending upon the
mean and variance of the marginal Gaussian distri-
bution. Specifically, if the zero-point lies within a
given number of standard-deviations of the posterior

mean, the gene is determined as in steady-state, oth-
erwise the gene is characterised as switched on or off
according to the sign of the posterior mean. Where
data is not sufficiently time-resolved to identify the
gradient, the GP can nonetheless identify the deriva-
tive of global trends.
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