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Proof of Lemma 1. The new path updating direction is given by−MA∗,A∗(β(t∗))−1sign(bA∗(β(t∗))).

To facilitate our proof, we reshuffle the order and rewrite it as

−





MA,A(β(t
∗)) MA,j∗(β(t

∗))

M j∗,A(β(t
∗)) M j∗,j∗(β(t

∗))





−1



sign(bA(β(t
∗)))

sign(bj∗(β(t
∗)))



 . (14)

The last element of (14) is given by

1

γ

[

M j∗,A(β(t
∗))MA,A(β(t

∗))−1sign(bA(β(t
∗)))− sign(bj∗(β(t

∗)))
]

, (15)

where γ = M j∗,j∗(β(t
∗))−M j∗,A(β(t

∗))MA,A(β(t
∗))−1MA,j∗(β(t

∗)) < 0 in that M (β)

is negative definite when n > p and x(j), j = 1, · · · , p are linearly independent. The

first term in (15) involves MA,A(β(t
∗))−1sign(bA(β(t

∗))) which is exactly the opposite of

the path updating direction calculated at t∗ using the old active set A by ignoring the

addition of predictor variable j∗.

Consider ignoring the addition of the new active variable j∗ and updating path along

the path updating direction evaluated by the old active predictor set A. This leads to an-

other solution path piece β̄(t) defined by β̄A(t) = βA(t
∗)−
∫ t

t∗
MA,A(β̄(τ))

−1sign(bA(β̄(τ)))dτ

and β̄Ac(t) = 0 when t is inside a small neighborhood [t∗ −△t, t
∗ +△t] for some △t > 0.

The neighborhood is chosen such that both solution component β̄j(t) and the first-order

partial derivative bj(β̄(t)) do not change sign for t ∈ [t∗−△t, t
∗+△t] and j ∈ A. Conse-

quently when t ∈ [t∗ −△t, t
∗ +△t],

d
dt
bj(β̄(t)) = −sign(bj(β̄(t))) = −sign(bj(β̄(t

∗))) for
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j ∈ A due to (7). Note that the definition of β̄(t) implies

d

dt
bj∗(β̄(t)) =

p
∑

j=1

mj∗j(β̄(t))
d

dt
β̄j(t) = −M j∗,A(β̄(t))MA,A(β̄(t))

−1sign(bA(β̄(t))). (16)

Recall that for t ∈ [t∗−△t, t
∗], β(t) = β̄(t) and our QuasiLARS solution matches β̄(t)

exactly. Our QuasiLARS definition implies that |bj∗(β̄(t))| < |bj(β̄(t))| for any j ∈ A

and t ∈ [t∗ −△t, t
∗). That means that predictor variable j∗ has a smaller absolute value

of the first-order partial derivative than active predictors in A for t ∈ [t∗ − △t, t
∗) and

catches up with active predictors in A at t∗ by noting that predictor variable j∗ joins the

active predictor set A at t∗.

Next we prove our claim by contradiction. If our claim is wrong, then we have

[M j∗,A(β(t
∗))MA,A(β(t

∗))−1sign(bA(β(t
∗)))− sign(bj∗(β(t

∗)))] sign(bj∗(β(t
∗))) > 0 due

to (15) and γ < 0. It impliesM j∗,A(β(t
∗))MA,A(β(t

∗))−1sign(bA(β(t
∗)))sign(bj∗(β(t

∗))) >

1. Note that β̄(t) = β(t) for t ∈ [t∗−△t, t
∗] implies the existence of ǫ ∈ (0,△t) such that

M j∗,A(β̄(t))MA,A(β̄(t))
−1sign(bA(β̄(t)))sign(bj∗(β̄(t))) > 1 for t ∈ (t∗ − ǫ, t∗) (17)

due to continuity. By noting (16) and d
dt
bj(β̄(t)) = −sign(bj(β̄(t))) for j ∈ A and t ∈

(t∗− ǫ, t∗), (17) contradicts the above conclusion that predictor j∗ has a smaller absolute

value of the first-order partial derivative than active predictors in A for t ∈ [t∗ −△t, t
∗)

and catches up with active predictors in A at t∗. This completes our proof.

Proof of Lemma 2. For any j ∈ N (β̂), differentiating the objective function in (8) with

respect βj, we get

−
∂

∂βj

R(β, β0(β)) + λsign(βj) (18)

which has to be equal to zero at β̂ in that β̂ solves (8). This completes the proof by

noting that λ ≥ 0 and, when λ = 0, ∂
∂βj

R(β, β0(β)) = 0 for all j.

Proof of Lemma 3. Note that β̂(s) solves (9) and has nonzero set Ns, which is con-
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stant for s ∈ S. Namely Ns = N for some N and all s ∈ S. Then β̂N (s) minimizes

−R(β̂N , β0(β̂N )) , −
∑n

i=1Q(g−1(β0 + xT
iN β̂N ), yi), subject to

sTN β̂N = s and sign(β̂j) = sj for j ∈ N , (19)

where sj = sign(bj(β̂(s)) for j = 1, · · · , p denote the sign of the current first-order partial

derivatives and s = (s1, · · · , sp)T and the sign restriction is due to Lemma 2. Here

xiN is the sub-vector of xi with index in N and, for any β̂N , β0(β̂N ) is defined by

β0(β̂N ) = argmaxβ0

∑n
i=1Q(g−1(β0 + xT

iN β̂N ), yi). Note that the inequality constraint in

(9) can be replaced by the equality constraint
∑p

j=1 |βj | = s as long as s is less than the

one norm of the full quasi-likelihood solution to (1). This justifies (19). Note further

that the optimal solution β̂N (s) is strictly inside the simplex (19) since β̂j(s) 6= 0 for

j ∈ N and s ∈ S. This in combination with the strict convexity of the objective function

−R(β̂N , β0(β̂N )) implies that the second condition, sign(β̂j) = sj for j ∈ N , can be

dropped. Consequently β̂N (s) solves min−R(β̂N , β0(β̂N )) subject to sTN β̂N = s. By

introducing a Lagrange multiplier λ, it becomes min−R(β̂N , β0(β̂N )) + λ
∑

j∈N sj β̂j .

Applying differential operator ∂

∂β̂N

, we get

−
∂

∂β̂N

R(β̂N , β0(β̂N )) + λsN , (20)

which is equal to 0 at β̂N = β̂N (s) because β̂N (s) is the corresponding optimal solution.

Now consider two different values s(1) and s(2) in S with s < s(1) < s(2). The corre-

sponding Lagrange multiplies are denoted by λ(1) and λ(2) and they satisfy λ(1) > λ(2).

Putting them into (20) and differencing, we get

−

(

∂

∂β̂N

R(β̂N , β0(β̂N ))|β̂N (s(2)) −
∂

∂β̂N

R(β̂N , β0(β̂N ))|β̂N (s(1))

)

= (λ(1)−λ(2))sN . (21)
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Note that β̂N c(s) = 0 for any s ∈ S. Thus (21) is the same as

−
(

bN (β̂(s(2)))− bN (β̂(s(1)))
)

= (λ(1) − λ(2))sN . (22)

Dividing both sides of (22) by s(2) − s(1) and letting s(2) → s(1), we get

−
d

ds
bN (β̂(s))|s(1) = −λ′(s(1))sN , (23)

where λ′(s) = d
ds
λ(s) is negative. Noting that d

ds
b(β̂(s)) = M(β̂(s)) d

ds
β̂(s), β̂N c(s) =

0 for s ∈ S, (23) becomes −MN ,N (β̂(s(1))) d
ds
β̂N (s)|s(1) = −λ′(s(1))sN , which leads

to d
ds
β̂N (s)|s(1) = λ′(s(1))(MN ,N (β̂(s(1))))−1sN . By noting that λ′(s) < 0, this shows

that for any s ∈ S, the LASSO regularized quasi-likelihood solution updating direction

matches our QuasiLARS path updating direction. It also holds for s due to continuity.

Proof of Lemma 4. Due to (18), |bj(β̂(s))| = |bj′(β̂(s))| for any j, j′ ∈ N . Thus it is

enough to prove that |bl(β̂(s))| ≤ |bj(β̂(s))| for any l 6∈ N , j ∈ N , s ∈ S ∪ {s}.

We first prove the statement for s ∈ S by contradiction. Suppose there is some j∗ 6∈ N

and some s∗ ∈ S such that

|bj∗(β̂(s
∗))| > |bj(β̂(s

∗))|. (24)

Let d = (d1, · · · , dp)T with dj = −sign(β̂j(s
∗))(= −sign(bj(β̂(s

∗))), due to Lemma 2) for

j ∈ N , dj∗ = nN sign(bj∗(β̂(s
∗))), and dj′ = 0 for j ∈ (N ∪ {j∗})c, where nN denote the

size of N .

Consider R(β̂(s∗) + ud,β0(β̂(s
∗) + ud)) as a function of u. Its derivative is given by

d

du
R(β̂(s∗) + ud,β0(β̂(s

∗) + ud)) =

p
∑

j=1

bj(β̂(s
∗) + ud)dj +O(u). (25)

When u = 0, the right hand side of (25) becomes

− nN |bj(β̂(s
∗))|+ nN |bj∗(β̂(s

∗))| > 0, (26)
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where j ∈ N and positivity is due to (24). Note that minj∈N |β̂j(s
∗)| > 0 since s∗ ∈ S.

When 0 < u < minj∈N |β̂j(s
∗)|,

∑p
j=1 |β̂j(s

∗)| =
∑p

j=1 |β̂j(s
∗) + udj| by noting the above

definition of d. However (26) contradicts the fact that β̂(s∗) is a solution of the LASSO

regularized quasi-likelihood (18). This proves our claim for s ∈ S. Our claim holds at s

simply due to continuity.

Proof of Lemma 5. Note that Ṡ(0) =
∑

j∈A1
sign(bj(β̂))dj +

∑

j∈A0
|dj|+

∑

j∈Ac
10
|dj| due

to Lemma 2 and Ṫ (0) =
∑

j∈A1
bj(β̂)dj +

∑

j∈A0
bj(β̂)dj +

∑

j∈Ac
10
bj(β̂)dj . Thus due to

Lemma 4 and the above definition of A0, we have

Ṫ (0)/Ṡ(0) = D̂(β̂)

∑

j∈A1
sign(bj(β̂))dj +

∑

j∈A0
sign(bj(β̂))dj +

∑

j∈Ac
10
djbj(β̂)/D̂(β̂)

∑

j∈A1
sign(bj(β̂))dj +

∑

j∈A0
|dj|+

∑

j∈Ac
10
|dj|

,

which is analogous to Equation (5.40) of Efron et al. (2004). It is enough to consider d

satisfying
∑

j∈A1
sign(bj(β̂))dj+

∑

j∈A0
|dj|+

∑

j∈Ac
10
|dj| > 0 which corresponds to Ṡ(0) >

0, for which case S(γ) is increasing in γ at the origin. Thus we need djsign(bj(β̂)) ≥ 0

for j ∈ A0 ∪ (Ac
10) in order to maximize Z(d). In this case we have

Z(d) = D̂(β̂)

∑

j∈A1
sign(bj(β̂))dj +

∑

j∈A0
|dj|+

∑

j∈Ac
10
|dj|

|bj(β̂)|

D̂(β̂)
∑

j∈A1
sign(bj(β̂))dj +

∑

j∈A0
|dj|+

∑

j∈Ac
10
|dj|

,

which is < D̂(β̂) unless dj = 0 for j ∈ Ac
10 since |bj(β̂)| < D̂(β̂) for j ∈ Ac

10. This proves

(11). In this case a second order Taylor expansion leads to (12).

Proof of Lemma 6. By noting that MA10,A10(β̂) is negative definite, (13) is equivalent to

max dT
AT

10
MA10,A10(β̂)dA10 (27)

subject to
∑

j∈A1

sign(bj(β̂))dj +
∑

j∈A0

|dj| ≥ △ and sign(dj) = sign(bj(β̂)) for j ∈ A0.

5



Consider combining the two constraints in (27) into one and solve a simpler version

maxdT
AT

10
MA10,A10(β̂)dA10 subject to

∑

j∈A1

sign(bj(β̂))dj +
∑

j∈A0

sign(bj(β̂))dj ≥ △. (28)

Later we will show that the solution to (28) satisfies the sign constraint in (27).

We solve maxdT
AT

10
MA10,A10(β̂)dA10+λ

(

∑

j∈A1
sign(bj(β̂))dj +

∑

j∈A0
sign(bj(β̂))dj −△

)

by introducing a Lagrange multiplier λ. Differentiating with respect to dA10 and solv-

ing for dA10 , we get the optimal solution d
opt
A10

= −λ(MA10,A10)
−1sign(bA10(β̂)), which

corresponds exactly to our QuasiLARS updating direction by noting λ > 0.

Note that we assume “one at a time” condition. Thus A0 is a singleton. Consequently

the second constraint in (27) is satisfied due to Lemma 1. This completes the proof.

Proof of Theorem 1. Lemmas 2-5 are extensions of Lemmas 7-10 of Efron et al. (2004),

which are key results for establishing that the LASSO modification leads to the LASSO

solutions. Their proof by induction can be extended to prove our Theorem based on

Lemmas 1-5 and parallel extension of Constraints 1-4 on page 437 of Efron et al. (2004).

We skip the details here to save space.
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