Strain Name	Genotype	Source
BY4741*	$MATa$ leu2 Δ met15 Δ his3-1 ura3 Δ	(1)
TetO ₇ -STT4	MATa URA3::CMV-tTA kan ^R -TetO ₇ -TATA _{CYCI} -STT4	(2)
TetO ₇ -PIK1	MATa URA3::CMV-tTA kan ^R -TetO7-TATACYCI-PIK1	(2)
TetO ₇ -WT	MATa URA3::CMV-tTA	(2)
TetO ₇ -PIK1 kss1∆	MATa URA3::CMV-tTA kan ^R -TetO7-TATA _{CYCI} -PIK1 kss1::LEU2	This study
TetO ₇ -PIK1 ste4∆	MATa URA3::CMV-tTA kan ^R -TetO7-TATACYCI-PIK1 ste4::LEU2	This study
TetO ₇ -PIK1 ste5∆	MATa URA3::CMV-tTA kan ^R -TetO7-TATA _{CYCI} -PIK1 ste5::LEU2	This study
TetO ₇ -PIK1 ste7∆	MATa URA3::CMV-tTA kan ^R -TetO7-TATA _{CYCI} -PIK1 ste7::LEU2	This study
TetO ₇ -PIK1 stel1∆	MATa URA3::CMV-tTA kan ^R -TetO7-TATA _{CYCI} -PIK1 stel1::LEU2	This study
TetO ₇ -PIK1 ste20∆	MATa URA3::CMV-tTA kan ^R -TetO7-TATA _{CYCI} -PIK1 ste20::LEU2	This study
TetO ₇ -PIK1 ste50∆	MATa URA3::CMV-tTA kan ^R -TetO7-TATACYCI-PIK1 ste50::LEU2	This study
TetO ₇ -PIK1 <i>cla4∆</i>	MATa URA3::CMV-tTA kan ^R -TetO7-TATA _{CYCI} -PIK1 cla4::LEU2	This study
TetO ₇ -PIK1 ssk1∆	MATa URA3::CMV-tTA kan ^R -TetO ₇ -TATA _{CYCI} -PIK1 ssk1::LEU2	This study
TetO ₇ -PIK1 opy2∆	MATa URA3::CMV-tTA kan ^R -TetO7-TATACYCI-PIK1 opy2::LEU2	This study
vps34 Δ	$MATa vps34::kan^{R}$	Invitrogen
*All strains derived	from BY4741	

Cappell and Dohlman Supplemental Material

Table S1

Fig	Plasmid Name	Alias	Description	Source
1	pRS315	SC-2-013	CEN LEU2 vector	(3)
5	pRS425	SC-2-006	2µM LEU2 vector	(4)
1	pRS423 FUS1-LacZ	SC-2-001	2µM HIS3 P _{FUS1} -lacZ	(5)
1	pRS315-STT4	SC-2-075	CEN LEU2 STT4	(6)
1	pRS315-PIK1	SC-2-076	CEN LEU2 PIK1	(6)
5	pRS425-STE11-4	SC-2-025	2µM LEU2 STE11-4	(6)
5	pRS315 GAL1-STE4	SC-2-024	CEN LEU2 P _{GAL1} -STE4	(7)
3	pRS313 GAL1-STE5-CTM	SC-2-035	CEN HIS3 P _{GAL1} -STE5-CTM	This Study
	pGS5-CTM	SC-2-027	CEN TRP1 PGAL1-STE5-CTM	(8)
2	pRS316 STE5-GFPx3	SC-1-055	CEN URA3 GFP-STE5x3-T _{CYC1}	(9)
S2	pRS426 GFP-2xPH-PLC8	SC-3-008	2μM URA3 GFP-2xPH-PLCδ	(10)
S2	pRS426 GFP-2xPH-FAPP	SC-3-009	2µM URA3 GFP-2xPH-FAPP	(10)
S2	pRS416 GFP-Lact-C2	SC-3-010	CEN URA3 GFP-Lact-C2	(11)

Table S2Plasmids used in this study

Figure S1. Knockdown of *PIK1* does not affect global protein expression. Whole cell lysates stained with Coomassie Brilliant Blue. Cells were treated with 10 µg/ml doxycycline (Dox) for 15 h.

Figure S2. Knockdown of *PIK1* or *STT4* results in loss of PtdIns 4-P *in vivo*. GFP fluorescence of cells expressing a single copy plasmid pRS316 containing GFP fusion proteins of PH^{PLCd} , PH^{FAPP1} , or $C2^{Lact}$ and treated with 10 µg/ml doxycycline (Dox) for 15 h, as indicated. *A*, TetO₇-PIK1. *B*, TetO₇-STT4.

Figure S3. **Doxycycline treatment does not affect Fus3, Kss1, or Hog1 activation.** *A*, Cells harboring a doxycycline-repressible promoter attached to a non-expressible genetic element (TetO₇-WT) were treated with 10 µg/ml doxycycline (Dox) for 15 h and 3 µM α factor pheromone for the times indicated. Cell lysates were resolved by 12.5% SDS-PAGE and immunoblotting with phospho-p44/42 antibodies (P-Fus3, P-Kss1), Fus3 antibodies, Hog1 antibodies, or G6PDH antibodies as a loading control. Note that pheromone stimulation induces *FUS3* but not *KSS1* expression. Bands were quantified by scanning densitometry and analyzed with ImageJ software. Results are the mean ± S.E. for three individual experiments. *B*, as in *A*, but cells were treated with 0.5 M KCl instead of pheromone.

Figure S4. **Knockdown of Pik1 inhibits Hog1 activation.** TetO₇-PIK1 cells were treated with doxycycline for 15 h and 0.5 M KCl for the times indicated and analyzed by immunoblotting with phospho-p38 (P-Hog1) antibodies, phospho-p44/42 (P-Kss1) antibodies, Hog1 antibodies, or G6PDH antibodies as a loading control. All bands were quantified by scanning densitometry and analyzed with ImageJ software. Results are the mean \pm S.E. for three individual experiments.

Figure S5. Deletion of *OPY2* restores normal cell morphology upon *PIK1* knockdown. DIC image of TetO₇-PIK1 and TetO₇-PIK1 *opy2A* cells treated with doxycycline for 15 h where indicated (+ Dox).

SUPPLEMENTAL REFERENCES

- 1. Brachmann, C. B., Davies, A., Cost, G. J., Caputo, E., Li, J., Hieter, P., and Boeke, J. D. (1998) *Yeast* 14(2), 115-132
- Mnaimneh, S., Davierwala, A. P., Haynes, J., Moffat, J., Peng, W. T., Zhang, W., Yang, X., Pootoolal, J., Chua, G., Lopez, A., Trochesset, M., Morse, D., Krogan, N. J., Hiley, S. L., Li, Z., Morris, Q., Grigull, J., Mitsakakis, N., Roberts, C. J., Greenblatt, J. F., Boone, C., Kaiser, C. A., Andrews, B. J., and Hughes, T. R. (2004) *Cell* 118(1), 31-44
- 3. Sikorski, R. S., and Hieter, P. (1989) Genetics 122(1), 19-27
- 4. Christianson, T. W., Sikorski, R. S., Dante, M., Shero, J. H., and Hieter, P. (1992) *Gene* **110**(1), 119-122
- 5. Hohmann, S. (2002) *Microbiol Mol Biol Rev* **66**(2), 300-372
- 6. Cappell, S. D., Baker, R., Skowyra, D., and Dohlman, H. G. (2010) Mol Cell 38(5), 746-757
- 7. Dohlman, H. G., Apaniesk, D., Chen, Y., Song, J., and Nusskern, D. (1995) *Mol Cell Biol* **15**(7), 3635-3643
- 8. Pryciak, P. M., and Huntress, F. A. (1998) Genes Dev 12(17), 2684-2697
- Winters, M. J., Lamson, R. E., Nakanishi, H., Neiman, A. M., and Pryciak, P. M. (2005) *Mol Cell* 20(1), 21-32
- 10. Stefan, C. J., Audhya, A., and Emr, S. D. (2002) Mol Biol Cell 13(2), 542-557
- 11. Yeung, T., Gilbert, G. E., Shi, J., Silvius, J., Kapus, A., and Grinstein, S. (2008) Science **319**(5860), 210-213