TET2 mutations improve the new European LeukemiaNet risk classification of acute myeloid leukemia: A Cancer and Leukemia Group B study

Klaus H. Metzeler,¹ Kati Maharry,^{1,2} Michael D. Radmacher,^{1,2} Krzysztof Mrózek,¹ Dean Margeson,^{1,2} Heiko Becker,¹ John Curfman,¹ Kelsi B. Holland,^{1,2} Sebastian Schwind,¹ Susan P. Whitman,¹ Yue-Zhong Wu,¹ William Blum,¹ Bayard L. Powell,³ Thomas H. Carter,⁴ Meir Wetzler,⁵ Joseph O. Moore,⁶ Jonathan E. Kolitz,⁷ Maria R. Baer,⁸ Andrew J. Carroll,⁹ Richard A. Larson,¹⁰ Michael A. Caligiuri,¹ Guido Marcucci,^{1,*} and Clara D. Bloomfield^{1,*}

- 1. The Ohio State University Comprehensive Cancer Center, Columbus, OH
- 2. The Cancer and Leukemia Group B Statistical Center, Duke University Medical Center, Durham, NC
- 3. Comprehensive Cancer Center of Wake Forest University, Winston-Salem, NC
- 4. University of Iowa, Iowa City, IA
- 5. Roswell Park Cancer Institute, Buffalo, NY
- 6. Duke University Medical Center, Durham, NC
- 7. North Shore University Hospital, Manhasset, NY
- 8. Greenebaum Cancer Center, University of Maryland, Baltimore, MD
- 9. Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
- 10. The University of Chicago Medical Center, Chicago, IL

* These senior authors contributed equally to this work.

Grant support: This work was supported in part by the National Cancer Institute (grants CA101140, CA114725, CA140158, CA31946, CA33601, CA16058, CA77658 and CA129657), the Coleman Leukemia Research Foundation, and the Deutsche Krebshilfe–Dr Mildred Scheel Cancer Foundation (H.B.).

Corresponding author:

Clara D. Bloomfield, MD, The Ohio State University, Comprehensive Cancer Center, 1216 James Cancer Hospital, 300 West 10th Ave, Columbus, OH 43210; e-mail: clara.bloomfield@osumc.edu

PATIENTS AND METHODS

Treatment Protocols, Sample Collection and Sample Preparation

Patients with cytogenetically normal acute myeloid leukemia (CN-AML) younger than 60 years were treated on Cancer and Leukemia Group B (CALGB) trials 9621 or 19808. Patients enrolled on CALGB 19808 (n=96) were randomly assigned to receive induction chemotherapy with cytarabine, daunorubicin, and etoposide with or without PSC-833 (valspodar), a multidrug resistance protein inhibitor.¹ On achievement of complete remission (CR), patients were assigned to intensification with high-dose cytarabine and etoposide for stem-cell mobilization followed by myeloablative treatment with busulfan and etoposide supported by autologous peripheral blood stem-cell transplantation. Patients enrolled on CALGB 9621 (n=87) were treated similarly to those on CALGB 19808, as previously reported.^{2,3}

Older patients (≥60 years) were all treated with cytarabine/daunorubicin-based induction therapy followed by cytarabine-based consolidation therapy. Patients on CALGB 8525 (n=23) were treated with induction chemotherapy consisting of cytarabine in combination with daunorubicin and were randomly assigned to consolidation with different doses of cytarabine followed by maintenance treatment.⁴ Patients on CALGB 8923 (n=22) were treated with induction chemotherapy consisting of cytarabine in combination of cytarabine in combination and were randomly assigned to receive postremission therapy with cytarabine alone

or in combination with mitoxantrone.⁵ Patients on CALGB 9420 (n=6) and 9720 (n=109) received induction chemotherapy consisting of cytarabine in combination with daunorubicin and etoposide, with (CALGB 9420) or with/without (CALGB 9720) the multidrug resistance protein modulator PSC-833.^{6,7} Patients on CALGB 9420 received postremission therapy with cytarabine (2 g/m²/d) alone, and patients on CALGB 9720 received a single cytarabine/daunorubicin consolidation course identical to the induction regimen and were then randomly assigned to low-dose recombinant interleukin-2 maintenance therapy or none.⁸ Patients on CALGB 10201 (n=75) received induction chemotherapy consisting of cytarabine and daunorubicin, with or without the *BCL2* antisense oblimersen sodium. The consolidation regimen included two cycles of cytarabine (2 g/m²/d) with or without oblimersen.⁹ The frequency of *TET2* mutations did not vary significantly between study protocols when analyzed separately for younger (*P*=.84) and older (*P*=.71) patients.

None of the protocols included allogeneic stem cell transplantation for CN-AML patients in first CR. Patients who enrolled on the treatment protocols also provided written informed consent to participate in the companion protocols CALGB 8461 (prospective cytogenetic companion), CALGB 9665 (leukemia tissue bank) and CALGB 20202 (molecular studies in acute myeloid leukemia), which involved collection of pretreatment bone marrow (BM) aspirates, blood samples, and buccal swabs. Mononuclear cells from BM and blood samples were enriched through Ficoll-Hypaque gradient centrifugation, and cryopreserved

for later use. Genomic DNA and total RNA were extracted as described previously.¹⁰ Genomic DNA from buccal swabs was isolated using the Qiagen DNEasy Blood & Tissue kit (Qiagen, Hilden, Germany). All coding exons of the longest known *TET2* transcript variant (GenBank accession no. NM_001127208) were amplified from genomic DNA by polymerase chain reaction and analyzed by direct sequencing. Primer sequences are available upon request. Exon numbering follows the GenBank reference record.

Gene- and MicroRNA-Expression Profiling

To establish a signature of genes differentially expressed between *TET2*-mutated and *TET2* wild-type (*TET2*-wt) patients, we evaluated gene-expression profiles obtained using Affymetrix HG-U133plus2.0 oligonucleotide microarrays (Affymetrix, Santa Clara, CA). Details regarding sample preparation and array hybridization have been published previously.^{11,12} Briefly, summary measures of gene expression were computed for each probe-set using the robust multichip average method, which incorporates quantile normalization of arrays. Expression values were logged (base 2) before analysis. A filtering step was performed to remove probe-sets that did not display significant variation in expression across arrays. In this procedure, a χ^2 test was used to test whether the observed variance in expression of a probe-set was significantly larger than the median observed variance in expression for all probe-sets, using α =.01 as the significance level. A total of 24,995 probe-sets passed the filtering criterion. Gene-expression signatures were then analyzed separately in the ELN favorable-risk (41 *TET2*-mutated and 93 *TET2*-wt patients) and intermediate-lrisk (28 *TET2*-mutated and 121 *TET2*-wt patients) categories. Normalized expression values were compared between *TET2*-mutated and *TET2*-wt patients, and a univariable significance level of .001 was used to identify differentially expressed probe-sets. A global test of significance based on a permutation procedure was performed to determine whether or not the number of differentially expressed probe sets was more than expected by chance; if not, no signature is reported for the comparison.

For microRNA microarrays (The Ohio State University custom microRNA array version 4.0), signal intensities were calculated for each spot, with an adjustment made for local background. Spots that were flagged due to low signal-to-noise ratio on more than 75% of arrays were excluded from analysis. Signal intensities were log-transformed and quantile normalization was performed on arrays using spots for all human and mouse microRNA probes represented on the array. Log-signal intensities from replicate spots (ie, spots representing the same probe) were averaged. For each microRNA probe, an adjustment was made for batch effects (ie, differences in expression related to the batch in which arrays were hybridized). Further analysis was limited to 460 unique human probes that passed the filtering criterion. Separate microRNA signatures were obtained in the ELN favorable-risk (28 *TET2*-mutated and 50 *TET2*-wt patients) and in the intermediate-l-risk (21 *TET2*-mutated and 79 *TET2*-wt patients) subgroups. A comparison of microRNA expression was made between *TET2*-mutated and

TET2-wt patients, using a univariable significance level of .005 to identify differentially expressed microRNA probes. A global test of significance based on a permutation procedure was performed to determine whether or not the number of differentially expressed probes was more than expected by chance; if not, no signature is reported for the comparison. All microarray analyses were performed using BRB-ArrayTools Version 3.8.1, developed by Richard Simon, DSc, and Amy Peng Lam.

Definition of Clinical Endpoints

Clinical endpoints were defined, in accordance with generally accepted criteria,¹³ as follows. CR required a BM aspirate with cellularity greater than 20% and maturation of all cell lines, less than 5% blasts and no Auer rods; in the peripheral blood, an absolute neutrophil count of \geq 1,500/µL, platelet count of \geq 100,000/µL, and no leukemic blasts; and no evidence of extramedullary leukemia, all of which had to persist for at least 1 month. Relapse was defined by the presence of \geq 5% BM blasts, or circulating leukemic blasts, or the development of extramedullary leukemia. Overall survival (OS) was measured from the date of study entry until the date of death, and patients alive at last follow-up were censored. Disease-free survival (DFS) was measured from the date of cR until the date of relapse or death; patients alive and in complete remission were censored at last follow-up. Event-free survival (EFS) was measured from the date of study entry until induction failure, relapse or death; patients alive and in complete remission were censored at last follow-up.

Multivariable Analyses

Multivariable logistic regression models were generated for attainment of CR, and proportional hazards models were constructed for EFS, DFS and OS, using a limited backwards elimination procedure. Since we found a significant interaction between TET2 mutation status and European LeukemiaNet (ELN) risk group assignment for all four endpoints, this interaction term was included in all multivariable models. Variables considered for model inclusion and evaluated in univariable models were: TET2 mutation status, ELN risk group assignment (based on the presence/absence of FLT3 internal tandem duplications [FLT3-ITD], and NPM1 and CEBPA mutations), TET2 mutation-by-ELN risk group interaction, WT1 mutation status, FLT3 tyrosine kinase domain mutation status, *MLL* partial tandem duplication status, age group (<60 v \ge 60 years), sex, race, hemoglobin, platelet count, and white blood count (WBC). Age was considered as a dichotomous rather than as a continuous variable, based on an analysis of Martingale residuals for the continuous age regressed against survival. Additionally, the use of an age cut-off at 60 years allowed us to account for the fact that patients below and above that age were enrolled on different treatment protocols. Variables significant at α =.20 from the univariable analyses were considered for multivariable analyses. For the time-to-event endpoints, the proportional hazards assumption was checked for each variable individually. If the proportional hazards assumption was not met for a particular variable, then an artificial time-dependent covariate was included in all models that contained that variable.

RESULTS

Spectrum of TET2 Mutations in CN-AML and Analysis of Matched Germline DNA Samples

Overall, 141 variations from the reference sequence were found in the *TET2* coding sequence and adjacent splice sites in 104 of 427 patients (Table A1). Sixty-two patients had a single, heterozygous *TET2* sequence variation, while 42 patients had more than one variation. We observed a striking heterogeneity of *TET2* sequence variations: only 5 specific variations occurred in more than one patient in our cohort.

As in previous reports,¹⁴⁻¹⁶ we did not identify "hot spots" for nonsense and frame shift variations, which were distributed across all coding exons. Of 102 nonsense, frame shift and splice site variations, matched buccal swab or remission BM DNA samples were available for 72. Seventy-one variations were found to be somatic mutations, whereas only one nonsense change was also detected in the corresponding germline sample. However, the same change (c.4393C>T; p.Arg1465X) was confirmed to be a somatically acquired mutation in three other patients. All nonsense, frame shift and splice site mutations were therefore included in further analyses.

After excluding known single nucleotide polymorphisms listed in the dbSNP database (available online at http://www.ncbi.nlm.nih.gov/projects/SNP/) or

detected in a cohort of healthy controls,¹⁴ we detected 37 missense variations, leading to changes of single amino acids. Twenty-eight missense changes clustered within two evolutionarily conserved regions of the TET2 gene, which encompass codons 1104 to 1478 and 1845 to 2002 (see Fig 1 in the main text).¹⁴ Of these 28 missense variations inside the conserved domains, all 16 for which germline DNA could be evaluated were confirmed to be somatically acquired mutations. Therefore, all missense variations within the two evolutionarily conserved regions were retained in further analyses. In contrast, of the 9 missense variations outside the conserved domains, all 7 that could be tested were present in the germline. To our knowledge, these germline variations, causing changes in single amino acids, have not been described in healthy subjects or cancer patients. It remains undetermined whether they represent innocent polymorphisms or disease-relevant mutations. Therefore, all 9 patients with missense variations outside the two evolutionarily conserved domains were excluded from further analyses.

Applicability of the ELN Risk Classification to Our Patient Cohort

The ELN recently proposed a standardized reporting system which classifies CN-AML patients into favorable-risk and intermediate-I-risk categories based on presence or absence of *CEBPA* mutations, *NPM1* mutations and *FLT3*-ITD.¹⁷ Since this classification scheme is relatively new, we evaluated the prognostic separation achieved by applying the ELN risk categories to our cohort of CN-AML patients. Patients in the favorable-risk group (n=199) had longer EFS than patients in the intermediate-I-risk group (n=219) (P<.001; 3-year EFS rates, 42% v 9%). Favorable-risk patients also had a higher CR rate (85% v 65%, P<.001), longer DFS (P<.001; Fig A4A; 3-year DFS rates, 47% v 14%) and longer OS (P<.001; Fig A4B; 3-year OS rates, 54% v 19%), as compared with the intermediate-I-risk group. These results indicate that the ELN risk classification identified subgroups with significantly different outcomes in our cohort.

Prognostic Relevance of TET2 Mutations in Molecular Subsets Within the ELN Favorable-Risk and Intermediate-I-Risk Groups

The ELN favorable-risk group includes CN-AML patients with two distinct genotypes that were previously shown to be associated with favorable outcomes: 1) CN-AML patients with mutated *NPM1* without *FLT3*-ITD, and 2) those with mutated *CEBPA* (Table A2).¹⁸ Consequently, we investigated whether the association of *TET2* mutations with inferior outcomes was consistent across both these genetic subgroups (Table A6). Among patients with mutated *NPM1* without *FLT3*-ITD, there was an association of *TET2* mutations with shorter EFS in comparison with *TET2*-wt patients (*P*=.003). *TET2*-mutated patients also had lower CR rates (*P*=.02), shorter DFS (*P*=.046; Fig A5A), and showed a trend towards shorter OS (*P*=.07; Fig A5B).

Similarly, among *CEBPA*-mutated patients, those with a *TET2* mutation had shorter EFS than *TET2*-wt patients (*P*=.009; Table A6). The CR rate was 75% for *CEBPA*-mutated/*TET2*-mutated and 88% for *CEBPA*-mutated/*TET2*-wt patients

(*P*=.27). *TET2* mutations were associated with shorter DFS (*P*=.03; Fig A5C) and OS (*P*=.003; Fig A5D) among *CEBPA*-mutated patients.

Finally, we also tested for an interaction between age group and *TET2* mutation status among our ELN favorable-risk cases. We found that the association of *TET2* mutations with outcomes did not differ significantly between older and younger patients (EFS, P=.98; CR, P=.98; DFS, P=.97; OS, P=.79).

The ELN intermediate-I-risk group comprises all those CN-AML patients that are not assigned to the favorable-risk category. Consequently, patients in the intermediate-I-group may have one of three different genotypes: 1) Mutated *NPM1* and *FLT3*-ITD and wild-type *CEBPA*, or 2) wild-type *NPM1* and *FLT3*-ITD and wild-type *CEBPA*, or 3) wild-type *NPM1* without *FLT3*-ITD and wild-type *CEBPA*. Following the ELN recommendations, we explored the prognostic impact of *TET2* mutations within these three subcategories (Table A7, Figure A6) We did not detect a significant association of *TET2* mutation status and outcomes in any of these subsets, although in some subgroups the number of *TET2*-mutated patients was too small to draw firm conclusions.

Overall, these results demonstrate that *TET2* mutations are associated with inferior outcomes in patients with either of the two genotypes (mutated *NPM1* without *FLT3*-ITD, or mutated *CEBPA*) that, according to the ELN guidelines, qualify a patient for the favorable-risk category. In contrast, exploratory analyses

did not show significant associations of *TET2* mutations with outcomes in the molecular subsets within the intermediate-I-risk group.

REFERENCES

- Kolitz JE, George SL, Marcucci G, et al: P-glycoprotein inhibition using valspodar (PSC-833) does not improve outcomes for patients under age 60 years with newly diagnosed acute myeloid leukemia: Cancer and Leukemia Group B study 19808. Blood 116:1413-1421, 2010
- 2. Kolitz JE, George SL, Dodge RK, et al: Dose escalation studies of cytarabine, daunorubicin, and etoposide with and without multidrug resistance modulation with PSC-833 in untreated adults with acute myeloid leukemia younger than 60 years: Final induction results of Cancer and Leukemia Group B Study 9621. J Clin Oncol 22:4290-4301, 2004
- Kolitz JE, George SL, Barrier R, et al: A novel post-remission consolidation regimen for patients with acute myeloid leukemia (AML) < 60 years old with normal or unfavorable cytogenetics: Results from CALGB 9621. Blood 102:175a, 2003 (abstr 609)
- Mayer RJ, Davis RB, Schiffer CA, et al: Intensive postremission chemotherapy in adults with acute myeloid leukemia. N Engl J Med 331:896-903, 1994
- Stone R, Berg D, George S, et al: Postremission therapy in older patients with de novo acute myeloid leukemia: A randomized trial comparing mitoxantrone and intermediate-dose cytarabine with standard-dose cytarabine. Blood 98:548-553, 2001

- Lee EJ, George SL, Caligiuri M, et al: Parallel phase I studies of daunorubicin given with cytarabine and etoposide with or without the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age or older with acute myeloid leukemia: Results of Cancer and Leukemia Group B study 9420. J Clin Oncol 17:2831-2839, 1999
- Baer MR, George SL, Dodge RK, et al: Phase 3 study of the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age and older with acute myeloid leukemia: Cancer and Leukemia Group B Study 9720. Blood 100:1224-1232, 2002
- Baer MR, George SL, Caligiuri MA, et al. Low-dose interleukin-2 immunotherapy does not improve outcome of patients age 60 years and older with acute myeloid leukemia in first complete remission: Cancer and Leukemia Group B study 9720. J Clin Oncol 26:4934-4939, 2008
- Marcucci G, Moser B, Blum W, et al: A phase III randomized trial of intensive induction and consolidation chemotherapy ± oblimersen, a proapoptotic Bcl-2 antisense oligonucleotide in untreated acute myeloid leukemia patients >60 years old. J Clin Oncol 25:360s, 2007 (suppl; abstr 7012)
- Marcucci G, Maharry K, Radmacher MD, et al: Prognostic significance of, and gene and microRNA expression signatures associated with, *CEBPA* mutations in cytogenetically normal acute myeloid leukemia with high-risk molecular features: A Cancer and Leukemia Group B study. J Clin Oncol 26:5078-5087, 2008

- Marcucci G, Baldus CD, Ruppert AS, et al: Overexpression of the ETSrelated gene, *ERG*, predicts a worse outcome in acute myeloid leukemia with normal karyotype: A Cancer and Leukemia Group B study. J Clin Oncol 23:9234-9242, 2005
- Becker H, Marcucci G, Maharry K, et al: Favorable prognostic impact of *NPM1* mutations in older patients with cytogenetically normal de novo acute myeloid leukemia and associated gene- and microRNA-expression signatures: A Cancer and Leukemia Group B study. J Clin Oncol 28:596-604, 2010
- Cheson BD, Cassileth PA, Head DR, et al: Report of the National Cancer Institute-sponsored workshop on definitions of diagnosis and response in acute myeloid leukemia. J Clin Oncol 8:813-819, 1990
- 14. Langemeijer SMC, Kuiper RP, Berends M, et al: Acquired mutations in *TET2* are common in myelodysplastic syndromes. Nat Genet 41:838-842, 2009
- 15. Delhommeau F, Dupont S, Della Valle V, et al: Mutation in *TET2* in myeloid cancers. N Engl J Med 360:2289-2301, 2009
- Abdel-Wahab O, Mullally A, Hedvat C, et al: Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood 114:144-147, 2009
- 17. Döhner H, Estey EH, Amadori S, et al: Diagnosis and management of acute myeloid leukemia in adults: Recommendations from an international

expert panel, on behalf of the European LeukemiaNet. Blood 115:453-474, 2010

18. Mrózek K, Marcucci G, Paschka P, et al: Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: Are we ready for a prognostically prioritized molecular classification? Blood 109:431-448, 2007

Table A1. List of 141 Sequence Alterations in the Coding Sequence of TET2 Detected

UPN	Exon	cDNA Sequence Change	Deduced Change in Protein Sequence	Finding in Matched Buccal Swab or Remission Bone Marrow Genomic DNA Sample
362*	3	c.322T>C	p.Gln108X	not tested
293	3	c.434G>A	p.Ser145Asn	not tested
256*	3	c.519delG	p.Pro174fs	wild-type (buccal swab DNA)
380*	3	c.521delC	p.Pro174fs	wild-type (buccal swab DNA)
50	3	c.590_591insC	p.Val198fs	wild-type (buccal swab DNA)
285*	3	c.640dupT	p.Ser214fs	wild-type (buccal swab DNA)
249*	3	c.688_689delCT	p.Leu230fs	wild-type (buccal swab DNA)
190*	3	c.810_816dupCTCAGGG	p.Gln273fs	wild-type (buccal swab DNA)
342	3	c.941dupG	p.Cys314fs	wild-type (buccal swab DNA)
415	3	c.942T>A	p.Cys314X	not tested
352	3	c.945delC	p.Gln317fs	wild-type (buccal swab DNA)
397	3	c.998delC	p.Pro333fs	not tested
393*	3	c.1034_1037dupAGCT	p. Gly349fs	not tested
286*	3	c.1118_1122delAAAAT	p.Gln373fs	not tested
368*	3	c.1137_1138delTTinsC	p.Tyr380fs	wild-type (buccal swab DNA)
272*	3	c.1219delT	p.Ser407fs	wild-type (buccal swab DNA)
301	3	c.1240C>T	p.Gln414X	wild-type (buccal swab DNA)
337	3	c.1669C>T	p.Gln557X	wild-type (buccal swab DNA)
148	3	c.1747G>T	p.Glu583X	wild-type (buccal swab DNA)
79*	3	c.1755delT	p.S585fs	wild-type (buccal swab DNA)
294	3	c.1842delG	p.Leu615fs	not tested
79*	3	c.1847dupC	p.Pro616fs	wild-type (buccal swab DNA)
28*	3	c.1851delG	p.Arg617fs	wild-type (buccal swab DNA)
44*	3	c.1860C>G	p.Tyr620X	not tested
209*	3	c.2000_2016del17insC	p.His667fs	wild-type (buccal swab DNA)
270	3	c.2083dupA	p.Met695fs	not tested
393*	3	c.2148dupA	p.His717fs	wild-type (buccal swab DNA)
365	3	c.2149_2150del	p.His717fs	not tested
271*	3	c.2176_2179delCAGG	p.Ala727fs	wild-type (buccal swab DNA)
88	3	c.2218C>T	p.Gln740X	wild-type (buccal swab DNA)
318*	3	c.2236C>T	p.Gln746X	wild-type (buccal swab DNA)
313	3	c.2299A>G	p.Asn767Asp	sequence change detected in buccal swab DNA sample
184*	3	c.2305delC	p.GIn769fs	wild-type (buccal swab DNA)
114*	3	c.2428C>T	p.Gln810X	wild-type (remission sample)
381*	3	c.2441delG	p.Arg814fs	wild-type (buccal swab DNA)
251*	3	c.2443_2444insAT	p.Arg815fs	wild-type (buccal swab DNA)
360*	3	c.2450_2454del	p.Ser817fs	not tested
72*	3	c.2474C>G	p.Ser825X	wild-type (buccal swab DNA)
358*	3	c.2497delT	p.Ser833fs	not tested
114*	3	c.2527G>T	p.Glu843X	wild-type (remission sample)
153*	3	c.2604T>G	p.Phe868Leu	not tested
401	3	c.2692G>T [†]	p.Gly898X	not tested
109	3	c.2746C>T [†]	p.Gln916X	wild-type (buccal swab DNA)

in 104 Patients Wit	Cytogeneticall	y Normal Acute M	yeloid Leukemia
---------------------	----------------	------------------	-----------------

UPN	Exon	cDNA Sequence Change	Deduced Change in Protein Sequence	Finding in Matched Buccal Swab or Remission Bone Marrow Genomic DNA Sample
228	3	c.2746C>T	p.Gln916X	wild-type (buccal swab DNA)
353	3	c.2746C>T	p.Gln916X	wild-type (buccal swab DNA)
373	3	c.2855dupT	p.Leu952fs	wild-type (buccal swab DNA)
120	3	c.2862G>R	p.Trp954X	wild-type (buccal swab DNA)
364*	3	c.2878C>T	p.Gln960X	wild-type (buccal swab DNA)
288	3	c.2896C>T	p.Gln966X	wild-type (buccal swab DNA)
174*	3	c.2918dupG	p.S972fs	wild-type (buccal swab DNA)
386	3	c.2964_2982dup	p.Thr995fs	not tested
59	3	c.3030G>T	p.Glu1010Asp	sequence change detected in bone marrow sample obtained during complete remission
282	3	c.3237delAinsCCC [†]	p.Ala1080fs	not tested
256*	3	c.3344delC	p.Pro1115fs	wild-type (buccal swab DNA)
172*	3	c.3409+1G>A	p.?	wild-type (buccal swab DNA)
309	3c	c.3448delC	p.His1150fs	wild-type (buccal swab DNA)
362*	3c	c.3500+2T>C	p.?	not tested
358*	4	c.3528delG	p.lle1177fs	not tested
184*	4	c.3535dupA	p.Arg1179fs	wild-type (buccal swab DNA)
187*	4	c.3535dupA	p.Arg1179fs	wild-type (buccal swab DNA)
286*	4	c.3594+3A>G	p.?	not tested
92	5	c.3604A>T	p.Arg1202X	wild-type (buccal swab DNA)
247	5	c.3632G>A	p.Cys1211Tyr	wild-type (buccal swab DNA)
96	5	c.3643dupG	p.Glu1215fs	wild-type (buccal swab DNA)
145	5	c.3646C>T	p.Arg1216X	wild-type (buccal swab DNA)
28*	5	c.3656A>G	p.His1219Arg	wild-type (buccal swab DNA)
272*	5	c.3657C>G	p.His1219Gln	wild-type (buccal swab DNA)
280*	5	c.3729delA	p.Lys1243fs	not tested
44*	5	c.3732_3733delCT	p.Tyr1245fs	wild-type (buccal swab DNA)
115*	5	c.3781C>T	p.Arg1261Cys	not tested, but somatically acquired mutation in two other patients
249*	5	c.3781C>T	p.Arg1261Cys	wild-type (buccal swab DNA)
364*	5	c.3781C>T	p.Arg1261Cys	wild-type (buccal swab DNA)
345	5	c.3787T>C	p.Cys1263Arg	wild-type (buccal swab DNA)
426*	5	c.3787T>G	p.Cys1263Gly	not tested, but somatically acquired mutation at same codon in one other patient
233	5	c.3790G>C [†]	p.Ala1264Pro	not tested
93	6	c.3812dupG	p.Cys1271fs	wild-type (buccal swab DNA)
231	6	c.3818G>C	p.Cys1273Ser	not tested
419	6	c.3866G>A	p.Cys1289Tyr	wild-type (buccal swab DNA)
284*	6	c.3885delC	p.Tyr1295X	wild-type (buccal swab DNA)
252	6	c.3893G>A	p.Cys1298Tyr	wild-type (buccal swab DNA)
400*	6	c.3893G>A	p.Cys1298Tyr	not tested, but somatically acquired mutation in one other patient
297	6	c.3908G>A	p.Ser1303Asn	not tested
90	6	c.3921delG	p.Arg1307fs	wild-type (buccal swab DNA)
153*	6	c.3954+1G>A	p.?	not tested
271*	7	c.3957delA	p.Glu1320fs	wild-type (buccal swab DNA)

UPN	Exon	cDNA Sequence Change	Deduced Change in Protein Sequence	Finding in Matched Buccal Swab or Remission Bone Marrow Genomic DNA Sample
277	7	c.4005 4009delnsTG	p.Thr1336 Tyr1337delinsAsp	wild-type (buccal swab DNA)
378	7		p.Lys1338fs	wild-type (buccal swab DNA)
380*	7	 c.4011T>A	p.Tyr1337X	wild-type (buccal swab DNA)
185	7	c.4044+1G>C	p.?	wild-type (buccal swab DNA)
72*	7	c.4044+1G>T	p.?	wild-type (buccal swab DNA)
193	7	c.4044+2dupT	p.?	wild-type (buccal swab DNA)
162	8	c.4082G>A [†]	p.Gly1361Asp	wild-type (buccal swab DNA)
164	8	c.4087A>T	p.Lys1363X	wild-type (buccal swab DNA)
402*	8	c.4097G>A	p.Arg1366His	not tested
55	8	c.4102T>C	p.Phe1368Leu	wild-type (buccal swab DNA)
384	8	c.4128C>G	p.Asp1376Glu	wild-type (buccal swab DNA)
153*	8	c.4138C>T	p.His1380Tyr	not tested
209*	8	c.4144C>T	p.His1382Tyr	wild-type (buccal swab DNA)
172*	8	c.4148delG	p.Arg1383fs	wild-type (buccal swab DNA)
368*	8	c.4167_4168dupGA	p.Asn1390fs	wild-type (buccal swab DNA)
433	8	c.4182+2dupT	p.?	not tested
430	9	c.4183-1G>C	p.?	not tested
360*	9	c.4249G>T	p.Val1417Phe	not tested, but described as somatically acquired mutation in Abdel-Wahab et al. 2009
317	9	c.4317delA	p.Lys1439fs	wild-type (buccal swab DNA)
318*	9	c.4317dupA	p.Arg1440fs	wild-type (buccal swab DNA)
400*	9	c.4317dupA	p.Arg1440fs	not tested, but somatically acquired mutation in one other patient
64	9	c.4393C>T	p.Arg1465X	wild-type (buccal swab DNA)
73	9	c.4393C>T	p.Arg1465X	sequence change detected in buccal swab DNA sample
174*	9	c.4393C>T	p.Arg1465X	wild-type (buccal swab DNA)
381*	9	c.4393C>T	p.Arg1465X	wild-type (buccal swab DNA)
280*	9	c.4501C>T	p.Gln1501X	not tested
142	9	c.4513G>A	p.Ala1505Thr	sequence change detected in buccal swab DNA sample
11	10	c.4824T>G	p.Tyr1608X	wild-type (buccal swab DNA)
264*	10	c.4887_4936dup	p.Leu1646fs	not tested
251*	10	c.4925delG	p.Cys1642fs	wild-type (buccal swab DNA)

285*

308

284*

14

97

173

357

216

402*

367

17

10

10

10

10

10

10

10

10

10

10

10

c.4977T>G

c.5089G>A

c.5152G>T

c.5152G>T

c.5219T>G

c.5283delC

c.5338delC

c.5374delC

c.5128 5131delACCA

c.5162T>A or G>A

c.5456 5457insGGGAC

p.Tyr1659X

pGly1697Arg

p.Thr1710fs

p.Val1718Leu

p.Val1718Leu

p.L1721X

p.Leu1740X

p.His1761fs

p.Leu1780fs

p.His1792fs

p.Ser1820fs

wild-type (buccal swab DNA)

sequence change detected in

wild-type (buccal swab DNA)

sequence change detected in

buccal swab DNA sample

buccal swab DNA sample sequence change detected in

buccal swab DNA sample

not tested

not tested

wild-type (buccal swab DNA)

wild-type (buccal swab DNA)

wild-type (buccal swab DNA)

wild-type (buccal swab DNA)

UPN	Exon	cDNA Sequence Change	Deduced Change in Protein Sequence	Finding in Matched Buccal Swab or Remission Bone Marrow Genomic DNA Sample
253	10	c.5482C>T	p.Gln1828X	wild-type (buccal swab DNA)
2	10	c.5497G>A	p.Val1833lle	sequence change detected in buccal swab DNA sample
287	10	c.5540G>A [†]	p.Trp1847X	not tested
264*	10	c.5603A>C	p.His1868Pro	not tested
183	10	c.5618T>C	p.I1873T	wild-type (buccal swab DNA)
187*	10	c.5627C>T	p.Ala1876Val	wild-type (buccal swab DNA)
245	10	c.5644G>C	p.Ala1882Pro	wild-type (buccal swab DNA)
190*	10	c.5645_5646delCC	p.Ala1882fs	wild-type (buccal swab DNA)
146*	10	c.5665_5670delCCCAAT	p.Pro1889_Asn1890del	not tested
115*	10	c.5675dupA	p.Asn1892fs	not tested
146*	10	c.5681C>A	p.Pro1894His	not tested
154	10	c.5696T>C	p.Leu1899Pro	wild-type (buccal swab DNA)
374	10	c.5750G>A	p.Trp1917X	wild-type (buccal swab DNA)
421	10	c.5885C>T	p.Pro1962Leu	not tested
426*	10	c.5950_5957del	p.Val1984fs	wild-type (buccal swab DNA)

ABBREVIATION: UPN, unique patient number.

<u>NOTE</u>: Mutation nomenclature on the cDNA level follows the recommendations of the Human Genome Variation Society (HGVS) and is based on the reference sequence for *TET2* transcript variant 1 (NCBI GeneBank accession number NM_001127208). Exon numbering is also based on the NCBI reference transcript. The descriptions of changes on the protein level were deduced from the cDNA sequence alterations.

* This patient had more than one sequence alteration.

+ This mutation appeared homozygous on the sequencing chromatogram, indicating that either both alleles were affected or the remaining wild-type allele was lost. Table A2. Clinical and Molecular Characteristics According to TET2 Mutation Status in

199 Patients with Primary Cytogenetically Normal Acute Myeloid Leukemia Classified in

the ELN Favorable-Risk Category

Variable	TET2 Mutated	TET2 Wild-Type	Р
	n=53	n=146	
Age, years			<.001
Median	66	56	
Range	29-79	19-81	
Age group, no. (%)			<.001
<60 years	14 (26)	79 (54)	
≥60 years	39 (74)	67 (46)	
Female sex, no. (%)	28 (53)	74 (51)	.87
Race, no. (%)			1.0
White	46 (90)	130 (90)	
Nonwhite	5 (10)	15 (10)	
Hemoglobin, g/dL			.32
Median	9.3	9.5	
Range	6.7-11.9	4.8-13.4	
Platelet count, x10 ⁹ /L			.64
Median	60	68	
Range	8-510	7-481	
WBC count, x10 ⁹ /L			.04
Median	33.2	23.4	
Range	2.2-450.0	0.9-295.0	
Percentage of blood blasts			.40
Median	46	52	
Range	0-95	0-97	
Percentage of bone marrow blasts			.69
Median	67	65	
Range	11-94	10-98	
FAB category, no. (%)			
M0	0 (0)	1 (1)	
M1	7 (20)	25 (25)	
M2	12 (34)	30 (30)	
M4	9 (26)	24 (24)	
M5	7 (20)	19 (19)	
M6	0 (0)	2 (2)	
Extramedullary involvement, no. (%)	14 (26)	41 (29)	.73

Variable	TET2 Mutated	TET2 Wild-Type	Ρ
Variable	n=53	n=146	
<i>IDH1,</i> no. (%)			.001
Mutated	1 (2)	28 (19)	
Wild- <i>type</i>	51 (98)	118 (81)	
<i>IDH2,</i> no. (%)			<.001
Mutated	1 (2)	30 (21)	
- Codon R140 mutation	1	30	
- Codon R172 mutation	0	0	
Wild-type	51 (98)	116 (79)	
<i>CEBPA</i> , no. (%)			.23
Mutated	20 (38)	42 (29)	
Wild-type [†]	32 (62)	102 (71)	
<i>NPM1</i> , no. (%)			.46
Mutated	38 (72)	112 (77)	
Wild-type	15 (28)	34 (23)	
<i>FLT3</i> -ITD, no. (%)			.59
Present	6 (11)	13 (9)	
Absent	47 (89)	133 (91)	
Combined FLT3-ITD/NPM1 genotype, no. (%)			.21
NPM1 mutated and no FLT3-ITD	34 (64)	108 (74)	
<i>NPM1</i> wild-type and/or <i>FLT3</i> -ITD*	19 (36)	38 (26)	
<i>FLT</i> 3-TKD, no. (%)			.63
Present	5 (9)	19 (13)	
Absent	48 (91)	126 (87)	
<i>WT1</i> , no. (%)			1.0
Mutated	3 (6)	10 (7)	
Wild-type	50 (94)	136 (93)	
MLL-PTD, no. (%)			.36
Present	3 (7)	4 (3)	
Absent	39 (93)	128 (97)	

<u>ABBREVIATIONS</u>: ELN, European LeukemiaNet; WBC, white blood count; FAB, French-American-British classification; *FLT3*-ITD, internal tandem duplication of the *FLT3* gene; *FLT3*-TKD, tyrosine kinase domain mutation in the *FLT3* gene; *MLL*-PTD, partial tandem duplication of the *MLL* gene.

* By definition of the ELN favorable-risk category, all of these patients had CEBPA mutations.

† By definition of the ELN favorable-risk category, all of these patients had mutated *NPM1* without *FLT3*-ITD.

Table A3. List of Affymetrix Probe-Sets Differentially Expressed Between TET2-Mutated and TET2-Wild-Type

Cytogenetically Normal Acute Myeloid Leukemia Patients Classified in the ELN Favorable-Risk Category

	Probe-sets upregulated in TET2-mutated patients								
Affymetrix Probe-Set	Gene Symbol	Description	Fold Change	Р	Entrez Gene ID	Chromosome Band			
232985_s_at	DPPA4	developmental pluripotency associated 4	2.78	3.40E-04	55211	3q13.13			
210254_at	MS4A3	membrane-spanning 4-domains, subfamily A, member 3 (hematopoietic cell-specific)	2.70	2.59E-04	932	11q12.1			
<u>212843_at</u>	NCAM1	neural cell adhesion molecule 1	2.56	1.00E-07	4684	11q23.1			
<u>1554892_a_at</u>	MS4A3	membrane-spanning 4-domains, subfamily A, member 3 (hematopoietic cell-specific)	2.44	2.36E-04	932	11q12.1			
<u>218589_at</u>	LPAR6	lysophosphatidic acid receptor 6	2.44	4.90E-05	10161	13q14			
<u>230550_at</u>	MS4A6A	membrane-spanning 4-domains, subfamily A, member 6A	2.27	3.64E-04	64231	11q12.1			
<u>219666_at</u>	MS4A6A	membrane-spanning 4-domains, subfamily A, member 6A	2.22	1.02E-04	64231	11q12.1			
<u>227388_at</u>	TUSC1	tumor suppressor candidate 1	2.22	7.90E-06	286319	9p21.2			
224356_x_at	MS4A6A	membrane-spanning 4-domains, subfamily A, member 6A	2.17	8.50E-04	64231	11q12.1			
<u>223280_x_at</u>	MS4A6A	membrane-spanning 4-domains, subfamily A, member 6A	2.13	7.39E-04	64231	11q12.1			
227394_at	NCAM1	neural cell adhesion molecule 1	2.13	< 1E-07	4684	11q23.1			
<u>201425_at</u>	ALDH2	aldehyde dehydrogenase 2 family (mitochondrial)	2.08	1.04E-04	217	12q24.2			
<u>223922_x_at</u>	MS4A6A	membrane-spanning 4-domains, subfamily A, member 6A	2.08	3.92E-04	64231	11q12.1			
225331_at	CCDC50	coiled-coil domain containing 50	2.08	7.50E-06	152137	3q28			
203476_at	TPBG	trophoblast glycoprotein	2.00	8.03E-05	7162	6q14-q15			
244297_at	ANKRD18A	ankyrin repeat domain 18A	1.96	3.93E-04	253650	9p13.1			
<u>232725_s_at</u>	MS4A6A	membrane-spanning 4-domains, subfamily A, member 6A	1.92	5.33E-05	64231	11q12.1			
<u>228155_at</u>	C10orf58	chromosome 10 open reading frame 58	1.89	< 1E-07	84293	10q23.1			
206440_at	LIN7A	lin-7 homolog A (C. elegans)	1.85	4.03E-04	8825	12q21			
219651_at	DPPA4	developmental pluripotency associated 4	1.85	1.53E-04	55211	3q13.13			
209205_s_at	LMO4	LIM domain only 4	1.82	1.48E-04	8543	1p22.3			
214953_s_at	APP	amyloid beta (A4) precursor protein	1.82	8.81E-04	351	21q21.2-q21.3			
224435_at	C10orf58	chromosome 10 open reading frame 58	1.82	1.00E-07	84293	10q23.1			
209129_at	TRIP6	thyroid hormone receptor interactor 6	1.79	6.10E-06	7205	7q22			

	ID2	inhibitor of DNA binding 2, dominant negative helix-loop-helix			3398	2p25
<u>213931_at</u>	ID2B	inhibitor of DNA binding 2B, dominant negative helix-loop-helix protein (pseudogene)	1.79 7.04E-04	84099	3p14.2	
<u>228693_at</u>	CCDC50	coiled-coil domain containing 50	1.79	5.84E-04	152137	3q28
<u>235048_at</u>	FAM169A	family with sequence similarity 169, member A	1.79	5.02E-05	26049	5q13.3
243546_at		Transcribed locus Hs.658669	1.79	6.80E-06		
<u>218963_s_at</u>	KRT23	keratin 23 (histone deacetylase inducible)	1.75	3.18E-05	25984	17q21.2
<u>1559034_at</u>	SIRPB2	signal-regulatory protein beta 2	1.72	4.07E-04	284759	20p13
208782_at	FSTL1	follistatin-like 1	1.72	7.06E-04	11167	3q13.33
<u>223059_s_at</u>	FAM107B	family with sequence similarity 107, member B	1.72	9.10E-04	83641	10p13
<u>226713_at</u>	CCDC50	coiled-coil domain containing 50	1.72	6.54E-04	152137	3q28
<u>206039_at</u>	RAB33A	RAB33A, member RAS oncogene family	1.69	2.54E-04	9363	Xq26.1
213397_x_at	RNASE4	ribonuclease, RNase A family, 4	1.69	1.10E-06	6038	14q11.1
221024_s_at	SLC2A10	solute carrier family 2 (facilitated glucose transporter), member 10	1.69	1.00E-07	81031	20q13.1
<u>226311_at</u>			1.69	5.14E-04		
<u>213823_at</u>	HOXA11	homeobox A11	1.67	1.44E-05	3207	7p15-p14
<u>225123_at</u>			1.67	6.02E-04		
<u>204646_at</u>	DPYD	dihydropyrimidine dehydrogenase	1.61	2.48E-04	1806	1p22
209298_s_at	ITSN1	intersectin 1 (SH3 domain protein)	1.61	1.30E-06	6453	21q22.1-q22.2
<u>209610_s_at</u>	SLC1A4	solute carrier family 1 (glutamate/neutral amino acid transporter), member 4	1.61	6.13E-05	6509	2p15-p13
<u>213933_at</u>	PTGER3	prostaglandin E receptor 3 (subtype EP3)	1.61	8.64E-05	5733	1p31.2
<u>219288_at</u>	C3orf14	chromosome 3 open reading frame 14	1.61	1.11E-04	57415	3p14.2
<u>232686_at</u>	SIGLECP3	sialic acid binding Ig-like lectin, pseudogene 3	1.61	2.53E-04	284367	19q13.3
<u>235051_at</u>	CCDC50	coiled-coil domain containing 50	1.61	9.06E-04	152137	3q28
<u>1552388_at</u>		hypothetical protein FLJ30901	1.59	7.96E-04	150378	22q13.31
<u>203231_s_at</u>	ATXN1	ataxin 1	1.59	9.76E-04	6310	6p23
<u>203548_s_at</u>	LPL	lipoprotein lipase	1.59	2.46E-04	4023	8p22
<u>213385_at</u>	CHN2	chimerin (chimaerin) 2	1.56	9.44E-04	1124	7p15.3
<u>219295_s_at</u>	PCOLCE2	procollagen C-endopeptidase enhancer 2	1.56	2.50E-06	26577	3q21-q24
<u>226925_at</u>	ACPL2	acid phosphatase-like 2	1.56	4.63E-04	92370	3q23
200771_at	LAMC1	laminin, gamma 1 (formerly LAMB2)	1.54	6.15E-04	3915	1q31

207496_at	MS4A2	membrane-spanning 4-domains, subfamily A, member 2 (Fc fragment of IgE, high affinity I, receptor for; beta polypeptide)	1.54	5.99E-04	2206	11q13
<u>210164_at</u>	GZMB	granzyme B (granzyme 2, cytotoxic T-lymphocyte-associated serine esterase 1)	1.54	8.19E-04	3002	14q11.2
226609_at	DCBLD1	discoidin, CUB and LCCL domain containing 1	1.54	8.18E-04	285761	6q22.1
228805_at	C5orf25	chromosome 5 open reading frame 25	1.54	2.02E-04	375484	5q35.2
<u>204039_at</u>	CEBPA	CCAAT/enhancer binding protein (C/EBP), alpha	1.52	1.80E-04	1050	19q13.1
<u>212012_at</u>	PXDN	peroxidasin homolog (Drosophila)	1.52	7.04E-04	7837	2p25
213915_at	NKG7	natural killer cell group 7 sequence	1.52	3.74E-05	4818	19q13.41
233518_at		Homo sapiens cDNA FLJ11493 fis, clone HEMBA1001940.	1.52	1.51E-04		
240991_at		Transcribed locus	1.52	9.05E-04		
212607_at	AKT3	v-akt murine thymoma viral oncogene homolog 3 (protein kinase B, gamma)	1.49	6.70E-05	10000	1q43-q44
<u>212810_s_at</u>	SLC1A4	solute carrier family 1 (glutamate/neutral amino acid transporter), member 4	1.49	5.91E-04	6509	2p15-p13
<u>239950_at</u>	HOXA11AS	HOXA11 antisense RNA (non-protein coding)	1.49	8.68E-04	221883	7p15.2
<u>239934_x_at</u>		Transcribed locus Hs.662980	1.47	3.25E-04		
<u>207497_s_at</u>	MS4A2	membrane-spanning 4-domains, subfamily A, member 2 (Fc fragment of IgE, high affinity I, receptor for; beta polypeptide)	1.45	3.36E-04	2206	11q13
<u>210220_at</u>	FZD2	frizzled homolog 2 (Drosophila)	1.45	6.05E-05	2535	17q21.1
<u>212811_x_at</u>	SLC1A4	solute carrier family 1 (glutamate/neutral amino acid transporter), member 4	1.45	1.74E-04	6509	2p15-p13
<u>216472_at</u>	ITSN1	intersectin 1 (SH3 domain protein)	1.45	2.50E-04	6453	21q22.1-q22.2
<u>216628_at</u>		cDNA DKFZp586A0617 (from clone DKFZp586A0617)	1.45	1.06E-05		
<u>219038_at</u>	MORC4	MORC family CW-type zinc finger 4	1.45	3.21E-05	79710	Xq22.3
<u>228600_x_at</u>	C7orf46	chromosome 7 open reading frame 46	1.45	2.60E-04	340277	7p15.3
<u>238174_at</u>		Transcribed locus Hs.112143	1.45	6.88E-04		
<u>1553635_s_at</u>	TCTEX1D1	Tctex1 domain containing 1	1.43	7.32E-04	200132	1p31.3
<u>202914_s_at</u>	ARHGEF11	Rho guanine nucleotide exchange factor (GEF) 11	1.43	3.11E-04	9826	1q21
<u>205308_at</u>	FAM164A	family with sequence similarity 164, member A	1.43	3.22E-05	51101	8q21.12
209297_at	ITSN1	intersectin 1 (SH3 domain protein)	1.43	6.50E-06	6453	21q22.1-q22.2
213954_at	FAM169A	family with sequence similarity 169, member A	1.43	1.21E-04	26049	5q13.3
223660_at	ADORA3	adenosine A3 receptor	1.43	9.07E-04	140	1p13.2
230666_at	HOXA11AS	HOXA11 antisense RNA (non-protein coding)	1.43	6.87E-04	221883	7p15.2
232724_at	MS4A6A	membrane-spanning 4-domains, subfamily A, member 6A	1.43	5.74E-04	64231	11q12.1

236215_at			1.43	1.10E-06		
<u>228557_at</u>	L3MBTL4	I(3)mbt-like 4 (Drosophila)	1.41	4.23E-04	91133	18p11.31
<u>233446_at</u>	ONECUT2	one cut homeobox 2	1.41	2.75E-04	9480	18q21.1-q21.2
<u>202913_at</u>	ARHGEF11	Rho guanine nucleotide exchange factor (GEF) 11	1.39	2.14E-04	9826	1q21
<u>230292_at</u>		LOC100131993 similar to hCG2020760	1.39	8.12E-04	1E+08	13q14.2
<u>230446_at</u>		Transcribed locus Hs.285724	1.39	5.75E-04		
239675_at		hypothetical protein LOC283143	1.39	3.25E-04	283143	11q23.3
<u>1557014_a_at</u>	C9orf122	chromosome 9 open reading frame 122	1.37	2.60E-05	158228	9p13.1
<u>205158_at</u>	RNASE4	ribonuclease, RNase A family, 4	1.37	1.12E-04	6038	14q11.1
<u>228218_at</u>	LAMP	limbic system-associated membrane protein	1.37	4.01E-04		
<u>228565_at</u>	KIAA1804	mixed lineage kinase 4	1.37	3.23E-04	84451	1q42
<u>232309_at</u>		hypothetical protein LOC202181	1.37	6.66E-05	202181	5q35.3
<u>52975_at</u>	FAM125B	family with sequence similarity 125, member B	1.37	1.17E-04	89853	9q33.3
<u>1554636_at</u>		ENSG0000204636	1.35	6.35E-04		
<u>1559500_at</u>	VPS8	vacuolar protein sorting 8 homolog (S. cerevisiae)	1.35	9.73E-04	23355	3q27.2
<u>218532_s_at</u>	FAM134B	family with sequence similarity 134, member B	1.35	8.20E-05	54463	5p15.1
<u>234148_at</u>	LRRC8D	Homo sapiens leucine rich repeat containing 8 family, member D	1.35	7.55E-04		
<u>241808_at</u>	FAM164A	family with sequence similarity 164, member A	1.35	1.89E-05	51101	8q21.12
<u>1560522_at</u>		hypothetical protein LOC201477	1.33	7.50E-04	201477	18p11.31
<u>201349_at</u>	SLC9A3R1	solute carrier family 9 (sodium/hydrogen exchanger), member 3 regulator 1	1.33	6.41E-04	9368	17q25.1
<u>203874_s_at</u>	SMARCA1	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 1	1.33	1.92E-05	6594	Xq25
<u>218510_x_at</u>	FAM134B	family with sequence similarity 134, member B	1.33	5.27E-04	54463	5p15.1
<u>35776_at</u>	ITSN1	intersectin 1 (SH3 domain protein)	1.33	1.57E-04	6453	21q22.1-q22.2
<u>1556602_at</u>	SLC19A2	Homo sapiens solute carrier family 19 (thiamine transporter), member 2	1.32	7.75E-04	10560	1q23.3
<u>200770_s_at</u>	LAMC1	laminin, gamma 1 (formerly LAMB2)	1.32	6.68E-04	3915	1q31
<u>214829_at</u>	AASS	aminoadipate-semialdehyde synthase	1.32	4.01E-04	10157	7q31.3
<u>220609_at</u>		hypothetical protein LOC202181	1.32	5.96E-05	202181	5q35.3
<u>221828_s_at</u>	FAM125B	family with sequence similarity 125, member B	1.32	1.74E-04	89853	9q33.3
<u>239265_at</u>	TMEM20	transmembrane protein 20	1.32	3.78E-04	159371	10q23.33
240877_x_at	AMOTL1	angiomotin like 1	1.32	2.28E-05	154810	11q14.3

242045_at	ANKRD18A	Ankyrin repeat domain 18A	1.32	3.59E-04	253650	9p13.1
<u>244752_at</u>	ZNF438	zinc finger protein 438	1.32	2.99E-04	220929	10p11.23- p11.22
203143_s_at	KIAA0040	KIAA0040	1.30	4.42E-05	9674	1q24-q25
204457_s_at	GAS1	growth arrest-specific 1	1.30	6.36E-04	2619	9q21.3-q22
<u>208493_at</u>	HOXA11	homeobox A11	1.30	6.44E-04	3207	7p15-p14
<u>213555_at</u>	RWDD2A	RWD domain containing 2A	1.30	4.20E-04	112611	6q14.2
<u>239911_at</u>	ONECUT2	one cut homeobox 2	1.30	5.75E-04	9480	18q21.1-q21.2
<u>242956_at</u>	IDH1	isocitrate dehydrogenase 1 (NADP+), soluble	1.30	2.00E-04	3417	2q33.3
<u>51158_at</u>	FAM174B	family with sequence similarity 174, member B	1.30	4.05E-05	400451	15q26.1
<u>1552343_s_at</u>	PDE7A	phosphodiesterase 7A	1.28	9.90E-06	5150	8q13
212552_at	HPCAL1	hippocalcin-like 1	1.28	4.50E-04	3241	2p25.1
<u>214255_at</u>	ATP10A	ATPase, class V, type 10A	1.28	5.71E-04	57194	15q11.2
221880_s_at	FAM174B	family with sequence similarity 174, member B	1.28	1.58E-04	400451	15q26.1
228040_at		hypothetical locus MGC21881	1.28	7.39E-04	389741	9q21.11
229743_at	ZNF438	zinc finger protein 438	1.28	5.22E-04	220929	10p11.23- p11.22
<u>232664_at</u>		hypothetical gene FLJ12334 supported by AK022396; AK097927	1.28	9.64E-04	400946	2p24.1
<u>1558685_a_at</u>		hypothetical protein BC009467	1.27	1.15E-04	158960	Xq28
<u>207177_at</u>	PTGFR	prostaglandin F receptor (FP)	1.27	3.86E-04	5737	1p31.1
<u>209204_at</u>	LMO4	LIM domain only 4	1.27	1.96E-04	8543	1p22.3
<u>218615_s_at</u>	TMEM39A	transmembrane protein 39A	1.27	6.93E-04	55254	3q13.33
<u>218796_at</u>	FERMT1	fermitin family homolog 1 (Drosophila)	1.27	9.32E-04	55612	20p12.3
<u>222880_at</u>	АКТ3	v-akt murine thymoma viral oncogene homolog 3 (protein kinase B, gamma)	1.27	7.35E-04	10000	1q43-q44
<u>226454_at</u>	MARCH9	membrane-associated ring finger (C3HC4) 9	1.27	4.12E-04	92979	12q14.1
<u>1566426_at</u>		Transcribed locus Hs.683993	1.25	8.86E-04		
<u>215314_at</u>	ANK3	ankyrin 3, node of Ranvier (ankyrin G)	1.25	9.09E-04	288	10q21.2
<u>226822_at</u>	STOX2	storkhead box 2	1.25	2.96E-04	56977	4q35.1
<u>230951_at</u>		Transcribed locus Hs.369232	1.25	9.18E-05		
201612_at	ALDH9A1	aldehyde dehydrogenase 9 family, member A1	1.23	2.48E-04	223	1q23.1
<u>224229_s_at</u>	АКТЗ	v-akt murine thymoma viral oncogene homolog 3 (protein kinase B, gamma)	1.23	5.18E-04	10000	1q43-q44
<u>200831_s_at</u>	SCD	stearoyl-CoA desaturase (delta-9-desaturase)	1.22	9.24E-05	6319	10q24.31

225459_at	AMOTL1	angiomotin like 1	1.22	9.84E-04	154810	11q14.3
<u>241723_at</u>	IQGAP2	IQ motif containing GTPase activating protein 2	1.22	9.27E-04	10788	5q13.3
<u>1552788_a_at</u>	HELB	helicase (DNA) B	1.20	3.39E-04	92797	12q14.3
<u>1554701_a_at</u>	TBC1D16	TBC1 domain family, member 16	1.20	2.60E-05	125058	17q25.3
<u>231532_at</u>	NCAM1	neural cell adhesion molecule 1	1.19	5.29E-04	4684	11q23.1
<u>242879_x_at</u>			1.19	6.60E-04		
<u>204944_at</u>	PTPRG	protein tyrosine phosphatase, receptor type, G	1.18	5.70E-05	5793	3p21-p14
<u>227803_at</u>	ENPP5	ectonucleotide pyrophosphatase/phosphodiesterase 5 (putative function)	1.14	5.08E-04	59084	6p21.1-p11.2

Probe-sets downregulated in TET2-mutated patients

Affymetrix Probe-Set	Gene Symbol	Description	Fold Change	Р	Entrez Gene ID	Chromosome Band
219876_s_at	GOLGA2L1	golgi autoantigen, golgin subfamily a, 2-like 1	0.85	9.85E-04	55592	12q23.1
222432_s_at	CCDC47	coiled-coil domain containing 47	0.83	6.73E-04	57003	17q23.3
208066_s_at	GTF2B	general transcription factor IIB	0.83	3.97E-04	2959	1p22-p21
217836_s_at	ΥΥΊΑΡΊ	YY1 associated protein 1	0.83	5.11E-04	55249	1q22
210687_at	CPT1A	carnitine palmitoyltransferase 1A (liver)	0.82	9.25E-04	1374	11q13.1-q13.2
<u>203598_s_at</u>	WBP4	WW domain binding protein 4 (formin binding protein 21)	0.81	7.11E-04	11193	13q14.11
<u>225222_at</u>	HIAT1	hippocampus abundant transcript 1	0.81	1.87E-04	64645	1p21.2
<u>235269_at</u>	FAM83F	family with sequence similarity 83, member F	0.81	3.26E-05	113828	22q13.1
<u>238035_at</u>	SP3	Sp3 transcription factor	0.81	7.18E-04	6670	2q31
<u>1554229_at</u>	C5orf41	chromosome 5 open reading frame 41	0.80	6.60E-04	153222	5q35.1
<u>206003_at</u>	CEP135	centrosomal protein 135kDa	0.80	3.09E-04	9662	4q12
209861_s_at	METAP2	methionyl aminopeptidase 2	0.80	8.06E-04	10988	12q22
<u>213546_at</u>		hypothetical protein DKFZp586I1420	0.80	1.54E-04	222161	7p14.3
<u>223085_at</u>	RNF19A	ring finger protein 19A	0.80	1.15E-04	25897	8q22
<u>208844_at</u>	VDAC3	voltage-dependent anion channel 3	0.79	5.51E-04	7419	8p11.2
<u>233191_at</u>	RUFY2	RUN and FYVE domain containing 2	0.79	1.24E-04	55680	10q21.3
<u>1556224_a_at</u>	ZNF783	zinc finger family member 783	0.79	8.93E-04	155060	7q36.1
203579_s_at	SLC7A6	solute carrier family 7 (cationic amino acid transporter, y+ system), member 6	0.79	1.87E-04	9057	16q22.1
221781_s_at	DNAJC10	DnaJ (Hsp40) homolog, subfamily C, member 10	0.79	7.46E-04	54431	2q32.1
229791_at	LPCAT2	lysophosphatidylcholine acyltransferase 2	0.79	6.02E-04	54947	16q12.2

239973_at		Transcribed locus Hs.212709	0.79	2.61E-04		
220018_at	CBLL1	Cas-Br-M (murine) ecotropic retroviral transforming sequence-like 1	0.78	7.74E-04	79872	7q22.3-q31.1
1554057_at		hypothetical LOC645676	0.77	4.11E-04	645676	1q22
1558914_at	PPPDE1	PPPDE peptidase domain containing 1	0.77	8.38E-05	51029	1q44
203578_s_at	SLC7A6	solute carrier family 7 (cationic amino acid transporter, y+ system), member 6	0.77	2.11E-04	9057	16q22.1
<u>223925_s_at</u>	LUZP6	leucine zipper protein 6	0.77	6.51E-04	136319	7q33
<u>202693_s_at</u>	STK17A	serine/threonine kinase 17a	0.76	4.93E-04	9263	7p12-p14
212597_s_at	HMGXB4	HMG box domain containing 4	0.76	3.31E-04	10042	22q13.1
<u>237626_at</u>		Transcribed locus Hs.671926	0.76	1.29E-04		
<u>244561_at</u>		Homo sapiens cDNA clone IMAGE:3079901	0.76	2.80E-04		
<u>1568665_at</u>	RNF103	ring finger protein 103	0.75	1.30E-04	7844	2p11.2
<u>202427_s_at</u>	BRP44	brain protein 44	0.75	8.05E-05	25874	1q24
217845_x_at	HIGD1A	HIG1 hypoxia inducible domain family, member 1A	0.75	8.05E-05	25994	3p22.1
<u>219201_s_at</u>	TWSG1	twisted gastrulation homolog 1 (Drosophila)	0.75	9.62E-04	57045	18p11.3
<u>227718_at</u>	PURB	purine-rich element binding protein B	0.75	2.11E-04	5814	7p13
<u>64488_at</u>	IRGQ	immunity-related GTPase family, Q	0.75	3.71E-04	126298	19q13.31
<u>205288_at</u>	CDC14A	CDC14 cell division cycle 14 homolog A (S. cerevisiae)	0.75	2.12E-04	8556	1p21
<u>221595_at</u>			0.75	3.64E-05		
<u>204761_at</u>	USP6NL	USP6 N-terminal like	0.74	2.10E-06	9712	10p13
<u>210150_s_at</u>	LAMA5	laminin, alpha 5	0.74	5.12E-04	3911	20q13.2-q13.3
221896_s_at	HIGD1A	HIG1 hypoxia inducible domain family, member 1A	0.74	4.71E-05	25994	3p22.1
<u>227669_at</u>	BRP44	brain protein 44	0.73	6.33E-05	25874	1q24
<u>37408_at</u>	MRC2	mannose receptor, C type 2	0.72	6.78E-05	9902	17q23.2
<u>1557030_at</u>	GAB1	GRB2-associated binding protein 1	0.71	7.31E-04	2549	4q31.21
<u>238164_at</u>	USP6NL	USP6 N-terminal like	0.71	4.57E-04	9712	10p13
<u>1569025_s_at</u>	FAM13A	family with sequence similarity 13, member A	0.69	4.52E-04	10144	4q22.1
<u>203593_at</u>	CD2AP	CD2-associated protein	0.69	1.74E-04	23607	6p12
226278_at	SVIP	small VCP/p97-interacting protein	0.68	1.13E-05	258010	11p14.2
228442_at		Transcribed locus Hs.599855	0.68	6.04E-04		Хр
228654_at	SPIN4	spindlin family, member 4	0.68	1.49E-04	139886	Xq11.1
230285_at	SVIP	small VCP/p97-interacting protein	0.67	4.86E-04	258010	11p14.2

230006_s_at	SVIP	small VCP/p97-interacting protein	0.66	7.40E-06	258010	11p14.2
244110_at	MLL	Myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila)	0.65	2.51E-04	4297	11q23
<u>1554918_a_at</u>	ABCC4	ATP-binding cassette, sub-family C (CFTR/MRP), member 4	0.65	3.93E-04	10257	13q32
<u>203196_at</u>	ABCC4	ATP-binding cassette, sub-family C (CFTR/MRP), member 4	0.64	5.36E-04	10257	13q32
<u>1559266_s_at</u>	C10orf140	chromosome 10 open reading frame 140	0.62	9.35E-04	387640	10p12.31
<u>203680_at</u>	PRKAR2B	protein kinase, cAMP-dependent, regulatory, type II, beta	0.51	2.71E-04	5577	7q22
213515_x_at	HBG1 HBG2	hemoglobin, gamma A hemoglobin, gamma G	0.36	2.00E-04	3047 3048	11p15.5
204848_x_at	HBG1 HBG2	hemoglobin, gamma A hemoglobin, gamma G	0.33	1.29E-04	3047 3048	11p15.5
206310_at	SPINK2	serine peptidase inhibitor, Kazal type 2 (acrosin-trypsin inhibitor)	0.33	1.41E-05	6691	4q12
<u>204419_x_at</u>	HBG1 HBG2	hemoglobin, gamma A hemoglobin, gamma G	0.31	9.59E-05	3047 3048	11p15.5
<u>235700_at</u>	CT45A1 CT45A2 CT45A3 CT45A4 CT45A5 CT45A5 CT45A6	cancer/testis antigen family 45, member A1 cancer/testis antigen family 45, member A2 cancer/testis antigen family 45, member A3 cancer/testis antigen family 45, member A4 cancer/testis antigen family 45, member A5 cancer/testis antigen family 45, member A6	0.28	3.93E-04	100133581 441519 441520 441521 541465 541466	Xq26.3
<u>1567912_s_at</u>	CT45A1 CT45A2 CT45A3 CT45A4 CT45A5 CT45A6	cancer/testis antigen family 45, member A1 cancer/testis antigen family 45, member A2 cancer/testis antigen family 45, member A3 cancer/testis antigen family 45, member A4 cancer/testis antigen family 45, member A5 cancer/testis antigen family 45, member A6	0.25	2.66E-04	100133581 441519 441520 441521 541465 541466	Xq26.3

ABBREVIATION: ELN, European LeukemiaNet.

<u>NOTE</u>: Fold change indicates the ratio of average expression values of *TET2*-mutated to *TET2*-wild-type patients.

 Table A4. List of microRNA Probes Differentially Expressed Between TET2-Mutated and TET2-Wild-Type Cytogenetically

 Normal Acute Myeloid Leukemia Classified in the ELN Favorable-Risk Category

Probes upregulated in TET2-mutated patients						
Target microRNA	Probe Sequence	Fold Change	Р			
hsa-miR-148a	TGAGTATGATAGAAGTCAGTGCACTACAGAACTTTGTCTC	2.04	0.00074			
hsa-miR-148b	TCTGAAAGTCAGTGCATCACAGAACTTTGTCTCGAAAGCT	1.61	0.00229			
hsa-miR-24	TTTTACACACTGGCTCAGTTCAGCAGGAACAGGAGTCGAG	1.45	0.00428			
hsa-mir-640 (prec)	GTGACCCTGGGCAAGTTCCTGAAGATCAGACACATCAGAT	1.35	0.00236			
hsa-miR-24	AGTTGGTTTGTGTACACTGGCTCAGTTCAGCAGGAACAGG	1.35	0.00328			
hsa-miR-107	GGCATGGAGTTCAAGCAGCATTGTACAGGGCTATCAAAGC	1.33	0.00462			
	Probes down-egulated in TET2-mutated patients					
Target microRNA	Probe Sequence	Fold Change	Р			
hsa-miR-135a	AATTCACTCTAGTGCTTTATGGCTTTTTATTCCTATGTGA	0.65	0.00028			
hsa-miR-186	CTTGTAACTTTCCAAAGAATTCTCCTTTTGGGCTTTCTGG	0.41	0.00161			

ABBREVIATION: ELN, European LeukemiaNet.

<u>NOTE</u>: Fold change indicates the ratio of average expression values of *TET2*-mutated to *TET2*-wild-type patients. MicroRNA expression profiles were available only for older patients (\geq 60 years).

Table A5. List of microRNA Probes Differentially Expressed Between TET2-Mutated and TET2-Wild-Type Cytogenetically

Normal Acute Myeloid Leukemia Classified in the ELN Intermediate-I-Risk Catego	ory
--	-----

Probes upregulated in TET2-mutated patients						
Target microRNA	Probe Sequence	Fold Change	Р			
hsa-miR-331-5p	GAGTTTGGTTTTGTTTGGGTTTGTTCTAGGTATGGTCCCA	1.47	0.00271			
hsa-mir-660 (prec)	TGTGTGCATGGATTACAGGAGGGTGAGCCTTGTCATCGTG	1.43	0.00046			
hsa-mir-539 (prec)	ATTTATGATGAATCATACAAGGACAATTTCTTTTGAGTA	1.39	0.00132			
hsa-miR-498	AGCTCAGGCTGTGATTTCAAGCCAGGGGGGGGTTTTTCTAT	1.35	0.00407			
hsa-mir-204 (prec)	AGGCTGGGAAGGCAAAGGGACGTTCAATTGTCATCACTGG	1.32	0.00133			
hsa-miR-373*	GGGATACTCAAAATGGGGGGCGCTTTCCTTTTGTCTGTAC	1.30	0.00249			
Probes downregulated in TET2-mutated patients						
Target microRNA	Probe Sequence	Fold Change	Р			
hsa-miR-374a	ACATCGGCCATTATAATACAACCTGATAAGTGTTATAGCA	0.69	0.00426			
hsa-miR-152	ACTCGGGCTCTGGAGCAGTCAGTGCATGACAGAACTTGGG	0.68	0.00280			
hsa-miR-126*	GCTGGCGACGGGACATTATTACTTTTGGTACGCGCTGTGA	0.66	0.00120			
hsa-miR-19b	TTCTGCTGTGCAAATCCATGCAAAACTGACTGTGGTAGTG	0.65	0.00177			
hsa-miR-590-5p	TAGCCAGTCAGAAATGAGCTTATTCATAAAAGTGCAGTAT	0.63	0.00308			
hsa-miR-454	GTTCTGAGTAGTGCAATATTGCTTATAGGGTTTTGGTGTT	0.61	0.00042			
hsa-miR-126	TGTGACACTTCAAACTCGTACCGTGAGTAATAATGCGCCG	0.53	0.00218			
hsa-miR-126	ACACTTCAAACTCGTACCGTGAGTAATAATGCGCCGTCCA	0.48	0.00031			
hsa-miR-126	ACACTTCAAACTCGTACCGTGAGTAATAATGCGCCGTCCA	0.47	0.00035			

<u>ABBREVIATION:</u> ELN, European LeukemiaNet.

<u>NOTE</u>: Fold change indicates the ratio of average expression values of *TET2*-mutated to *TET2*-wild-type patients. MicroRNA expression profiles were available only for older patients (\geq 60 years).

Table A6: Treatment Outcomes According to TET2 Mutation Status in Subgroups within

the ELN	Favorable-Risk	Category
---------	----------------	----------

	Molecular subgroup	Endpoint	TET2 Mutated	<i>TET2</i> Wild-Type	Р
	Mutated NPM1		n=34	n=108	
	without <i>FLT</i> 3-ITD	Event-free survival			.003
	n=142	Median, years	0.8	1.8	
		% event-free at 3 years (95% CI)	21 (19-35)	42 (32-51)	
		Complete remission, no. (%)	25 (74)	99 (90)	.02
		Disease-free survival			.046
		Median, years	1.2	2.1	
		% disease-free at 3 years (95% CI)	24 (10-42)	46 (36-55)	
ELN		Overall survival			.07
favorable-		Median, years	1.7	3.8	
risk group		% alive at 3 years (95% CI)	35 (19-51)	54 (44-63)	
n=199	Mutated CEBPA		n=20	n=42	
	n=62	Event-free survival			.009
		Median, years	0.5	2.2	
		% event-free at 3 years (95% CI)	20 (6-39)	45 (30-59)	
		Complete remission, no. (%)	15 (75)	37 (88)	.27
		Disease-free survival			.03
		Median, years	0.8	4.1	
		% disease-free at 3 years (95% CI)	27 (8-50)	51 (34-66)	
		Overall survival			.003
		Median, years	1.2	3.6	
		% alive at 3 years (95% CI)	25 (9-45)	55 (39-68)	

<u>ABBREVIATIONS:</u> CI, confidence interval; ELN, European LeukemiaNet.

Table A7: Treatment Outcomes According to *TET2* Mutation Status in Subgroups withinthe ELN Intermediate-I-Risk Category

	Molecular Subgroup	Endpoint	<i>TET2</i> Mutated	<i>TET2</i> Wild-Type	Р
	Mutated NPM1		n=24	n=79	
	and <i>FLT3-</i> ITD;	Event-free survival			.66
	wild-type CEBPA	Median, years	0.5	0.6	
	n=103	% event-free at 3 years (95% CI)	25 (10-43)	13 (6-21)	
		Complete remission, no. (%)	19 (79)	60 (76)	1.0
		Disease-free survival			.67
		Median, years	0.5	0.6	
		% disease-free at 3 years (95% CI)	32 (13-52)	17 (9-27)	
		Overall survival			.90
		Median, years	0.8	0.8	
		% alive at 3 years (95% CI)	29 (13-48)	24 (15-34)	
	Wild-type NPM1		n=6	n=18	
	and <i>FLT</i> 3-ITD; wild-type <i>CEBPA</i>	Event- free survival*			
ELN intermediate I		Median, years	0.4	0.2	
risk group	n=24	% event-free at 3 years (95% CI)	17 (1-52)	0	
n=219		Complete remission, n (%)	3 (50)	7 (39)	.67
		Disease-free survival [†]			
		Overall survival*			
		Median, years	0.7	0.8	
		% alive at 3 years (95% CI)	17 (1-52)	0	
	Wild-type NPM1		n=12	n=80	
	without <i>FLT</i> 3-ITD;	Event- free survival			.40
	wild-type CEBPA	Median, years	0.3	0.6	
	n=92	% event-free at 3 years (95% CI)	0	8 (3-15)	
		Complete remission, no. (%)	6 (50)	48 (60)	.54
		Disease-free survival*			
		Median, years	0.8	1.0	
		% disease-free at 3 years (95% CI)	0	13 (5-23)	
		Overall survival			.79
		Median, years	1.4	1.2	
		% alive at 3 years (95% CI)	8 (1-31)	19 (11-28)	

ABBREVIATIONS: CI, confidence interval; ELN, European LeukemiaNet.

*Insufficient number of events for statistical comparison.

[†]To few patients to provide median or 3-year disease-free survival.

Figure Legends

Figure A1. Frequency of *TET2* mutations across decades of age in 418 patients with primary cytogenetically normal acute myeloid leukemia. The heights of the bars represent the prevalence of *TET2* mutations in patients aged 18–29 years, 30–39 years, 40–49 years, 50–59 years, 60–69 years, and 70 years or older. The *P*-value for trend, analyzing *TET2* mutation frequency across age groups, was calculated by the Armitage trend test.

Figure A2. Heat map of the gene-expression signature associated with *TET2* mutations in patients with ELN favorable-risk, primary cytogenetically normal acute myeloid leukemia. Rows represent probe-sets, and columns represent individual patients. Patients are grouped by *TET2* mutation status and genes are ordered by hierarchical cluster analysis. Expression values of the probe-sets are represented by color, with green indicating expression less than, and red indicating expression greater than, the median value for the given probe-set. One-hundred-fifty probe-sets were upregulated and 63 probe-sets were downregulated in patients with *TET2* mutations, as compared with *TET2* wild-type patients. Arrows identify genes that are discussed in the text, with vertical bars indicating multiple probe-sets representing the same gene.

Figure A3. Heat maps of the microRNA-expression signatures associated with *TET2* mutations in (A) ELN favorable-risk and (B) ELN intermediate-I-risk patients \geq 60 years with primary cytogenetically normal acute myeloid leukemia. Rows represent microRNA probes, and columns represent individual patients. Patients are grouped by *TET2*

mutation status and microRNAs are ordered by hierarchical cluster analysis. *miR-24* is listed twice, and *miR-126* is listed three times, because they are represented by two or three distinct probes in the signature, respectively. Expression values of the probes are represented by color, with green indicating expression less than, and red indicating expression greater than, the median value for the given probe. Among favorable-risk patients, 6 microRNA probes were significantly upregulated and 2 were downregulated in *TET2*-mutated versus *TET2*-wild-type patients. In the intermediate-I-risk group, 6 probes were upregulated in *TET2*-mutated versus *TET2*-mutated versus *TET2*-wild-type patients, and 9 were downregulated. There was no overlap between the microRNA probes contained in these two signatures. Arrows highlight microRNAs that are discussed in the text.

Figure A4. Outcomes according to the European LeukemiaNet (ELN) risk classification in our cohort of cytogenetically normal acute myeloid leukemia (CN-AML) patients. (A) Disease-free survival and (B) overall survival of CN-AML patients in the ELN favorableand intermediate-I-risk categories. The favorable-risk group is defined as patients with mutated *CEBPA* and/or mutated *NPM1* without *FLT3*-ITD. All remaining CN-AML patients belong to the intermediate-I-risk category.

Figure A5. Association of *TET2* mutations with survival in molecular subsets of ELN favorable-risk cytogenetically normal acute myeloid leukemia. (A) Disease-free survival and (B) overall survival according to *TET2* mutation status, in patients with mutated *NPM1* without *FLT3*-ITD. (C) Disease-free survival and (D) overall survival according to

TET2 mutation status in patients with mutated *CEBPA*. Abbreviations: mut, mutated; wt, wild-type.

Figure A6. Association of *TET2* mutations with survival in molecular subsets of ELN intermediate-I-risk cytogenetically normal acute myeloid leukemia. (A) Overall survival according to *TET2* mutation status, in patients with mutated *NPM1* and *FLT3*-ITD and wild-type *CEBPA*. (B) Overall survival according to *TET2* mutation status in patients with wild-type *NPM1* without *FLT3*-ITD, and wild-type *CEBPA*. (C) Overall survival according to *TET2* mutation status in patients with wild-type *NPM1* without *FLT3*-ITD, and wild-type *NPM1* and *FLT3*-ITD, and wild-type *NPM1* and *FLT3*-ITD, and wild-type *NPM1* and *FLT3*-ITD, and wild-type *CEBPA*. (C) Overall survival according to *TET2* mutation status in patients with wild-type *NPM1* and *FLT3*-ITD, and wild-type *CEBPA*. Abbreviations: mut, mutated; wt, wild-type.

Figure A2

Figure A3

В

Figure A5

