Supporting Information

Stahl et al. 10.1073/pnas.1014125108

SI Materials and Methods

Mutant Construction. Mutants in the genes cj0481, cj0483, cj0486, cj0487, and cj0490 were constructed using a mutagenesis and gene-replacement strategy. The target gene was PCR-amplified using the primers listed in Table S3 and the genomic DNA of NCTC 11168 was used as the template. All primers used for these cloning reactions were designed for use with the In-fusion Dry down PCR cloning kit (Clontech). The PCR products were cloned into BamHI-digested pUC19 plasmids using the manufacturer's protocols. Once recombinant plasmids were obtained, they were used as a template for an inverse PCR, so as to delete regions within the gene, and create a site for the insertion of a chloramphenicol resistance cassette (cat). The primers used for the inverse PCR are listed in Table S3. The cat gene was amplified from pRY111 using Pfx polymerase (Invitrogen) and the primers indicated in Table S3. The *cat* gene was then cloned into the inverse PCR product using the Clontech kit, as above. Constructs were confirmed by sequencing and the recombinant plasmids were naturally transformed into motile Campylobacter jejuni NCTC 11168, as described previously (1, 2) by selecting for chloramphenicol resistance on MH agar. The exception to this protocol was the mutation of cj0486. The C. jejuni cj0486 mutant was created by blunt insertion of the SmaI-cut 1488 bp kanamycin cassette from pWM2 into the SpeI-cut C. jejuni cj0486 cloned into pBR322 described above. Electroporation of 1 µg of this plasmid into C. jejuni NCTC 11168 was performed, as described previously (3), selecting for kanamycin-resistant C. jejuni transformants. Constructs were confirmed by PCR and sequence analysis of the recombinant gene.

C. *jejuni* **Mutant Complementation.** The plasmid used to construct CjWM227a was kindly provided by Qijing Zhang (Iowa State University, Ames, IA). This construct contained the amplified region *cj0486-cj0490*, cloned into the pRRK vector (4) as described in by Muraoka et al. (5). This construct was transformed into the $\Delta cj0487$ mutant to create the *cj0486-cj0490* complemented $\Delta cj0487$ strain. To construct the $\Delta cj0486+(cj0490)$ strain, the pRRKCj0486-cj0490 plasmid was digested with MfeI-HF to remove the kanamycin-resistance cassette and replace it with a chloramphenicol-resistance cassette. The resultant plasmid pRRC486-490 was transformed into the $\Delta cj0486$ mutant.

Complementation of an Escherichia coli fucP Mutant with Ec-fucP and cj0486. The fucP genes from Escherichia coli and C. jejuni (cj0486) were PCR-amplified to contain ribosome binding sites. A 1,354bp PCR product containing the *E. coli fucP* gene was obtained with oligonucleotides EfucP_F, EfucP_R, and chromosomal DNA of E. coli K12; a 1,317 bp C. jejuni-fucP containing PCR product was obtained using oligonucleotides CfucP F, CfucP R, and chromosomal DNA of C. jejuni NCTC11168. Full-length E. coli fucP and C. jejuni cj0486 genes were cloned into BamHI or SalI cut pBR322 within the tetracycline gene. For further complementation analysis of the E. coli fucP mutant plasmid, pCE111-28 was linearized with EcoRV and ligated with the fucP gene containing PCR products. One positive candidate after restriction analyses with PstI (for the insertion and correct orientation of the E. coli fucP gene) or HindIII (for the insertion and correct orientation of the C. jejuni fucP gene) was used to complement the E. coli fucP mutant strain.

Mucin Isolation and Electrospray Ionization Mass Spectrometry Analysis. Intestinal sections (duodenum, jejunum, ileum, and cecum) recovered from killed piglets, or ceca recovered from broiler chicks, were cut longitudinally to reveal the mucus lining. Luminal contents were removed by washing with PBS buffer and the internal surface was scraped into a microcentrifuge tube using a scalpel. The mucus was emulsified with 15% vol/vol 1× PBS buffer and was centrifuged twice at $28,400 \times g$ for 20 min to remove solid material. The crude mucin was washed in 70% ethanol and then dialyzed in MilliQ water and lyophilized overnight. All mucin samples were then treated with NaBH4 and NaOH overnight at 42 °C (β-elimination) to release the O-linked glycans (6). Purified mucin O-glycans were analyzed using a 4000 Q-Trap (AB/MDS Sciex) equipped with a microspray interface. Precursor ion scans at m/z 224, corresponding to the fragment ion of the reducing end, were acquired with a scan time of 2 s at a step size of 0.5 Da. The collision energy was ramped from 40 to 80 V over the scan range of m/z 600 to 1,400.

Confirmation of Operonic Structure. The organization of the genes *cj0481* to *cj0490* was confirmed to be in an operonic structure by PCR amplification of regions spanning neighboring genes using cDNA as a template. Total RNA was extracted from cultures grown in medium containing L-fucose, as described earlier. The total RNA was converted to cDNA using SuperScript II reverse transcriptase (Invitrogen), following the manufacturer's protocols. To amplify the regions in between genes, the primers previously used for the inverse PCR step of mutant construction were used (Table S3). PCR products from the cDNA template.

Total RNA Extraction for Real-Time PCR and Microarray Studies. Cultures of C. jejuni NCTC 11168 were inoculated into filtersterilized MEM α medium containing 20 μ M FeSO₄ and 25 mM L-fucose, UV-sterilized MEMa medium containing 2 mg/mL porcine gastric mucin (Sigma) or control medium of MEMa containing 20 mM sodium pyruvate and 20 µM FeSO₄. Cultures were grown to an OD at 600 nm of 0.2, representing midlog phase, at which point the RNA quality was preserved by one of two methods. A 1/10-volume stop solution of 10% buffer saturated phenol (pH 4.3) and ethanol was added to the fucose-containing culture. However, this stop solution proved insufficient to preserve RNA quality in the mucin-containing culture so a 1/1 volume of RNAlater (Ambion) was used in this case. Total RNA was extracted using a hot-phenol extraction method as described previously (1, 2, 7). The RNA was treated twice with Dnase I (Epicentre) and the absence of genomic DNA was confirmed by PCR. Final RNA quality and quantity was ascertained using BioRad's Experion StdSensRNA system using the manufacturer's protocols.

Microarray Hybridization and Analysis. Microarray slides and labeled cDNA probes were prepared and hybridized as described previously (1, 2, 7). Complementary DNA probes from control cultures grown in MEM α containing pyruvate were labeled with indocarbocyanine [Cy3], and experimental samples, from cultures containing L-fucose or mucin were labeled with indodicarbocyanine [Cy5]. Once prepared, the arrays were scanned with a laser-activated confocal scanner (ScanArray Gx; Perkin-Elmer) at a resolution of 10 μ m. The signal intensities of each spot were collected using ScanArray software. Spots exhibiting hybridization anomalies were excluded from the analysis. The raw median fluorescence intensity values were background-subtracted, and spots with background-subtracted values less than three times the SD of the local background in both channels were also excluded from further analysis.

Subsequently, the background-subtracted fluorescent intensity in each wavelength (channel 1 for Cy3 and channel 2 for Cy5) was normalized using the MIDAS software (available from TIGR, http://www.tigr.org/software/) and by applying a locally weighted linear regression (Lowess), as previously described (7). Microarray data were collected from three independent biological replicates and three technical replicates for each biological replicate, for a total of nine microarray slides for each condition. Each slide contained triplicates of each probe, yielding a total of 27 replicate spots for analysis. Finally, the ratio of channel 2 to channel 1 was converted to log₂, and the data were statistically analyzed using the empirical Bayes method, as previously described (7).

Quantitative RT-PCR. Quantitative RT-PCR was conducted using the Applied Biosystems 7300 DNA analyzer and the Qiagen Quantitect SYBR Green RT-PCR kit using the manufacturer's protocols and as described previously (1). Each sample used total RNA that was extracted from cultures of *C. jejuni NCTC11168*, $\Delta c j0481$, $\Delta c j0486$, $\Delta c j0487$, and the complemented strains: $\Delta c j0486 + (c j0486 - c j0490)$ and $\Delta c j0487 + (c j0486 - c j0490)$, grown in MEM α supplemented with 25 mM L-fucose. RNA expression relative to the wild-type control was determined for the genes *c j0480c*, *c j0481*, *c j0486*, and *c j0487*, with *rpsL* acting as an endogenous control.

SI Results

Intestinal Mucin O-glycan Compositions Differ in Chickens and Pigs. Because intestinal mucin glycoproteins are heavily glycosylated with *O*-linked glycans, we characterized the neutral and acidic *O*-glycans released from porcine and chicken gastrointestinal mucins to identify differences in glycan composition between these two model systems that may be relevant to *C. jejuni* disease. Although both chicken and pig mucin *O*-glycans showed similar levels of fucosylation, the fucosylated oligosaccharides from chicken mucin were predominantly sulfated (38% versus 11–14% in the pig samples) and contained relatively low amounts of NeuAc (Fig. S5). In contrast, the pig mucin *O*-glycans showed very little modification with sulfate, but contained greater amounts of NeuAc and also NeuGc (Fig. S5). The lack of de-

- 1. Palyada K, et al. (2009) Characterization of the oxidative stress stimulon and PerR regulon of *Campylobacter jejuni*. *BMC Genomics* 10:481.
- Reid AN, Pandey R, Palyada K, Naikare H, Stintzi A (2008) Identification of Campylobacter jejuni genes involved in the response to acidic pH and stomach transit. Appl Environ Microbiol 74:1583–1597.
- 3. Guerry P, Yao R, Alm RA, Burr DH, Trust TJ (1994) Systems of experimental genetics for *Campylobacter* species. *Methods Enzymol* 235:474–481.
- Karlyshev AV, Wren BW (2005) Development and application of an insertional system for gene delivery and expression in *Campylobacter jejuni*. *Appl Environ Microbiol* 71: 4004–4013.

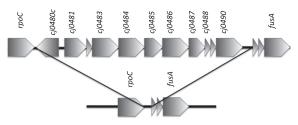
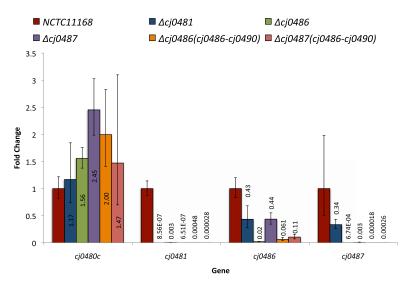
tectable NeuGc in chick mucins is consistent with what has recently been reported (8).

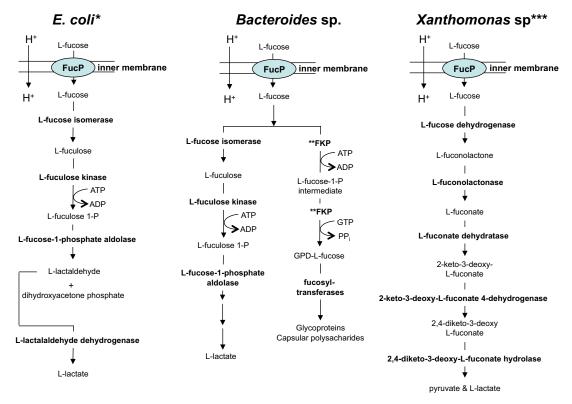
Genes *cj0481* **to** *cj0490* **Exist as a Single Operon**. We used PCR of sections spanning neighboring genes and cDNA derived from extracted total RNA to confirm that the genes *cj0481* to *cj0490* are expressed as a single transcript. PCR products were obtained from regions spanning each pair of genes *cj0481-cj0483*, *cj0483-cj0484*, *cj0484-cj0485*, *cj0485-cj0486*, *cj0486-cj0487*, and *cj0487-cj0490*. Each of these products was of equal size to the product obtained from a genomic DNA template. The exception to this was the region in between *cj0480c* and *cj0481*. As these genes are oriented in opposite directions, they should not be transcriptionally linked. A product was obtained from the genomic DNA template.

Other Genes Transcriptionally Regulated in the Presence of L-Fucose. Cultures grown in the presence of L-fucose also exhibited an upregulation of metabolic genes, including most of the citric acid cycle, proline metabolism (*putAB*), and genes involved in aspartate/glutamate transport and metabolism (*peb1A*, *cj0919*, *cj0920*, *pebC*, *aspB*). Notable groups of genes exhibiting down-regulation included oxidative stress response genes (*ahpC*, *sodB*, *tpx*), elements of the electron transport chain (*cydAB*, *petABC*), chemotaxis (*cetAB*, *tlp4*), and the outer membrane protein (*omp50*).

Disruption of the L-Fucose Permease Gene *cj0486* **Disrupts Expression of Genes both Up and Downstream.** Quantitative RT-PCR was conducted on the mutants *cj0481*, *cj0486*, and *cj0487*, as well as mutants complemented with the region *cj0486–cj0490* (Fig. S3). Although the mutant *cj0481* exhibited slightly reduced expression of the downstream genes *cj0486* and *cj0487*, the mutants *cj0486* and *cj0487* saw little to no expression of other genes within the operon (in particular *cj0481* was not expressed in either mutant). Although restoring copies of the genes into an rRNA cluster within the genome partially restored expression of the target genes, this did not restore the expression of other genes within the operon. This finding could indicate that a higher level of transcription of the permease genes is necessary to allow for sufficient uptake of L-fucose to stimulate transcription of the operon.

- Muraoka WT, Zhang Q (2011) Phenotypic and genotypic evidence for L-fucose utilization by Campylobacter jejuni. J Bacteriol 193:1065–1075.
- Zhang J, Lindsay LL, Hedrick JL, Lebrilla CB (2004) Strategy for profiling and structure elucidation of mucin-type oligosaccharides by mass spectrometry. *Anal Chem* 76: 5990–6001.
- 7. Palyada K, Threadgill D, Stintzi A (2004) Iron acquisition and regulation in Campylobacter jejuni. J Bacteriol 186:4714–4729.
- Schauer R, Srinivasan GV, Coddeville B, Zanetta JP, Guérardel Y (2009) Low incidence of N-glycolylneuraminic acid in birds and reptiles and its absence in the platypus. Carbohydr Res 344:1494–1500.


Fig. S1. Genomic region surrounding the putative fucose permease (*fucP, cj0486*). The upper strand is the region as it appears in *C. jejuni* strains NCTC 11168, RM1221, CF93-6, 84–25, *C. jejuni* subsp. *doylei* 269.97, and *C. coli* RM2228. The lower strand is the region as it appears in the strains lacking *fucP: C. jejuni* 81–176, CG8486, HB93-13, 260.94, and 81116.

<i>Ec</i> FucP	MGNTSIQTQSYRAVDKDAGQSRSYIIPFALLCSLFFLWAVANNLN	60
Cj0486	MTDSKNIKIAIVLVTSLFFLWGVSYGLI	43
Cj0484	MKHANSIKLELVCKKISWRILPLIVLMFCLSMLDRTNISFVKSHIEIDAGIGE	53
<i>Ec</i> FucP	FQAGLIQSAFYFGYFIIPIPAGILMKKLSYKAGIITGLFLYALGAALFWPAAEIMNYTLF	120
Cj0486	HESGFLQFAYFGAYFIIALPAGYIANRFSYKMGIIFGLALYAIGALLIIPATNLASFHLF	103
Cj0484	AAYALGAGIFFIGYAIFEVPSNLFLHKLGAKIWLSRIMITWGLVTMAMIFIQGEISFYVL	113
<i>Ec</i> FucP	LVGLFIIAAGLGCLETAANPFVTVLGPESSGHFRLNLAQTF <mark>N</mark> SFGAIIAVVFGQSLIL	178
Cj0486	LFAFFILACGIGSLETSANPYMTKLGDEKNASFRINAAQSF <mark>N</mark> GLGQFVGPIIGGALFL	161
Cj0484	RFLLGLTEAGFSPGIILYLSYFFPAIYRSKAYGIYQMGVPIAFVFGSLISGFILDYTPNI	173
<i>Ec</i> FucP	SNVPHQSQDVLDKMSPEQLSAYKHSLVLSVQTPYMIIVAIVLLVALLIMLTKFPALQSDN	238
Cj0486	SITKQEEGASKEQIQAALVANMGNVQLVYIGIAVIVILILIAFVANKLPEGSA	214
Cj0484	YFKNWQWMFLIEGGITVLVGIFCLFYLDSHPKDAKWLDIKEKDILLKHIEISNTKAKDYS	233
<i>Ec</i> FucP	HSDAKQGSFSASLSRLARIRHWRWAVLAQFCYVGAQTACWSYLIRYAVEEIPGMTAGFAA	298
Cj0486	VSDDYKQKDDSKPIYVFKHRHFNLGLLAQFLYIANQVAAGAFFINYVVEHNEGLKDAQGA	274
Cj0484	IKDIFKSILVWKFVFVYFCIQLSVYGVLFYLPSKIAQILQINVGFEV	280
<i>Ev</i> FucP	NYLTGTMVCFFIGRFTGTWLISRFAPHKVLAAYALIAMALCLISAFAGGHVGLIALTLCS	358
Cj0486	YYFSIALVAFMLGRIVSTPLMKIIKGEKILGFYSLINVLICFSLYFASGFFSIVLLIALF	334
Cj0484	GLLNAIPWIFVFIALPIFTSLADKKHSWNLHAILFLLLASLSMIASTFVTNLAAFLFF	338
<i>Ec</i> FucP	AFMSIQYPTIFSLGIKNLG-QDTKYGSSFIVMTIIGGGIVTPVMGFVSDAAGN-	410
Cj0486	FFMSISFPTIFAVATKNLPLNQVKLGGSLLVMSIVGGAIMPIIIGFINDHYGTG	388
Cj0484	ISLAAIGFIVIQPIFWNLPTQVLKGKGAAAAIALIGSLGNLGGFVAPTLKTYIENHFGVE	398
<i>Ec</i> FucP	IPTAELIPALCFAVIFIFARFRSQTATN 438	
Cj0486	AGYLAMAPLFLYVAWYGFIGSKVRKNAKDF 418	
Cj0484	FGLIVLALIAIL 410	

Fig. 52. The sequence alignent between the *E. coli* FucP, and the *C. jejuni* Cj0486 and Cj0484 proteins. The alignment was done using the online program ClustalW2 from EMBL-EBI, http://www.ebi.ac.uk/Tools/msa/clustalw2/. Highlighted in green are the amino acid residues Asp46, Glu135, and Asn146.

Fig. S3. Expression of the genes *cj0480c*, *cj0481*, *cj0486*, and *cj0487* as determined by real-time PCR from total RNA extracts from *C. jejuni NCTC11168*, $\Delta cj0481$, $\Delta cj0486$, $\Delta cj0487$, and the complemented strains: $\Delta cj0486+(cj0486-cj0490)$ and $\Delta cj0487+(cj0486-cj0490)$. Results are displayed as fold-change relative to the *C. jejuni* NCTC11168 wild-type.

Fig. S4. General pathways for fucose uptake and utilization in *E. coli, Bacteroides* sp., and *Xanthomonas* sp. are depicted. FucP, fucose proton symporter of the major facilitator family; FucK, fuculose kinase. Biosynthetic proteins are in bold; *adapted from Baldomà and Aguilar (1), **FKP: bifunctional L-fucokinase/ GDP-fucose pyrophosphorylase (2, 3); ***modified from Yew et al. (4)

Baldomà L, Aguilar J (1988) Metabolism of L-fucose and L-rhamnose in Escherichia coli: Aerobic-anaerobic regulation of L-lactaldehyde dissimilation. J Bacteriol 170:416–421.
Wang F, Xiao X, Saito A, Schrempf H (2002) Streptomyces olivaceoviridis possesses a phosphotransferase system that mediates specific, phosphoenolpyruvate-dependent uptake of N-

acetylglucosamine. Mol Genet Genomics 268:344–351.

3. Coyne MJ, Reinap B, Lee MM, Comstock LE (2005) Human symbionts use a host-like pathway for surface fucosylation. Science 307:1778–1781.

4. Yew WS, et al. (2006) Evolution of enzymatic activities in the enolase superfamily: L-Euconate dehydratase from Xanthomonas campestris. Biochemistry 45:14582-14597.

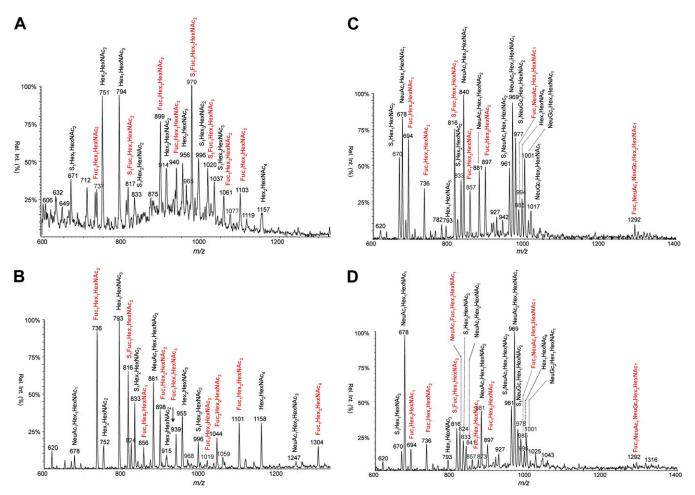


Fig. S5. Precursor ion mass spectra of ion at *m*/z 224 (positive ion detection mode): (A) O-glycans released from chicken cecal mucin; (B) O-glycans released from pig gastric mucin (purchased from Sigma); (C) O-glycans released from piglet ileum; (D) O-glycans released from piglet cecum.

Table S1. Complete list of genes identified to be differentially expressed in *C. jejuni* NCTC 11168 when grown in minimal media in the presence of 25 µM L-fucose compared with growth in media lacking L-fucose: Fucose microarray

Gene number	Gene name	Fold-change log ₂	Bayes.p	Genome annotation
Up-regulated				
cj0481	dapA	4.36611	3.05E-11	Putative dihydrodipicolinate synthase
cj0483	uxaA	4.36413792	4.40E-13	Putative altronate hydrolase
cj0484	cj0484	3.74781682	2.32E-11	Putative MFS (Major Facilitator Superfamily) transport protein
cj0486	cj0486	3.69370417	1.97E-11	Putative sugar transporter
cj0485	cj0485	3.38307458	4.27E-11	Putative oxidoreductase
cj0487	cj0487	3.14743458	4.22E-10	Putative amidohydrolase
cj0490	ald	2.99369783	6.14E-10	Putative aldehyde dehydrogenase
cj1503c	putA	2.65269167	2.78E-11	Putative proline dehydrogenase
cj1502c	putP	2.535035	1.03E-10	Putative sodium/proline symporter
cj0917c	, cstA	2.41062708	2.50E-09	Putative integral membrane protein
cj1537c	acs	2.31594208	3.43E-10	Acetyl-CoA synthetase
cj0488	cj0488	2.01624375	3.53E-08	Conserved hypothetical protein
cj0482	uxaA	1.91812375	1.82E-09	Putative altronate hydrolase
cj0921c	peb1A	1.87636	4.81E-08	Aspartate/glutamate-binding ABC transporter protein
сј0919с	сј0919с	1.80535083	8.53E-10	Putative ABC-type amino acid transporter permease protein
cj1682c	gltA	1.70775458	1.81E-09	Citrate synthase
cj0922c	pebC	1.56586042	1.42E-08	ABC-type amino acid transporter ATP-binding protein
cj0920c	cj0920c	1.53398875	3.99E-08	Putative ABC-type amino acid transporter permease protein
cj1541	cj1541	1.50247792	3.13E-11	Conserved hypothetical protein
cj0021c	cj0021c	1.43879667	3.69E-09	Putative fumarylacetoacetate (FAA) hydrolase family protein
cj1158c	cj1158c	1.430605	1.42E-05	Small hydrophobic protein
cj0489	ald	1.41285565	4.90E-07	Putative aldehyde dehydrogenase
cj0074c	cj0074c	1.3800625	2.01E-10	Putative iron-sulfur protein
cj0075c	cj0075c	1.3614325	1.57E-09	Putative oxidoreductase iron-sulfur subunit
cj0437	sdhA	1.35764458	1.42E-06	Succinate dehydrogenase flavoprotein subunit
cj0438	sdhB	1.214365	8.08E-06	Putative succinate dehydrogenase iron-sulfur protein
cj1619	kqtP	1.21231	2.21E-05	α -Ketoglutarate permease
cj0073c	cj0073c	1.18393542	8.59E-08	Conserved hypothetical protein
cj0835c	acnB	1.16229458	1.85E-10	Aconitate hydratase
cj0833c	cj0833c	1.11848833	1.83E-09	Putative oxidoreductase
cj0689	ackA	1.09401826	5.11E-09	Acetate kinase
cj1681c	cysQ	1.04634458	8.37E-11	CysQ protein homolog
cj1192	dctA	1.03423458	1.09E-09	Putative C4-dicarboxylate transport protein
cj0533	cj0553	1.0199275	5.59E-09	Putative integral membrane protein
cj0832c	cj0832c	0.977855	4.56E-13	Putative Na ⁺ /H ⁺ antiporter family protein
cj0853c	hemL	0.96895417	3.07E-09	Glutamate-1-semialdehyde 2,1-aminomutase
cj0688	pta	0.96819375	2.66E-08	Putative phosphate acetyltransferase
cj0522	cj0552	0.95287417	1.45E-08	Putative membrane protein
cj1625c	sdaC	0.92356917	3.00E-10	Amino acid transporter
cj0439	sdhC	0.91213167	0.00011757	Putative succinate dehydrogenase subunit C
cj0850c	cj0850c	0.90949087	5.03E-12	Putative MFS (Major Facilitator Superfamily) transport protein
cj1388	cj1388	0.89035625	1.19E-05	Putative endoribonuclease L-PSP
cj0076c	lctP	0.88469348	1.58E-08	L-Lactate permease
cj1542	cj1542	0.87182792	9.77E-08	Putative allophanate hydrolase subunit 1
cj0427	cj0427	0.84059	4.65E-09	Hypothetical protein
cj0203	cj0203	0.82591125	1.92E-12	Putative citrate transporter
cj0203 cj0903c	cj0203	0.80671125	1.33E-06	Putative amino acid transport protein
cj0982c	cjaA	0.79958792	1.36E-11	Putative amino acid transporter periplasmic solute-binding proteir
cj0762c	aspB	0.78819083	1.35E-06	Aspartate aminotacia transporter perplasmic solate-binding protein Aspartate aminotransferase
cj0702C cj0393c	mqo	0.78807833	4.02E-09	Putative malate:quinone oxidoreductase
cj0333C	cj0834c	0.78551348	5.66E-08	Ankyrin repeat-containing putative periplasmic protein
cj0854C	cj1543	0.76831917	3.90E-10	Putative allophanate hydrolase subunit 2
cj1624c	sdaA	0.72731542	1.28E-07	
cj1824c	cj1389	0.72731342	7.42E-07	Pseudogene (putative C4-dicarboxylate anaerobic carrier)
•	•			
cj0534 ci0554	sucD	0.70539083	2.65E-11	Succinyl-coA synthetase α chain
cj0554	cj0554	0.69407667	2.00E-06	Hypothetical protein
cj0533 ci1200	sucC	0.67438458	1.57E-10	Succinyl-coA synthetase β chain
cj1200 ci0521	cj1200 icd	0.64165539	2.86E-05	Putative NLPA family lipoprotein
cj0531	icd	0.63176625	4.58E-09	Isocitrate dehydrogenase
cj1719c	leuA	0.62830458	1.63E-09	2-IsopropyImalate synthase
cj0373	cj0373	0.61054458	2.23E-10	Putative D-2-hydroxyacid dehydrogenase

PNAS PNAS

Table S1. Cont.

PNAS PNAS

Gene number	Gene name	Fold-change log ₂	Bayes.p	Genome annotation
cj1008c	aroB	0.60434	1.59E-09	3-Dehydroquinate synthase
cj0555	cj0555	0.60296727	2.30E-09	Putative dicarboxylate carrier protein MatC
cj0069	cj0069	0.5911	7.86E-08	Hypothetical protein
cj0981c	cjaB	0.58550875	2.96E-07	Putative MFS (Major Facilitator Superfamily) transport protein
cj1717c	leuC	0.58027391	1.42E-08	3-Isopropylmalate dehydratase large subunit
cj0374	cj0374	0.5777755	6.82E-07	Conserved hypothetical protein
, cj0987c	cj0987c	0.56922083	1.36E-07	Putative MFS (Major Facilitator Superfamily) transport protein
cj0348	trpB	0.56829625	3.04E-06	Tryptophan synthase beta chain
cj0536	oorA	0.55900417	1.46E-11	OORA subunit of 2-oxoglutarate:acceptor oxidoreductase
cj0346	trpD	0.53065333	6.20E-05	Anthranilate synthase component II
cj0374	cj0374	0.52706261	2.98E-08	Conserved hypothetical protein Cj0374
cj0375	cj0375	0.513895	6.32E-08	Putative lipoprotein
cj0532	mdh	0.50484125	5.74E-09	Malate dehydrogenase
		0.50464125	5.74E-09	Malate denydrogenase
Down-regulated		0 5020075	2 425 00	Detaile shi inda ta kana Cashatan a ta kana Da kasir
cj1185c	petB	-0.5030075	2.42E-06	Putative ubiquinol-cytochrome C reductase cytochrome B subunit
cj0912c	cysM	-0.5038296	0.00012051	cCsteine synthase
cj1220	groES	-0.503845	4.72E-05	10 kDa chaperonin (cpn10)
cj0613	pstS	-0.5137573	3.20E-06	Putative periplasmic phosphate binding protein
cj1659	p19	-0.5246338	6.47E-08	Periplasmic protein p19
cj1688c	secY	-0.5303296	4.35E-06	Preprotein translocase subunit
cj1001	rpoD	-0.5452921	9.37E-07	RNA polymerase σ factor (σ -70)
cj0224	argC	-0.54543	4.95E-06	N-acetyl-γ-glutamyl-phosphate reductase
cj0515	cj0515	-0.5500692	2.24E-08	Putative periplasmic protein
cj0118	cj0118	-0.5565643	2.52E-05	Conserved hypothetical protein
cj0012c	rrc	-0.5577417	3.25E-10	Nonhaem iron protein
cj0281	tal	-0.5627229	9.98E-07	Putative transaldolase
cj1511c	fdhA	-0.5698267	8.23E-07	Putative formate dehydrogenase large subunit (Selenocysteine containing
cj1221	groEL	-0.5822396	7.97E-08	60 kDa chaperonin (cpn60)
cj0082	cydB	-0.5890079	3.96E-05	Cytochrome bd oxidase subunit II
cj0343c	cj0343c	-0.6022113	8.88E-05	Putative integral membrane protein
	•			-
cj0081	cydA	-0.6309096	4.68E-05	Cytochrome bd oxidase subunit I
cj1190c	cetA	-0.6329646	0.00026076	Bipartate energy taxis response protein
cj0328c	fabH	-0.6329863	4.43E-06	3-Oxoacyl-[acyl-carrier-protein] synthase
cj1438c	cj1438c	-0.6341713	4.58E-07	Putative CPS glycosyltransferase
cj1181c	tsf	-0.6379096	8.15E-08	Elongation factor TS
cj1184c	petC	-0.6417317	8.63E-09	Putative ubiquinol-cytochrome C reductase cytochrome C subunit
cj1180c	сј1180с	-0.6453832	2.54E-09	Putative ABC transporter ATP-binding protein
cj1514c	cj1514c	-0.6476025	4.48E-09	Hypothetical protein
cj0134	thrB	-0.6604627	2.90E-07	Putative homoserine kinase
cj1434c	cj1434c	-0.6673438	1.24E-07	Putative CPS glycosyltransferase
cj0475	rplA	-0.67948	6.65E-10	50S ribosomal protein L1
cj1474c	ctsD	-0.6918808	1.11E-07	Putative type II protein secretion system D protein
cj0117	pfs	-0.6924929	2.35E-08	5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase
cj1612	prfA	-0.7133457	2.08E-07	Peptide chain release factor 1
cj1596	, rplQ	-0.7141754	1.14E-10	50S ribosomal protein L17
cj0343c	cj0343c	-0.7166329	4.91E-05	Putative integral membrane protein
cj1500	cj1500	-0.7177971	3.37E-06	Putative integral membrane protein
cj0025c	cj0025c	-0.7422229	5.74E-06	Putative sodium:dicarboxylate family transmembrane symporter
cj0190	cj0190c	-0.7711905	2.60E-05	Conserved hypothetical protein
cj1189c	cetB	-0.7724913	6.90E-06	Bipartate energy taxis response protein
•		-0.7761913		Molybdopterin containing oxidoreductase
cj0264c	cj0264c		4.05E-08	, , , , , , , , , , , , , , , , , , ,
cj0265c	cj0265c	-0.8130454	2.87E-09	Putative cytochrome C-type haem-binding periplasmic protein
cj0370	rpsU	-0.8188554	2.71E-12	30S ribosomal protein S21
cj1153	cj1153	-0.8466967	2.36E-11	Putative periplasmic cytochrome C
cj0779	tpx	-0.8684075	1.93E-06	Thiol peroxidase
cj0169	sodB	-0.9068563	6.42E-09	Superoxide dismutase (Fe)
cj0379c	сј0379с	-0.9803817	1.33E-07	Putative molybdenum containing oxidoreductase
cj0262c	cj0262c	-1.0401525	8.48E-11	Putative methyl-accepting chemotaxis signal transduction protein
cj1169c	cj1169c	-1.1581492	1.17E-08	Putative periplasmic protein
cj0239c	cj0239c	-1.3205179	2.18E-07	NifU protein homolog
cj0334	ahpC	-1.3638779	4.18E-13	Alkyl hydroperoxide reductase
cj0415	cj0415	-1.3721392	1.12E-06	Putative GMC oxidoreductase subunit
(j041)	G0415	-1.3721392	1.12E-00	

Table S1. Cont.

PNAS PNAS

Gene number	Gene name	Fold-change log_2	Bayes.p	Genome annotation
сј0240с	iscS	-1.3789683	4.98E-07	Cysteine desulfurase (NifS protein homolog)
cj0414	cj0414	-1.5476567	1.57E-07	Putative oxidoreductase subunit
cj0453	thiC	-1.6295863	0	Thiamin biosynthesis protein
cj0017c	dsbl	-1.7155813	6.61E-10	Disulphide bond formation protein
сј1170с	omp50	-1.8208058	1.07E-08	50 kDa outer membrane protein precursor

Displayed are the gene numbers, name, fold-change in log₂, P value, and annotated function. Boldface indicates genes belonging to the fucose operon.

Table S2. Expression of the genes within the operon *cj0481–cj0490* in *C. jejuni* NCTC 11168 when grown in minimal media containing 2 mg/mL porcine gastric mucin compared with the control: Mucin microarray

Gene Number	Gene name	Fold-change log ₂	Genome annotation
cj0481	dapA	1.862548148	Putative dihydrodipicolinate synthase
cj0483	uxaA	1.39661625	Putative altronate hydrolase
cj0484	cj0484	1.094871923	Putative MFS (Major Facilitator Superfamily) transport protein
cj0485	cj0485	0.98345	Putative oxidoreductase
cj0486	cj0486	1.219888462	Putative sugar transporter
cj0487	cj0487	0.777173333	Putative amidohydrolase
cj0490	ald	0.51669037	Putative aldehyde dehydrogenase

Displayed are the gene numbers, name, fold change in log₂, *P* value, and annotated function.

Primer name	Sequence		
Gene Cloning			
cj0481L	CGGTACCCGGGGATCCAAAAGGAACTTTACCGGCTTTA		
cj0481R	CGACTCTAGAGGATCCTTGCTTCATCAAAGCGAGTG		
cj0483L	CGGTACCCGGGGATCCGGAGCAATGCCAATGTTTTT		
cj0483R	CGACTCTAGAGGATCCGCTCATCACGCACTTCTTCTT		
cj0487L	CGGTACCCGGGGATCCCACCTTTGGGATTTGGAAAA		
cj0487R	CGACTCTAGAGGATCCCACTGGATAATTGCTCCCAAA		
cj0490L	ATGGCAAGAGATGAAAGCACAC		
cj0490R	CCATCAGCTCCGCCTATGC		
Inverse PCR			
cj04811	GAACTAAAGGGCGCAGCATAGGTGGAGTTTTTCCAG		
cj04812	GAACACCGCCGAGCAACTTGCTCTTCCACGCTCAA		
cj04831	GAACTAAAGGGCGCATTTATGAATACACCAGGCAATGA		
cj04832	GAACACCGCCGAGCATGCAGCACTTTCAAGCATTT		
cj04871	GAACTAAAGGGCGCAGGTTTTAAATCATCTAGGAAGTCCA		
cj04872	GAACACCGCCGAGCACGCTAAACAAAACAAAGATTATGAA		
cj04901	AGTGTGCAAAGATGCGGATA		
cj04902	TAAAGCAGGTGCCATCTTCC		
Chloramphenicol cassette			
catSE	TGCTCGGCGGTGTTCCTTTCCAAG		
catAS	TGCGCCCTTTAGTTCCTAAAGGGT		
Allelic replacement			
CfucP_F	CGGGATCCTGGGATGAAAACTAAGGAGTA		
CfucP_R	ACGCGTCGACAAAGGTGTAGATGAGCATCAA		
EfucP_F	CGGGATCCTGAACCTAAGAGGATGCTATG		
EfucP_R	ACGCGTCGACTTCAGTTAGTTGCCGTTTG		

Table S3. List of primers used in this study