Supporting Information

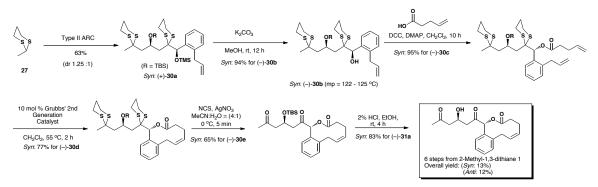
Diversity-oriented synthesis leads to an effective class of bifunctional linchpins uniting anion relay chemistry (ARC) with benzyne reactivity

Amos B. Smith, III,* Won-Suk Kim

Department of Chemistry, Laboratory for Research on the Structure of Matter, and Monell Chemical Senses Center, University of Pennsylvania, Philadelphia, PA 19104, U.S.A.

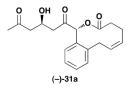
Table of Contents:

-General Methods and Experimental Procedures	S2-S28
- ¹ H and ¹³ C NMR Spectra	S29-S120

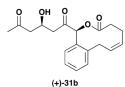

Experimental

I. Materials and Methods

Unless otherwise indicated, all reactions were carried out under an argon atmosphere in flame- or oven-dried glassware equipped with a magnetic stir bar. After aqueous work-up, all organic extracts were dried over sodium or magnesium sulfate, and filtered prior to concentration. Diethyl ether and THF were obtained from a Pure SolvTM PS-400. MeLi (1.6 M in Et₂O), *n*-BuLi (2.5 M in Hexane), KHMDS (0.5 M in toluene) and TBAF (1.0 M in THF) were purchased from Sigma-Aldrich[®], and used without purification. Reactions were monitored by thin layer chromatography (TLC) with 0.25mm E. Merck pre-coated silica gel plates (Kieselgel 60F₂₅₄, Merck). Spots were detected by viewing under a UV light, staining with an anisaldehyde solution composed of acetic acid, sulfuric acid, and MeOH, or staining with a KMnO₄ solution composed of potassium carbonate, sodium hydroxide, and water. Silica gel for flash chromatography (particle size 0.040-0.063 mm) was supplied by Silicycle and Sorbent technologies. Yields refer to chromatographically and spectroscopically pure compounds unless otherwise noted. ¹H and ¹³C spectra were recorded on a Bruker AM-500 spectrometer. Chemical shifts are reported as δ values relative to internal chloroform (δ 7.26 for ¹H and δ 77.0 for ¹³C). IR spectra were measured as neat oils on a Perkin-Elmer Model 1600 FTIR. Optical rotations were measured on a Jasco polarimeter. High resolution mass spectra were obtained at the University of Pennsylvania Mass Spectrometry Service Center.

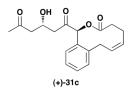

II. Experimental Section

"Natural Product-Like" Libraries Synthesis

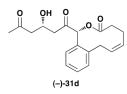


General procedure for 10-membered ring macrolides (31a-31l): To a solution of (+)-**30a** (1.94 g, 3.02 mmol, 1.0 equiv) in MeOH (40 mL) was added K₂CO₃ (4.17, 30.2 mmol, 10.0 equiv) at ambient temperature. After stirring overnight at ambient temperature, H_2O (100 mL) was added. The resulting mixture was then extracted with Et₂O (50 mL X 3). The combined organic layers were washed with brine (50 mL), dried over MgSO₄, filtered and concentrated *in vacuo*. Flash chromatography on silica gel, using diethyl ether/hexane (1/10), provided (-)-30b (1.62 g, 2.84 mmol, 94%). To a solution of (-)-30b (247.0 mg, 0.43 mmol, 1.0 equiv) in CH₂Cl₂ (12 mL) were added DCC (1.0 M in CH₂Cl₂, 4.3 mL, 4.3 mmol, 10.0 equiv), DMAP (26.8 mg, 0.22 mmol, 0.5 equiv) and 4-pentenoic acid (0.44 mL, 4.3 mmol, 10.0 equiv) dropwise at ambient temperature. After stirring for 10 h, CH₂Cl₂ was evaporated, and then filtered through celite with diethyl ether. The filtrates were concentrated in vacuo and flash chromatography on silica gel, using diethyl ether/hexane (1/20), provided (-)-30c (267.8) mg, 0.41 mmol, 95%) as pale yellow oil. To a solution of (-)-30c (60.5 mg, 0.093 mmol, 1.0 equiv) in CH₂Cl₂ (0.003M, 31 mL) at was added 2nd generation Grubbs catalyst (7.89 mg, 0.0093 mmol, 0.1 equiv) at ambient temperature. After stirring for 2 h at 55 °C, CH₂Cl₂ was evaporated, and then the crude product was purified by flash chromatography on silica gel, using diethyl ether/hexane (1/10) to provide (-)-30d (45.1) mg, 0.072 mmol, 77%) as pale yellow oil. To a solution of dithiane (-)-30d (39.5 mg, 0.063 mmol, 1.0 equiv) in aqueous CH₃CN (80%, 7.5 mL) at 0 °C was added NCS (50.5 mg, 0.378 mmol, 6.0 equiv) and AgNO₃ (107.0 mg, 0.63 mmol, 10.0 equiv). After being stirred for 5 min at 0 °C, a saturated aqueous NaHSO₃ (3 mL), and NaHCO₃ (3 mL) were

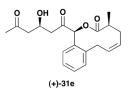
added. The resulting mixture was then extracted with Et₂O (10 mL X 3). The combined organic layers were washed with brine (3 mL), dried over MgSO₄, filtered and concentrated *in vacuo*. Flash chromatography on silica gel, using ethyl acetate/hexane (1/4), provided (–)-**30e** (18.2 mg, 0.041 mmol, 65%) as pale yellow oil. Silyl ether (–)-**30e** (16.1 mg, 0.036 mmol, 1.0 equiv) was treated with 2% HCl in EtOH (3 mL). After stirring for 4 h at ambient temperature, a saturated aqueous NH₄Cl solution (5 mL) was added. The resulting mixture was then extracted with CH₂Cl₂ (10 mL X 3). The combined organic layers were washed with brine (5 mL), dried over MgSO₄, filtered and concentrated *in vacuo*. Flash chromatography on silica gel, using ethyl acetate/hexane (1/2), provided (–)-**31a** (9.9 mg, 0.03 mmol, 83%) as pale yellow oil. R_f 0.1 (hexane/ethyl acetate = 3/1)

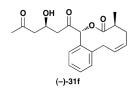


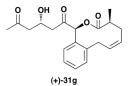
Compounds (–)-31a. $[\alpha]^{20}_{D}$ –133.9 (c 0.18 CDCl₃); IR (film) 3462 (m), 3010 (m), 2920 (m), 2858 (m), 1721 (s), 1359 (m), 1241 (s), 1065 (s), 745 (m) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) & 7.36-7.22 (m, 4H), 6.10 (s, 1H), 5.49 (td, *J* = 10.5 and 4.5 Hz, 1H), 5.41-5.35 (m, 1H), 4.47-4.41 (m, 1H), 4.10 (t, *J* = 11.5 Hz, 1H), 3.30 (br, 1H), 3.14-3.06 (m, 1H), 2.91 (dd, *J* = 12.5 and 4.5 Hz, 1H), 2.84 (dd, *J* = 17.0 and 7.5 Hz, 1H), 2.72-2.53 (m, 4H), 2.31-2.25 (m, 1H), 2.13 (s, 3H), 2.12-2.07 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) & 208.3, 203.1, 170.5, 140.0, 132.7, 132.4, 130.9, 130.5, 129.3, 126.5, 125.8, 82.1, 64.2, 48.9, 44.8, 34.0, 32.6, 30.7, 22.9; high resolution mass spectrum (ES⁺) m/z 353.1380 [(M+Na)⁺; calcd for C₁₉H₂₂O₅Na: 353.1365].



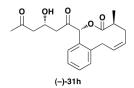
Compounds (+)-31b. $[\alpha]^{20}{}_{D}$ +75.2 (c 0.25 CDCl₃); IR (film) 3485 (m), 3011 (m), 2922 (m), 2858 (m), 1720 (s), 1359 (m), 1242 (s), 1066 (s), 745 (m) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.35-7.21 (m, 4H), 6.10 (s, 1H), 5.49 (td, *J* = 11.0 and 4.5 Hz, 1H), 5.41-5.35 (m, 1H), 4.47-4.42 (m, 1H), 4.10 (t, *J* = 11.8 Hz, 1H), 3.27 (br, 1H), 3.13-3.05 (m, 1H),


2.91 (dd, J = 13.0 and 4.5 Hz, 1H), 2.82 (dd, J = 17.0 and 5.5 Hz, 1H), 2.72-2.58 (m, 4H), 2.32-2.26 (m, 1H), 2.14 (s, 3H), 2.13-2.10 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 208.4, 203.2, 170.6, 140.0, 132.8, 132.4, 130.9, 130.4, 129.4, 126.6, 125.8, 82.0, 63.9, 48.8, 44.7, 33.9, 32.7, 30.7, 22.9; high resolution mass spectrum (ES⁺) m/z 331.1557 [(M+H)⁺; calcd for C₁₉H₂₃O₅: 331.1557].

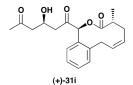

Compounds (+)-31c. $[\alpha]^{20}_{D}$ +166.2 (c 0.18 CDCl₃); IR (film) 3462 (m), 3010 (m), 2920 (m), 2858 (m), 1721 (s), 1359 (m), 1241 (s), 1065 (s), 745 (m) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.36-7.22 (m, 4H), 6.10 (s, 1H), 5.49 (td, *J* = 10.5 and 4.5 Hz, 1H), 5.41-5.35 (m, 1H), 4.47-4.41 (m, 1H), 4.10 (t, *J* = 11.5 Hz, 1H), 3.30 (br, 1H), 3.14-3.06 (m, 1H), 2.91 (dd, *J* = 12.5 and 4.5 Hz, 1H), 2.84 (dd, *J* = 17.0 and 7.5 Hz, 1H), 2.72-2.53 (m, 4H), 2.31-2.25 (m, 1H), 2.13 (s, 3H), 2.12-2.07 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 208.3, 203.1, 170.5, 140.0, 132.7, 132.4, 130.9, 130.5, 129.3, 126.5, 125.8, 82.1, 64.2, 48.9, 44.8, 34.0, 32.6, 30.7, 22.9; high resolution mass spectrum (ES⁺) m/z 353.1348 [(M+Na)⁺; calcd for C₁₉H₂₂O₅Na: 353.1365].


Compounds (–)-**31d**. $[\alpha]^{20}_{D}$ –142.6 (c 1.34 CDCl₃); IR (film) 3485 (m), 3011 (m), 2922 (m), 2858 (m), 1720 (s), 1359 (m), 1242 (s), 1066 (s), 745 (m) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.35-7.21 (m, 4H), 6.10 (s, 1H), 5.49 (td, *J* = 11.0 and 4.5 Hz, 1H), 5.41-5.35 (m, 1H), 4.47-4.42 (m, 1H), 4.10 (t, *J* = 11.8 Hz, 1H), 3.27 (br, 1H), 3.13-3.05 (m, 1H), 2.91 (dd, *J* = 13.0 and 4.5 Hz, 1H), 2.82 (dd, *J* = 17.0 and 5.5 Hz, 1H), 2.72-2.58 (m, 4H), 2.32-2.26 (m, 1H), 2.14 (s, 3H), 2.13-2.10 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 208.4, 203.2, 170.6, 140.0, 132.8, 132.4, 130.9, 130.4, 129.4, 126.6, 125.8, 82.0, 63.9, 48.8, 44.7, 33.9, 32.7, 30.7, 22.9; high resolution mass spectrum (ES⁻) m/z 329.1394 [(M–H)⁻; calcd for C₁₉H₂₁O₅: 329.1389].

Compounds (+)-31e. $[\alpha]^{20}_{D}$ +169.5 (c 0.47 CDCl₃); IR (film) 3447 (m), 2925 (s), 2857 (m), 1719 (s), 1373 (m), 1242 (s), 1081 (s), 759 (m) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.33 (d, J = 7.3 Hz, 1H), 7.30-7.26 (m, 1H), 7.24-7.21 (m, 2H), 6.04 (s, 1H), 5.51-5.44 (m, 1H), 5.40 (td, J = 10.7 and 6.1 Hz, 1H), 4.47-4.41 (m, 1H), 4.10 (t, J = 11.9 Hz, 1H), 3.28 (d, J = 4.0 Hz, 1H), 3.04-2.97 (m, 1H), 2.90-2.86 (m, 1H), 2.82 (dd, J = 17.4 and 5.4 Hz, 1H), 2.71 (dd, J = 17.4 and 6.8 Hz, 1H), 2.67-2.58 (m, 2H), 2.55-2.43 (m, 1H), 2.14 (s, 3H), 1.99-1.95 (m, 1H), 1.33 (d, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 208.4, 203.2, 173.4, 139.8, 132.5, 132.4, 131.0, 130.4, 129.3, 126.5, 125.4, 82.0, 63.9, 48.8, 44.7, 40.5, 32.7, 31.8, 30.7, 17.9; high resolution mass spectrum (ES⁺) m/z 367.1518 [(M+Na)⁺; calcd for C₂₀H₂₄O₅Na: 367.1521].

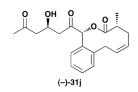


Compounds (–)-**31f**. $[\alpha]^{20}_{D}$ –95.5 (c 1.18 CDCl₃); IR (film) 3439 (m), 2922 (s), 2853 (m), 1715 (s), 1362 (m), 1184 (s), 1094 (m), 741 (m) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.31-7.26 (m, 2H), 7.23-7.20 (m, 2H), 6.05 (s, 1H), 5.52-5.47 (m, 1H), 5.45 (td, *J* = 10.1 and 6.3 Hz, 1H), 4.48-4.42 (m, 1H), 4.01 (t, *J* = 11.3 Hz, 1H), 3.36 (br, 1H), 3.24-3.18 (m, 1H), 2.95-2.87 (m, 2H), 2.84 (dd, *J* = 17.1 and 7.6 Hz, 1H), 2.62 (dd, *J* = 17.1 and 4.9 Hz, 1H), 2.55-2.51 (m, 2H), 2.12 (s, 3H), 2.09-2.04 (m, 1H), 1.13 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 208.3, 203.5, 173.4, 139.6, 133.5, 132.1, 130.9, 130.4, 129.2, 126.5, 123.2, 82.1, 64.1, 48.9, 45.0, 38.3, 32.4, 30.7, 29.8, 13.9; high resolution mass spectrum (ES⁺) m/z 367.1503 [(M+Na)⁺; calcd for C₂₀H₂₄O₅Na: 367.1521].

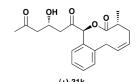


Compounds (+)-31g. $[\alpha]_{D}^{20}$ +141.2 (c 1.35 CDCl₃); IR (film) 3420 (m), 2922 (m), 1717 (s), 1375 (m), 1242 (s), 1084 (s), 761 (m) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.34 (d, J

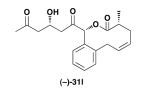
= 7.4 Hz, 1H), 7.30-7.26 (m, 1H), 7.23-7.20 (m, 2H), 6.04 (s, 1H), 5.47-5.42 (m, 1H), 5.40 (td, J = 10.8 and 6.1 Hz, 1H), 4.47-4.42 (m, 1H), 4.10 (t, J = 11.9 Hz, 1H), 3.37 (br, 1H), 3.04-2.97 (m, 1H), 2.89-2.83 (m, 2H), 2.61 (dd, J = 17.1 and 5.1 Hz, 1H), 2.55-2.52 (m, 2H), 2.51-2.44 (m, 1H), 2.12 (s, 3H), 1.99-1.94 (m, 1H), 1.33 (d, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) §208.3, 203.0, 173.3, 139.8, 132.4, 132.3, 130.9, 130.5, 129.2, 126.4, 125.4, 82.0, 64.1, 48.9, 44.8, 40.6, 32.6, 31.7, 30.6, 17.9; high resolution mass spectrum (ES⁺) m/z 345.1695 [(M+H)⁺; calcd for C₂₀H₂₅O₅: 345.1702].



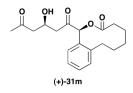
Compounds (–)-31h. $[\alpha]^{20}_{D}$ –76.3 (c 0.58 CDCl₃); IR (film) 3406 (m), 2922 (m), 1720 (s), 1381 (m), 1182 (s), 1095 (s), 762 (m) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.31-7.27 (m, 2H), 7.23-7.20 (m, 2H), 6.06 (s, 1H), 5.53-5.48 (m, 1H), 5.46 (td, *J* = 10.2 and 6.4 Hz, 1H), 4.48-4.43 (m, 1H), 4.00 (t, *J* = 11.3 Hz, 1H), 3.29 (br, 1H), 3.21-3.17 (m, 1H), 2.97-2.86 (m, 2H), 2.82 (dd, *J* = 17.3 and 5.3 Hz, 1H), 2.73 (dd, *J* = 17.4 and 6.8 Hz, 1H), 2.67-2.58 (m, 2H), 2.15 (s, 3H), 2.10-2.05 (m, 1H), 1.14 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 208.4, 203.7, 173.4, 139.5, 133.5, 132.1, 131.0, 130.2, 129.3, 126.5, 123.1, 82.0, 63.8, 48.8, 44.9, 38.3, 32.5, 30.7, 29.8, 14.0; high resolution mass spectrum (ES⁺) m/z 367.1518 [(M+Na)⁺; calcd for C₂₀H₂₄O₅Na: 367.1521].



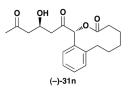
Compounds (+)-31i. $[\alpha]^{20}{}_{D}$ +99.6 (c 0.57 CDCl₃); IR (film) 3406 (m), 2922 (m), 1720 (s), 1381 (m), 1182 (s), 1095 (s), 762 (m) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.31-7.27 (m, 2H), 7.23-7.20 (m, 2H), 6.06 (s, 1H), 5.53-5.48 (m, 1H), 5.46 (td, J = 10.2 and 6.4 Hz, 1H), 4.48-4.43 (m, 1H), 4.00 (t, J = 11.3 Hz, 1H), 3.29 (br, 1H), 3.21-3.17 (m, 1H), 2.97-2.86 (m, 2H), 2.82 (dd, J = 17.3 and 5.3 Hz, 1H), 2.73 (dd, J = 17.4 and 6.8 Hz, 1H), 2.67-2.58 (m, 2H), 2.15 (s, 3H), 2.10-2.05 (m, 1H), 1.14 (d, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 208.4, 203.7, 173.4, 139.5, 133.5, 132.1, 131.0, 130.2, 129.3,


126.5, 123.1, 82.0, 63.8, 48.8, 44.9, 38.3, 32.5, 30.7, 29.8, 14.0; high resolution mass spectrum (ES⁺) m/z 367.1518 [(M+Na)⁺; calcd for $C_{20}H_{24}O_5Na$: 367.1521].

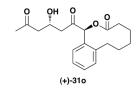
Compounds (–)-**31j**. $[\alpha]^{20}_{D}$ –193.6 (c 0.38 CDCl₃); IR (film) 3420 (m), 2922 (m), 1717 (s), 1375 (m), 1242 (s), 1084 (s), 761 (m) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.34 (d, *J* = 7.4 Hz, 1H), 7.30-7.26 (m, 1H), 7.23-7.20 (m, 2H), 6.04 (s, 1H), 5.47-5.42 (m, 1H), 5.40 (td, *J* = 10.8 and 6.1 Hz, 1H), 4.47-4.42 (m, 1H), 4.10 (t, *J* = 11.9 Hz, 1H), 3.37 (br, 1H), 3.04-2.97 (m, 1H), 2.89-2.83 (m, 2H), 2.61 (dd, *J* = 17.1 and 5.1 Hz, 1H), 2.55-2.52 (m, 2H), 2.51-2.44 (m, 1H), 2.12 (s, 3H), 1.99-1.94 (m, 1H), 1.33 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 208.3, 203.0, 173.3, 139.8, 132.4, 132.3, 130.9, 130.5, 129.2, 126.4, 125.4, 82.0, 64.1, 48.9, 44.8, 40.6, 32.6, 31.7, 30.6, 17.9; high resolution mass spectrum (ES⁺) m/z 345.1697 [(M+H)⁺; calcd for C₂₀H₂₅O₅: 345.1702].

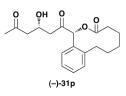


Compounds (+)-31k. $[\alpha]^{20}_{D}$ +92.7 (c 0.29 CDCl₃); IR (film) 3439 (m), 2922 (s), 2853 (m), 1715 (s), 1362 (m), 1184 (s), 1094 (m), 741 (m) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.31-7.26 (m, 2H), 7.23-7.20 (m, 2H), 6.05 (s, 1H), 5.52-5.47 (m, 1H), 5.45 (td, *J* = 10.1 and 6.3 Hz, 1H), 4.48-4.42 (m, 1H), 4.01 (t, *J* = 11.3 Hz, 1H), 3.36 (br, 1H), 3.24-3.18 (m, 1H), 2.95-2.87 (m, 2H), 2.84 (dd, *J* = 17.1 and 7.6 Hz, 1H), 2.62 (dd, *J* = 17.1 and 4.9 Hz, 1H), 2.55-2.51 (m, 2H), 2.12 (s, 3H), 2.09-2.04 (m, 1H), 1.13 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 208.3, 203.5, 173.4, 139.6, 133.5, 132.1, 130.9, 130.4, 129.2, 126.5, 123.2, 82.1, 64.1, 48.9, 45.0, 38.3, 32.4, 30.7, 29.8, 13.9; high resolution mass spectrum (ES⁺) m/z 367.1519 [(M+Na)⁺; calcd for C₂₀H₂₄O₅Na: 367.1521].

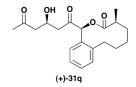


Compounds (–)-**311**. $[\alpha]^{20}{}_{D}$ –131.3 (c 0.51 CDCl₃); IR (film) 3447 (m), 2925 (s), 2857 (m), 1719 (s), 1373 (m), 1242 (s), 1081 (s), 759 (m) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.33 (d, J = 7.3 Hz, 1H), 7.30-7.26 (m, 1H), 7.24-7.21 (m, 2H), 6.04 (s, 1H), 5.51-5.44 (m, 1H), 5.40 (td, J = 10.7 and 6.1 Hz, 1H), 4.47-4.41 (m, 1H), 4.10 (t, J = 11.9 Hz, 1H), 3.28 (d, J = 4.0 Hz, 1H), 3.04-2.97 (m, 1H), 2.90-2.86 (m, 1H), 2.82 (dd, J = 17.4 and 5.4 Hz, 1H), 2.71 (dd, J = 17.4 and 6.8 Hz, 1H), 2.67-2.58 (m, 2H), 2.55-2.43 (m, 1H), 2.14 (s, 3H), 1.99-1.95 (m, 1H), 1.33 (d, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 208.4, 203.2, 173.4, 139.8, 132.5, 132.4, 131.0, 130.4, 129.3, 126.5, 125.4, 82.0, 63.9, 48.8, 44.7, 40.5, 32.7, 31.8, 30.7, 17.9; high resolution mass spectrum (ES⁺) m/z 345.1718 [(M+H)⁺; calcd for C₂₀H₂₅O₅: 345.1702].

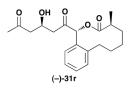

General procedure for catalytic hydrogenation reactions (31m-31x): To a solution of 31a (12.2 mg, 0.037 mmol, 1.0 equiv.) in EtOH (1.85 mL) was added PtO₂ (0.34 mg, 0.001 mmol, 0.04 equiv.). After being stirred under an atmosphere of hydorgen for 1 h at room temperature, the reaction mixture was filtered through celite and concentrated *in vacuo*. Flash chromatography (ethyl acetate/hexane = 1/1) afforded **31m** (11.8 mg, 0.035 mmol, 96%) as a pale yellow oil. R_f 0.1 (hexane/ethyl acetate = 2/1).


Compounds (+)-31m. 96% yield. $[\alpha]^{20}_{D}$ +30.0 (c 0.69 CDCl₃); IR (film) 3448 (m), 2920 (s), 2864 (m), 1721 (s), 1328 (m), 1238 (s), 1052 (s), 758 (m) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.33-7.26 (m, 2H), 7.22-7.17 (m, 2H), 6.16 (s, 1H), 4.46-4.42 (m, 1H), 3.06-3.01 (m, 1H), 2.76 (dd, *J* = 17.4 and 5.1 Hz, 1H), 2.68-2.58 (m, 4H), 2.57-2.51 (m, 1H), 2.44-2.39 (m, 1H), 2.25-2.18 (m, 1H), 2.14 (s, 3H), 2.07-2.00 (m, 1H), 1.77-1.69 (m, 2H), 1.63-1.50 (m, 2H), 0.76-0.79 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 208.3, 203.9, 171.6, 141.7, 132.5, 131.4, 130.9, 129.3, 126.2, 81.8, 63.8, 48.9, 44.9, 35.1, 30.9, 30.7, 28.6, 24.1, 21.8; high resolution mass spectrum (ES⁺) m/z 355.1519 [(M+Na)⁺; calcd for C₁₉H₂₄O₅Na: 355.1521].

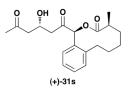
Compounds (–)-**31n**. 97% yield. $[\alpha]^{20}_{D}$ –42.5 (c 0.63 CDCl₃); IR (film) 3420 (m), 2920 (s), 2853 (m), 1721 (s), 1363 (m), 1239 (s), 1053 (s), 755 (m) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.34 (d, *J* = 7.4 Hz, 1H), 7.30-7.26 (m, 1H), 7.22-7.17 (m, 2H), 6.16 (s, 1H), 4.47-4.42 (m, 1H), 3.08-3.01 (m, 1H), 2.80 (dd, *J* = 17.3 and 7.6 Hz, 1H), 2.68-2.60 (m, 2H), 2.59-2.48 (m, 3H), 2.43-2.38 (m, 1H), 2.25-2.18 (m, 1H), 2.12 (s, 3H), 2.08-2.00 (m, 1H), 1.78-1.69 (m, 2H), 1.63-1.48 (m, 2H), 0.74-0.69 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 208.3, 203.7, 171.6, 141.7, 132.5, 131.4, 131.0, 129.2, 126.2, 82.0, 64.0, 48.9, 45.0, 35.1, 30.9, 30.7, 28.6, 24.0, 21.8; high resolution mass spectrum (ES⁺) m/z 355.1522 [(M+Na)⁺; calcd for C₁₉H₂₄O₅Na: 355.1521].

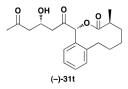


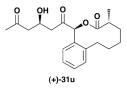
Compounds (+)-310. 96% yield. $[\alpha]^{20}_{D}$ +99.1 (c 0.60 CDCl₃); IR (film) 3420 (m), 2920 (s), 2853 (m), 1721 (s), 1363 (m), 1239 (s), 1053 (s), 755 (m) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.34 (d, *J* = 7.4 Hz, 1H), 7.30-7.26 (m, 1H), 7.22-7.17 (m, 2H), 6.16 (s, 1H), 4.47-4.42 (m, 1H), 3.08-3.01 (m, 1H), 2.80 (dd, *J* = 17.3 and 7.6 Hz, 1H), 2.68-2.60 (m, 2H), 2.59-2.48 (m, 3H), 2.43-2.38 (m, 1H), 2.25-2.18 (m, 1H), 2.12 (s, 3H), 2.08-2.00 (m, 1H), 1.78-1.69 (m, 2H), 1.63-1.48 (m, 2H), 0.74-0.69 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 208.3, 203.7, 171.6, 141.7, 132.5, 131.4, 131.0, 129.2, 126.2, 82.0, 64.0, 48.9, 45.0, 35.1, 30.9, 30.7, 28.6, 24.0, 21.8; high resolution mass spectrum (ES⁺) m/z 355.1522 [(M+Na)⁺; calcd for C₁₉H₂₄O₅Na: 355.1521].



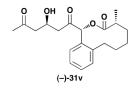
Compounds (–)-**31p**. 95% yield. $[\alpha]^{20}{}_{D}$ –83.3 (c 1.30 CDCl₃); IR (film) 3448 (m), 2920 (s), 2864 (m), 1721 (s), 1328 (m), 1238 (s), 1052 (s), 758 (m) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.33-7.26 (m, 2H), 7.22-7.17 (m, 2H), 6.16 (s, 1H), 4.46-4.42 (m, 1H), 3.06-


3.01 (m, 1H), 2.76 (dd, J = 17.4 and 5.1 Hz, 1H), 2.68-2.58 (m, 4H), 2.57-2.51 (m, 1H), 2.44-2.39 (m, 1H), 2.25-2.18 (m, 1H), 2.14 (s, 3H), 2.07-2.00 (m, 1H), 1.77-1.69 (m, 2H), 1.63-1.50 (m, 2H), 0.76-0.79 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) §208.3, 203.9, 171.6, 141.7, 132.5, 131.4, 130.9, 129.3, 126.2, 81.8, 63.8, 48.9, 44.9, 35.1, 30.9, 30.7, 28.6, 24.1, 21.8; high resolution mass spectrum (ES⁺) m/z 355.1519 [(M+Na)⁺; calcd for C₁₉H₂₄O₅Na: 355.1521].

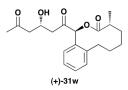

Compounds (+)-31q. 96% yield. $[\alpha]^{20}_{D}$ +138.8 (c 1.02 CDCl₃); IR (film) 3478 (m), 2927 (s), 2867 (m), 1723 (s), 1366 (m), 1249 (s), 1058 (s), 760 (m) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.33 (d, J = 7.6 Hz, 1H), 7.30-7.26 (m, 1H), 7.22-7.17 (m, 2H), 6.05 (s, 1H), 4.45-4.41 (m, 1H), 3.05-2.99 (m, 1H), 2.76 (dd, J = 14.3 and 5.3 Hz, 1H), 2.65-2.60 (m, 3H), 2.44-2.38 (m, 2H), 2.14 (s, 3H), 1.86-1.52 (m, 6H), 1.28 (d, J = 7.1 Hz, 3H), 0.63-0.57 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 208.3, 203.9, 174.4, 141.4, 132.9, 131.4, 131.2, 129.2, 126.2, 81.7, 63.9, 48.9, 44.8, 42.1, 31.14, 31.12, 30.7, 28.4, 23.0, 18.2; high resolution mass spectrum (ES⁺) m/z 369.1692 [(M+Na)⁺; calcd for C₂₀H₂₆O₅Na: 369.1678].


Compounds (–)-31r. 97% yield. $[\alpha]^{20}_{D}$ –73.4 (c 0.79 CDCl₃); IR (film) 3456 (m), 2924 (s), 2867 (m), 1724 (s), 1362 (m), 1262 (m), 1164 (s), 1066 (m), 758 (m) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) & 7.33-7.28 (m, 2H), 7.22-7.18 (m, 2H), 6.11 (s, 1H), 4.48-4.44 (m, 1H), 3.29 (d, *J* = 3.7 Hz, 1H), 3.01-2.96 (m, 1H), 2.87-2.82 (m, 1H), 2.79 (dd, *J* = 17.1 and 7.7 Hz, 1H), 2.59-2.49 (m, 3H), 2.43-2.39 (m, 1H), 2.19-2.15 (m, 1H), 2.13 (s, 3H), 1.72-1.48 (m, 4H), 1.04 (d, *J* = 7.1 Hz, 3H), 0.58-0.52 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) §208.3, 204.0, 174.6, 141.5, 133.0, 131.3, 131.2, 129.3, 126.3, 82.1, 64.1, 48.9, 45.2, 38.7, 31.1, 30.7, 29.7, 28.1, 20.4, 14.4; high resolution mass spectrum (ES⁻) m/z 381.1472 [(M+Cl)⁻; calcd for C₂₀H₂₆O₅Cl: 381.1469].

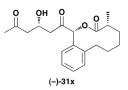
Compounds (+)-**31s**. 95% yield. $[\alpha]^{20}_{D}$ +67.8 (c 0.87 CDCl₃); IR (film) 3450 (m), 2925 (s), 2856 (m), 1722 (s), 1376 (m), 1251 (s), 1162 (s), 1065 (s), 758 (m) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.35 (d, *J* = 7.3 Hz, 1H), 7.30-7.26 (m, 1H), 7.22-7.18 (m, 2H), 6.09 (s, 1H), 4.48-4.42 (m, 1H), 3.28 (br, 1H), 3.07-3.01 (m, 1H), 2.80 (dd, *J* = 17.3 and 7.4 Hz, 1H), 2.59-2.49 (m, 3H), 2.43-2.40 (m, 2H), 2.13 (s, 3H), 1.86-1.53 (m, 5H), 1.28 (d, *J* = 7.1 Hz, 3H), 0.63-0.54 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 208.4, 203.6, 174.4, 141.5, 132.9, 131.4, 131.3, 129.2, 126.2, 81.9, 64.0, 48.9, 45.0, 42.2, 31.2, 30.7, 29.7, 28.3, 22.9, 18.2; high resolution mass spectrum (ES⁻) m/z 381.1474 [(M+Cl)⁻; calcd for C₂₀H₂₆O₅Cl: 381.1469].



Compounds (–)-31t. 97% yield. $[\alpha]^{20}{}_{D}$ –57.9 (c 0.83 CDCl₃); IR (film) 3441 (m), 3011 (m), 2922 (m), 2858 (m), 1720 (s), 1359 (m), 1242 (s), 1066 (s), 745 (m) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) & 7.32-7.28 (m, 2H), 7.22-7.18 (m, 2H), 6.11 (s, 1H), 4.47-4.42 (m, 1H), 3.26 (d, *J* = 3.3 Hz, 1H), 2.99-2.94 (m, 1H), 2.87-2.79 (m, 1H), 2.75 (dd, *J* = 17.4 and 5.2 Hz, 1H), 2.66-2.57 (m, 3H), 2.44-2.40 (m, 1H), 2.15 (s, 3H), 1.70-1.43 (m, 5H), 1.04 (d, *J* = 7.1 Hz, 3H), 0.61-0.54 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) & 208.3, 204.2, 174.6, 141.4, 133.0, 131.3, 131.0, 129.3, 126.3, 81.9, 63.9, 48.9, 45.1, 38.7, 31.1, 30.7, 29.8, 28.2, 20.5, 14.4; high resolution mass spectrum (ES⁻) m/z 381.1472 [(M+Cl)⁻; calcd for C₂₀H₂₆O₅Cl: 381.1469].



Compounds (+)-31u. 96% yield. $[\alpha]^{20}_{D}$ +82.6 (c 0.56 CDCl₃); IR (film) 3441 (m), 3011 (m), 2922 (m), 2858 (m), 1720 (s), 1359 (m), 1242 (s), 1066 (s), 745 (m) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.32-7.28 (m, 2H), 7.22-7.18 (m, 2H), 6.11 (s, 1H), 4.47-4.42 (m,


1H), 3.26 (d, J = 3.3 Hz, 1H), 2.99-2.94 (m, 1H), 2.87-2.79 (m, 1H), 2.75 (dd, J = 17.4 and 5.2 Hz, 1H), 2.66-2.57 (m, 3H), 2.44-2.40 (m, 1H), 2.15 (s, 3H), 1.70-1.43 (m, 5H), 1.04 (d, J = 7.1 Hz, 3H), 0.61-0.54 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) §208.3, 204.2, 174.6, 141.4, 133.0, 131.3, 131.0, 129.3, 126.3, 81.9, 63.9, 48.9, 45.1, 38.7, 31.1, 30.7, 29.8, 28.2, 20.5, 14.4; high resolution mass spectrum (ES⁻) m/z 381.1472 [(M+Cl)⁻; calcd for C₂₀H₂₆O₅Cl: 381.1469].

Compounds (–)-31v. 96% yield. $[\alpha]^{20}_{D}$ –104.7 (c 0.60 CDCl₃); IR (film) 3441 (m), 2925 (s), 2856 (m), 1722 (s), 1367 (m), 1173 (s), 1109 (s), 757 (m) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) & 7.35 (d, *J* = 7.3 Hz, 1H), 7.30-7.26 (m, 1H), 7.22-7.18 (m, 2H), 6.09 (s, 1H), 4.48-4.42 (m, 1H), 3.28 (br, 1H), 3.07-3.01 (m, 1H), 2.80 (dd, *J* = 17.3 and 7.4 Hz, 1H), 2.59-2.49 (m, 3H), 2.43-2.40 (m, 2H), 2.13 (s, 3H), 1.86-1.53 (m, 5H), 1.28 (d, *J* = 7.1 Hz, 3H), 0.63-0.54 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) §208.4, 203.6, 174.4, 141.5, 132.9, 131.4, 131.3, 129.2, 126.2, 81.9, 64.0, 48.9, 45.0, 42.2, 31.2, 30.7, 29.7, 28.3, 22.9, 18.2; high resolution mass spectrum (ES⁺) m/z 369.1691 [(M+Na)⁺; calcd for $C_{20}H_{26}O_5Na: 369.1678$].

Compounds (+)-31w. 95% yield. $[\alpha]^{20}{}_{D}$ +85.1 (c 1.19 CDCl₃); IR (film) 3456 (m), 2924 (s), 2867 (m), 1724 (s), 1362 (m), 1262 (m), 1164 (s), 1066 (m), 758 (m) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) & 7.33-7.28 (m, 2H), 7.22-7.18 (m, 2H), 6.11 (s, 1H), 4.48-4.44 (m, 1H), 3.29 (d, J = 3.7 Hz, 1H), 3.01-2.96 (m, 1H), 2.87-2.82 (m, 1H), 2.79 (dd, J = 17.1 and 7.7 Hz, 1H), 2.59-2.49 (m, 3H), 2.43-2.39 (m, 1H), 2.19-2.15 (m, 1H), 2.13 (s, 3H), 1.72-1.48 (m, 4H), 1.04 (d, J = 7.1 Hz, 3H), 0.58-0.52 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) §208.3, 204.0, 174.6, 141.5, 133.0, 131.3, 131.2, 129.3, 126.3, 82.1, 64.1, 48.9, 45.2, 38.7, 31.1, 30.7, 29.7, 28.1, 20.4, 14.4; high resolution mass spectrum (ES⁻) m/z 381.1472 [(M+Cl)⁻; calcd for C₂₀H₂₆O₅Cl: 381.1469].

Compounds (–)-31x. 97 % yield. $[\alpha]^{20}_{D}$ –96.8 (c 0.96 CDCl₃); IR (film) 3478 (m), 2927 (s), 2867 (m), 1723 (s), 1366 (m), 1249 (s), 1058 (s), 760 (m) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.33 (d, J = 7.6 Hz, 1H), 7.30-7.26 (m, 1H), 7.22-7.17 (m, 2H), 6.05 (s, 1H), 4.45-4.41 (m, 1H), 3.05-2.99 (m, 1H), 2.76 (dd, J = 14.3 and 5.3 Hz, 1H), 2.65-2.60 (m, 3H), 2.44-2.38 (m, 2H), 2.14 (s, 3H), 1.86-1.52 (m, 6H), 1.28 (d, J = 7.1 Hz, 3H), 0.63-0.57 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 208.3, 203.9, 174.4, 141.4, 132.9, 131.4, 131.2, 129.2, 126.2, 81.7, 63.9, 48.9, 44.8, 42.1, 31.14, 31.12, 30.7, 28.4, 23.0, 18.2; high resolution mass spectrum (ES⁺) m/z 369.1692 [(M+Na)⁺; calcd for C₂₀H₂₆O₅Na: 369.1678].

Linchpin Synthesis and Validation for the Type II ARC Protocol

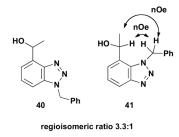
Compound 34a'. To a solution of NaH (547.2 mg, 22.8 mmol, 1.2 equiv.) in THF (85 mL) at 0 °C was added compound **37** (5.22 g, 19.0 mmol, 1.0 equiv.) in THF (10 mL). After being stirred for 1 h at 0 °C, *n*-BuLi (2.5 M, 9.12 mL, 22.8 mmol, 1.2 equiv.) was added. After stirring 40 min at 0 °C, TMSCI (7.43 g, 68.4 mmol, 3 equiv.) was then added. After the addition was complete, the reaction mixture was warmed to room temperature over 2 h. After being stirred for 2 h, 95 mL of 5 % aqueous HCl was added. A saturated aqueous NaHCO₃ (50 mL) solution was added after 12 h, and the resulting mixture extracted with Et₂O (50 mL x 3). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated *in vacuo*. Flash chromatography (ethyl acetate/hexane = 1/15) afforded **34a'** (3.03 g, 15.6 mmol, 82% yield) as a pale yellow solid. R_f 0.2 (hexane/diethyl ether = 10/1); mp: 151-154 °C; IR (film) 3202 (s), 2961 (m), 2813 (w), 1924 (w), 1665 (s), 1583 (s), 1287 (s), 841 (s) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 10.21 (s, 1H), 7.50 (dd, *J* = 7.5 and 1.0 Hz, 1H), 7.37 (t, *J* = 7.5 Hz, 1H),

6.96 (dd, J = 8.0 and 1.0 Hz, 1H), 5.57 (s, 1H), 0.44 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 193.8, 161.5, 143.6, 130.7, 126.3, 123.8, 121.0, 2.4; high resolution mass spectrum (CI⁺) *m/z* 179.0520 [(M–CH₃)⁺; calcd for C₉H₁₁O₂Si: 179.0528].

Compound 34. To a solution of the resulting alcohol **34a'** (1.29 g, 6.63 mmol, 1.0 equiv.) in CH₂Cl₂ (67 mL) at 0 °C were added pyridine (1.57 g, 19.9 mmol, 3.0 equiv.) and Tf₂O (2.81 g, 9.94 mmol, 1.5 equiv.) dropwise. After being stirred for 20 min at room temperature, a saturated aqueous NH₄Cl (5 mL) solution and 1N HCl (5 mL) were added, and the resulting mixture extracted with CH₂Cl₂ (15 mL x 3). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated *in vacuo*. Flash chromatography (ethyl acetate/hexane = 1/100) afforded **34** (1.88 g, 5.76 mmol, 87% yield) as a pale yellow solid. R_f 0.7 (hexane/ethyl acetate = 10/1); IR (film) 3086 (w), 2959 (m), 2903 (m), 2743 (w), 1959 (w), 1707 (s), 1421 (s), 1216 (s), 1145 (s), 844 (s) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 10.29 (s, 1H), 7.93 (dd, *J* = 7.5 and 1.0 Hz, 1H), 7.60 (t, *J* = 7.5 Hz, 1H), 7.52 (dd, *J* = 7.5 and 1.0 Hz, 1H), 0.48 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 191.5, 155.0, 144.4, 135.9, 131.2, 130.0, 125.7, 120.2 (q, *J* = 318.6 Hz, CF₃), 2.2; high resolution mass spectrum (ES⁺) *m/z* 349.0160 [(M+Na)⁺; calcd for C₁₁H₁₃F₃O₄SSiNa: 349.0154].

Compound 35. To a solution of **38** (485.6 mg, 1.42 mmol, 1.0 equiv.) in CH₂Cl₂ was added PCC (459.1 mg, 2.13 mmol, 1.5 equiv.). After being stirred for 6 h at room temperature, the reaction mixture was filtered through silica gel and concentrated *in vacuo*. Flash chromatography (diethyl ether/hexane = 1/20) afforded **35** (416.2 mg, 1.22 mmol, 86% yield) as a colorless oil. R_f 0.6 (hexane/ethyl acetate = 10/1); IR (film) 2995 (m), 2955 (m), 2905 (m), 1952 (w), 1696 (s), 1592 (m), 1420 (s), 1214 (s), 901 (s) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.59 (d, *J* = 7.0 Hz, 1H), 7.49 (t, *J* = 7.5 Hz, 1H), 7.40 (d, *J* = 8.0 Hz, 1H), 2.62 (s, 3H), 0.37 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 201.8, 155.5,

149.6, 133.7, 130.7, 126.7, 123.0, 118.5 (q, J = 318.3 Hz, CF₃), 29.1, 1.6; high resolution mass spectrum (ES⁺) m/z 363.0295 [(M+Na)⁺; calcd for C₁₂H₁₅F₃O₄SSiNa: 363.0310].



Compound 37. To a solution of 2-bromo-3-hydroxy benzaldehyde **36** (5.74 g, 28.5 mmol, 1.0 equiv.) in EtOH (47 mL) at room temperature were added TABCO (1.17 g, 2.85 mmol, 0.1 equiv.) and (EtO)₃CH (21.1g, 142.5 mmol, 5.0 equiv.). After being stirred for 30 min at 40 °C, a saturated aqueous NaHCO₃ (30 mL) solution was added, and the resulting mixture extracted with CH₂Cl₂ (50 mL x 3). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated *in vacuo*. Flash chromatography (ethyl acetate/hexane = 1/30) on triethylamine-buffered silica gel (2.5 v/v) afforded **37** (7.22 g, 26.2 mmol, 92% yield) as a pale yellow oil. R_f 0.4 (hexane/diethyl ether = 10/1); IR (film) 3358 (m), 2977 (s), 2928 (s), 2887 (s), 1936 (w), 1462 (s), 1294 (s), 783 (s) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.20-7.18 (m, 2H), 6.98 (t, *J* = 5.0 Hz, 1H), 6.31 (br, 1H), 5.61 (s, 1H), 3.69-3.63 (m, 2H), 3.61-3.55 (m, 2H), 1.24 (t, *J* = 7.0 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 152.9, 138.6, 128.3, 119.9, 116.3, 111.3, 101.5, 62.5, 15.3; high resolution mass spectrum (CI⁺) *m/z* 274.0196 [(M)⁺; calcd for C₁₁H₁₅O₃Br: 274.0205].

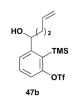
Compound 38. To a solution of **34** (747.7 mg, 2.29 mmol, 1.0 equiv.) in Et₂O (11.5 mL) at 0 °C was added MeMgBr (3.0 M in diethyl ether, 0.92 mL, 2.75 mmol, 1.2 equiv.) dropwise. After stirring for 5 min at 0 °C, a saturated aqueous NH₄Cl (10 mL) solution was added, and the resulting mixture extracted with Et₂O (10 mL x 3). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated *in vacuo*. Flash chromatography (ethyl acetate/hexane = 1/10) afforded **38** (698.5 mg, 2.04 mmol, 89% yield) as a colorless oil. R_f 0.4 (hexane/ethyl acetate = 4/1); IR (film) 3309 (m), 2983 (m), 2955 (m), 2902 (w), 1713 (w), 1600 (m), 1415 (s), 1140 (s) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.66 (d, *J* = 8.0 Hz, 1H), 7.47 (t, *J* = 8.5 Hz, 1H), 7.26 (d, *J* =

8.5 Hz, 1H), 5.25 (q, J = 6.5 Hz, 1H), 2.04 (br, 1H), 1.48 (d, J = 6.0 Hz, 3H), 0.47 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 154.9, 154.5, 131.3, 129.7, 125.3, 119.2, 118.6 (q, J = 318.6 Hz, CF₃), 68.4, 25.7, 2.4; high resolution mass spectrum (ES⁺) *m/z* 342.0583 [(M)⁺; calcd for C₁₂H₁₇F₃O₄SSi: 342.0569].

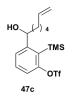
Compound 40 and 41. Demonstration of Benzyne Reactivity: To a solution of 38 (19.2 mg, 0.056 mmol, 1.0 equiv.) and benzyl azide (14.6 mg, 0.11 mmol, 2.0 equiv.) in THF (0.6 mL) at -78 °C was added KHMDS (0.5 M in toluene, 0.12 mL, 0.061 mmol, 1.1 equiv.) dropwise. After being stirred for 10 min at -78 °C, 3 mL of 1N HCl was added. After 10 min, a saturated aqueous NH₄Cl (3 mL) solution was added, and the resulting mixture extracted with Et₂O (10 mL x 3). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated in vacuo. Flash chromatography (ethyl acetate/hexane = 1/2), and preparative thin layer chromatography (ethyl acetate/hexane = 1/2) afforded a 3.3:1 regioisomeric mixture of 40 and 41 (12.1 mg, 0.048 mmol, 85% yield) as a pale yellow oil. Intermolecular tri-component [3+2] Benzyne Cycloaddition: To a solution of linchpin 34 (77.4 mg, 0.24 mmol, 1.0 equiv.) in Et₂O (1.2 mL) at -78 °C was added MeLi (1.6 M in diethyl ether, 0.18 mL, 0.29 mmol, 1.2 equiv.) dropwise. After stirring for 5 min at -78 °C, benzyl azide (63.9 mg, 0.48 mmol, 2.0 equiv.) in THF (1.2 mL) was added. After being stirred for 2 min at -78 °C, 3 mL of 1N HCl was added. A saturated aqueous NH₄Cl (5 mL) solution was then added after 10 min, and the resulting mixture extracted with Et₂O (10 mL x 3). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated in *vacuo*. Flash chromatography (ethyl acetate/hexane = 1/2), and preparative thin layer chromatography (ethyl acetate/hexane = 1/2) afforded a 3.3:1 regioisomeric mixture of 40 and 41 (40.3 mg, 0.16 mmol, 67% yield) as a pale yellow oil. Rf 0.1 (hexane/ethyl acetate = 2/1; For major regionsomer 40: IR (film) 3388 (s), 2970 (m), 2928 (m), 1951 (w), 1611 (m), 1496 (m), 1267 (s), 1111 (s) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.38-7.24 (m, 8H),

5.83 (s, 2H), 5.56 (q, J = 6.5 Hz, 1H), 3.59 (br, 1H), 1.75 (d, J = 6.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 143.8, 138.0, 134.6, 132.9, 128.9, 128.4, 127.51, 127.49, 119.4, 108.5, 67.8, 52.2, 24.3; high resolution mass spectrum (ES⁺) m/z 254.1281 [(M+H)⁺; calcd for C₁₅H₁₆N₃O: 254.1293]; For minor regioisomer **41**: IR (film) 3354 (s), 2975 (m), 2927 (m), 2902 (w), 1951 (w), 1600 (m), 1497 (m), 1248 (s), 1092 (s) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.01 (d, J = 8.5 Hz, 1H), 7.50 (d, J = 7.5 Hz, 1H), 7.34 (t, J = 8.0 Hz, 1H), 7.31-7.24 (m, 3H), 7.04 (d, J = 7.0 Hz, 2H), 6.26 (d, J = 16.5 Hz, 1H), 6.12 (d, J = 16.5 Hz, 1H), 5.15 (q, J = 6.0 Hz, 1H), 1.99 (br, 1H), 1.50 (d, J = 6.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 147.3, 136.8, 131.0, 129.0, 128.7, 128.0, 126.2, 123.98, 123.96, 120.0, 65.6, 53.4, 23.3; high resolution mass spectrum (CI⁺) m/z 254.1287 [(M+H)⁺; calcd for C₁₅H₁₆N₃O: 254.1293].

Compound 43. To a solution of linchpin 34 (107.1 mg, 0.33 mmol, 1.0 equiv.) and 1,1diethoxyethylene (190.6 mg, 1.64 mmol, 5.0 equiv.) in THF (3.3 mL) at -78 °C was added MeLi (1.6 M in diethyl ether, 0.25 mL, 0.40 mmol, 1.2 equiv.) dropwise. After being stirred for 10 min at -78 °C, the resulting solution was warmed to 0 °C. After 10 min at 0 °C, 3 mL of 1N HCl was added and stirred for an additional 2 h at room temperature. A saturated aqueous NH₄Cl (5 mL) solution was then added, and the resulting mixture extracted with Et_2O (10 mL x 3). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated in vacuo. Flash chromatography (ethyl acetate/hexane = 1/5) afforded 43 (41.6 mg, 0.26 mmol, 78%) yield) as a pale yellow oil. $R_f 0.2$ (hexane/ethyl acetate = 5/1); IR (film) 3422 (m), 2972 (m), 2925 (m), 1765 (s), 1579 (s), 1469 (m), 1281 (m), 1112 (m) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.49 (t, J = 7.5 Hz, 1H), 7.41 (d, J = 7.0 Hz, 1H), 7.30 (d, J = 7.5 Hz, 1H), 4.82 (q, J = 6.5 Hz, 1H), 4.00 (s, 2H), 2.96 (br, 1H), 1.54 (d, J = 6.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 188.8, 151.0, 144.0, 142.8, 135.6, 124.8, 122.1, 68.0, 51.9, 24.6; high resolution mass spectrum (CI⁺) m/z 145.0658 [(M–OH)⁺; calcd for C₁₀H₉O: 145.0653].

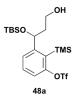

Compound 45. To a solution of linchpin 35 (71.9 mg, 0.21 mmol, 1.0 equiv.) and 2,5dimethylfuran (100.9 mg, 1.05 mmol, 5.0 equiv.) in THF (2.1 mL) at -78 °C was added MeLi (1.6 M in diethyl ether, 0.16 mL, 0.25 mmol, 1.2 equiv.) dropwise. After being stirred for 10 min at -78 °C, TBAF (1.0 M in THF, 0.63 mL, 0.63 mmol, 3.0 equiv.) was added, and the reaction mixture was stirred for 30 min at room temperature. A saturated aqueous NH₄Cl (3 mL) solution was then added, and the resulting mixture extracted with Et₂O (10 mL x 3). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated *in vacuo*. Flash chromatography (ethyl acetate/hexane = 1/10) afforded 45 (38.0 mg, 0.164 mmol, 78% yield) as a white solid. R_f 0.3 (hexane/ethyl acetate = 5/1); mp: 160-163 °C; IR (film) 3420 (s), 2978 (m), 2933 (m), 1452 (m), 1376 (m), 1132 (m) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.03 (dd, J = 5.0 and 2.5 Hz, 1H), 6.94-6.90 (m, 2H), 6.83 (d, J = 5.5 Hz, 1H), 6.71 (d, J = 5.0 Hz, 1H), 2.20 (s, 3H), 1.88 (s, 3H), 1.70 (s, 3H), 1.65 (br, 1H), 1.59 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) & 154.3, 150.3, 147.3, 147.0, 143.0, 124.5, 122.1, 117.1, 92.2, 86.8, 73.2, 32.3, 32.2, 20.3, 15.2; high resolution mass spectrum (ES⁻) m/z 229.1223 [(M–H)⁻; calcd for C₁₅H₁₇O₂: 229.1229].

Compound 46. To a solution of **35** (71.4 mg, 0.21 mmol, 1.0 equiv.) and 2,5dimethylfuran (100.8 mg, 1.05 mmol, 5.0 equiv.) in THF (0.6 mL) at -78 °C was added KHMDS (0.5 M in toluene, 0.46 mL, 0.23 mmol, 1.1 equiv.) dropwise. After being stirred for 10 min at -78 °C, TBAF (1.0 M in THF, 0.63 mL, 0.63 mmol, 3.0 equiv.) was added. After 5 min, a saturated aqueous NH₄Cl (3 mL) solution was then added, and the resulting mixture extracted with Et₂O (10 mL x 3). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated *in vacuo*. Flash chromatography (ethyl acetate/hexane = 1/6) afforded **46** (23.4 mg, 0.11 mmol, 52% yield) as a pale yellow solid. R_f 0.4 (hexane/ethyl acetate = 5/1); mp: 82-85 °C; IR (film) 3072 (w), 2976 (m), 2933 (m), 2870 (w), 1689 (s), 1586 (w), 1416 (m), 1381 (s), 1259 (s) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.21 (t, *J* = 6.5 Hz, 2H), 7.03 (t, *J* = 7.5 Hz, 1H), 6.92 (d, *J* = 5.0 Hz, 1H), 6.75 (d, *J* = 5.0 Hz, 1H), 2.57 (s, 3H), 1.89 (s, 3H), 1.85 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 200.5, 154.6, 153.1, 147.0, 146.6, 133.5, 124.8, 123.8, 120.6, 90.9, 87.3, 28.6, 17.0, 15.2; high resolution mass spectrum (CI⁺) *m/z* 215.1075 [(M+H)⁺; calcd for C₁₄H₁₅O₂: 215.1072].



Compound 47a. To a solution of **34** (219.0 mg, 0.67 mmol, 1.0 equiv.) in Et₂O (3.4 mL) at 0 °C was added allylmagnesium bromide (1.0 M in diethyl ether, 0.80 mL, 0.80 mmol, 1.2 equiv.) dropwise. After stirring for 5 min at 0 °C, a saturated aqueous NH₄Cl (5 mL) solution was added, and the resulting mixture extracted with Et₂O (10 mL x 3). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated *in vacuo*. Flash chromatography (ethyl acetate/hexane = 1/10) afforded **47a** (228.4 mg, 0.62 mmol, 92% yield) as a colorless oil. R_f 0.4 (hexane/ethyl acetate = 5/1); IR (film) 3414 (m), 2954 (m), 2906 (m), 1952 (w), 1642 (m), 1599 (m), 1556 (m), 1418 (s), 1211 (s), 1146 (s) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.63 (d, *J* = 8.0 Hz, 1H), 7.46 (t, *J* = 8.0 Hz, 1H), 7.26 (d, *J* = 8.5 Hz, 1H), 5.88-8.80 (m, 1H), 5.32-5.19 (m, 2H), 5.09-5.06 (m, 1H), 2.47-2.39 (m, 2H), 2.12 (br, 1H), 0.46 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 154.7, 153.0, 134.0, 131.1, 130.0, 125.7, 119.3, 119.0, 118.6 (q, *J* = 318.8 Hz, CF₃), 71.1, 44.4, 2.5; high resolution mass spectrum (ES⁺) *m/z* 391.0630 [(M+Na)⁺; calcd for C₁₄H₁₉F₃O₄SSiNa: 391.0630].

Compound 47b. To a solution of **34** (305.0 mg, 0.93 mmol, 1.0 equiv.) in Et_2O (4.7 mL) at 0 °C was added 3-butenylmagnesium bromide (0.35 M in diethyl ether, 3.98 mL, 1.39 mmol, 1.5 equiv.) dropwise. After stirring for 5 min at 0 °C, a saturated aqueous NH₄Cl (5 mL) solution was added, and the resulting mixture extracted with Et_2O (10 mL x 3).


The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated *in vacuo*. Flash chromatography (ethyl acetate/hexane = 1/10) afforded **47b** (284.8 mg, 0.75 mmol, 80% yield) as a pale yellow oil. R_f 0.4 (hexane/ethyl acetate = 5/1); IR (film) 3406 (m), 3079 (m), 2952 (s), 2853 (m), 1950 (w), 1641 (m), 1599 (m), 1555 (m), 1418 (s), 1252 (s), 1146 (s) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, *J* = 7.5 Hz, 1H), 7.46 (t, *J* = 8.0 Hz, 1H), 7.26 (d, *J* = 8.5 Hz, 1H), 5.90-5.82 (m, 1H), 5.11-5.02 (m, 3H), 2.37-2.30 (m, 1H), 2.20-2.13 (m, 1H), 2.06 (br, 1H), 1.92-1.84 (m, 1H), 1.75-1.69 (m, 1H), 0.47 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 154.6, 153.9, 137.8, 131.2, 130.1, 125.8, 119.3, 118.5 (q, *J* = 318.6 Hz, CF₃), 115.4, 71.7, 38.6, 30.4, 2.4; high resolution mass spectrum (ES⁺) *m/z* 405.0779 [(M+Na)⁺; calcd for C₁₅H₂₁F₃O₄SSiNa: 405.0780].

Compound 47c. To a solution of **34** (261.0 mg, 0.80 mmol, 1.0 equiv.) in Et₂O (4.0 mL) at 0 °C was added 5-hexenylmagnesium bromide (0.58 M in diethyl ether, 2.07 mL, 1.20 mmol, 1.5 equiv.) dropwise. After stirring for 5 min at 0 °C, a saturated aqueous NH₄Cl (5 mL) solution was added, and the resulting mixture extracted with Et₂O (10 mL x 3). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated *in vacuo*. Flash chromatography (ethyl acetate/hexane = 1/10) afforded **47c** (257.3 mg, 0.63 mmol, 78% yield) as a pale yellow oil. R_f 0.3 (hexane/ethyl acetate = 5/1); IR (film) 3395 (m), 2935 (s), 2859 (m), 1950 (w), 1641 (w), 1599 (m), 1555 (w), 1419 (s), 1210 (s), 920 (s) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.61 (d, *J* = 8.0 Hz, 1H), 7.45 (t, *J* = 8.0 Hz, 1H), 7.26 (d, *J* = 8.0 Hz, 1H), 5.84-5.76 (m, 1H), 5.02-4.94 (m, 3H), 2.09-2.03 (m, 3H), 1.80-1.71 (m, 1H), 1.68-1.56 (m, 2H), 1.46-1.41 (m, 2H), 1.37-1.26 (m, 1H), 0.49 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 154.6, 154.2, 138.6, 131.1, 130.0, 125.6, 119.2, 118.6 (q, *J* = 318.6 Hz, CF₃), 114.5, 72.4, 33.7, 39.6, 28.8, 25.7, 2.4; high resolution mass spectrum (ES[¬]) *m/z* 409.1117 [(M–H)[¬]; calcd for C₁₇H₂₄F₃O₄SSi: 409.1117].

Compound 48a'. To a solution of **47a** (228.4 mg, 0.62 mmol, 1.0 equiv.) in CH₂Cl₂ (3.1 mL) at -78 °C was added TBDMSOTF (327.8 mg, 1.24 mmol, 2.0 equiv.) dropwise. After being stirred for 20 min at room temperature, a saturated aqueous CuSO₄ (5 mL) solution was added, and the resulting mixture extracted with Et₂O (10 mL x 3). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated *in vacuo*. Flash chromatography (ethyl acetate/hexane = 1/200) afforded **48a'** (284.8 mg, 0.59 mmol, 95% yield) as a pale yellow oil. R_f 0.9 (hexane/ethyl acetate = 5/1); IR (film) 3078 (m), 2955 (s), 2932 (s), 2859 (s), 1950 (w), 1642 (m), 1599 (m), 1555 (m), 1421 (s), 1253 (s), 1145 (s), 924 (s) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.68 (d, *J* = 8.0 Hz, 1H), 7.43 (t, *J* = 8.0 Hz, 1H), 7.26 (d, *J* = 9.0 Hz, 1H), 5.89-5.80 (m, 1H), 5.11-5.04 (m, 3H), 2.32 (t, *J* = 6.5 Hz, 2H), 0.9 (s, 9H), 0.5 (s, 9H), 0.1 (s, 3H), -0.1 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.4, 154.9, 134.6, 130.7, 127.7, 125.7, 118.5 (q, *J* = 318.5 Hz, CF₃), 117.7, 117.5, 71.2, 46.5, 25.8, 18.2, 2.6, -4.5, -4.6; high resolution mass spectrum (ESI⁺) *m/z* 505.1484 [(M+Na)⁺; calcd for C₂₀H₃₃F₃O₄SSi₂Na: 505.1488].

Compound 48a. To a solution of **48a'** (219.5 mg, 0.46 mmol, 1.0 equiv.) in CH_2Cl_2 :MeOH (22.7 mL, 5:1 v/v) at -78 °C was bubbled ozone. After being stirred for 10 min, oxygen was bubbled through the resulting solution for 20 min until the bule color disappeared. To the resulting solution was added NaBH₄ (34.0 mg, 0.90 mmol, 2.0 equiv.) portionwise at -78 °C. After being stirred for 1 h at room temperature, a saturated aqueous NH₄Cl (5 mL) solution was added, and the resulting mixture extracted with CH₂Cl₂ (10 mL x 3). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated *in vacuo*. Flash chromatography (ethyl acetate/hexane = 1/10) afforded **48a** (164.5 mg, 0.34 mmol, 74% yield) as a pale yellow oil. R_f 0.4 (hexane/ethyl acetate = 5/1); IR (film) 3418 (m), 2955 (s), 2893 (s), 2859 (s), 1687 (w),

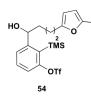
1599 (m), 1555 (m), 1420 (s), 1253 (s), 1144 (s), 933 (s) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.68 (d, *J* = 8.0 Hz, 1H), 7.44 (t, *J* = 8.0 Hz, 1H), 7.28 (d, *J* = 8.0 Hz, 1H), 5.32 (dd, *J* = 8.5 and 3.0 Hz, 1H), 3.83-3.74 (m, 2H), 2.49 (br, 1H), 1.96-1.90 (m, 1H), 1.81-1.74 (m, 1H), 0.9 (s, 9H), 0.5 (s, 9H), 0.1 (s, 3H), -0.2 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.5, 154.5, 130.8, 127.7, 125.7, 118.5 (q, *J* = 318.2 Hz, CF₃), 117.9, 71.7, 60.0, 43.2, 25.7, 18.0, 2.5, -4.6, -4.9; high resolution mass spectrum (ESI⁺) *m/z* 509.1418 [(M+Na)⁺; calcd for C₁₉H₃₃F₃O₅SSi₂Na: 509.1437].

Compound 49a. To a solution of **48a** (160.0 mg, 0.33 mmol, 1.0 equiv.) in CH₂Cl₂ (6.6 mL) at 0 °C were added triethylamine (100.2 mg, 0.99 mmol, 3.0 equiv.) and methane sulfonyl chloride (75.6 mL, 0.66 mmol, 2.0 equiv.) dropwise. After being stirred for 30 min at 0 °C, a saturated aqueous NaHCO₃ (5 mL) solution was added, and the resulting mixture extracted with Et₂O (10 mL x 3). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated in vacuo. To a solution of the crude product in DMF (6.6 mL) were added sodium azide (128.7, 1.98 mmol, 6.0 equiv.) and 15-crown-5 (cat.). After stirring for 12 h at 70 °C, a saturated aqueous NaHCO₃ (5 mL) solution was added, and the resulting mixture extracted with Et₂O (10 mL x 3). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated in vacuo. To a solution of the resulting azide was added 3.2 mL of 3% HCl in MeOH. After 12 h at room temperature, a saturated aqueous NH₄Cl (5 mL) solution was added, and the resulting mixture extracted with CH₂Cl₂ (10 mL x 3). The combined organic layers were washed with brine, dried over MgSO4, filtered and concentrated in *vacuo*. Flash chromatography (ethyl acetate/hexane = 1/10) afforded **49a** (75.0 mg, 0.19) mmol, 57% yield over 3 steps) as a pale yellow oil. $R_f 0.3$ (hexane/ethyl acetate = 5/1); IR (film) 3436 (w), 2956 (m), 2101 (s), 1599 (m), 1556 (w), 1417 (s), 1214 (s), 1143 (s) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, J = 8.0 Hz, 1H), 7.48 (t, J = 8.0 Hz, 1H), 7.28 (d, J = 8.0 Hz, 1H), 5.19 (dd, J = 10.0 and 3.0 Hz, 1H), 3.66-3.60 (m, 1H), 3.55-3.50 (m, 1H), 2.13 (br, 1H), 2.02-1.94 (m, 1H), 1.89-1.82 (m, 1H), 0.48 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 154.6, 153.1, 131.3, 130.3, 125.8, 119.7, 118.6 (q, *J* = 318.7 Hz, CF₃), 69.6, 48.6, 38.2, 2.4; high resolution mass spectrum (ESI⁺) *m/z* 398.0826 [(M+H)⁺; calcd for C₁₃H₁₉F₃N₃O₄SSi: 398.0818].

Compound 50a. To a solution of **49a** (53.4 mg, 0.13 mmol, 1.0 equiv.) in THF (26.9 mL) at -78 °C was added KHMDS (0.5 M in toluene, 0.29 mL, 0.14 mmol, 1.1 equiv.) dropwise. After the addition was complete, the reaction mixture was then warmed to room temperature over 2 h. The resulting solution was concentrated *in vacuo* before 5 mL of 1N HCl was added. After 10 min, a saturated aqueous NH₄Cl (5 mL) solution was added, and the resulting mixture extracted with Et₂O (10 mL x 3). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated *in vacuo*. Flash chromatography (ethyl acetate) afforded **50a** (17.9 mg, 0.10 mmol, 76% yield) as a pale yellow oil. R_f 0.1 (ethyl acetate); IR (film) 3357 (s), 2926 (m), 2854 (m), 1657 (w), 1638 (w), 1516 (w), 1469 (m), 1085 (s), 955 (s) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, *J* = 8.0 Hz, 1H), 7.40 (d, *J* = 7.0 Hz, 1H), 7.31 (t, *J* = 7.5 Hz, 1H), 5.25 (br, 1H), 4.80-4.70 (m, 2H), 3.11 (br, 1H), 2.54-2.49 (m, 1H), 2.39-2.33 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 143.9, 131.3, 124.9, 124.3, 122.9, 118.7, 63.6, 42.0, 31.9; high resolution mass spectrum (Cl⁺) *m/z* 176.0830 [(M+H)⁺; calcd for C₉H₁₀N₃O: 176.0824].

Compound 51. To a solution of **34** (413.7 mg, 1.26 mmol, 1.0 equiv.) in Et₂O (6.3 mL) at 0 °C was added (*E*)-hexadienylmagnesium bromide (0.25 M in diethyl ether, 7.56 mL, 1.89 mmol, 1.5 equiv.) dropwise. After stirring for 5 min at 0 °C, a saturated aqueous NH₄Cl (5 mL) solution was added, and the resulting mixture extracted with Et₂O (10 mL x 3). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated *in vacuo*. Flash chromatography (ethyl acetate/hexane = 1/20) afforded **51** (392.7 mg, 0.96 mmol, 76% yield) as a pale yellow oil. R_f 0.4 (hexane/ethyl acetate = 5/1); IR (film) 3399 (m), 3087 (w), 2952 (m), 2845 (w), 1653 (w), 1600 (m), 1417 (s),

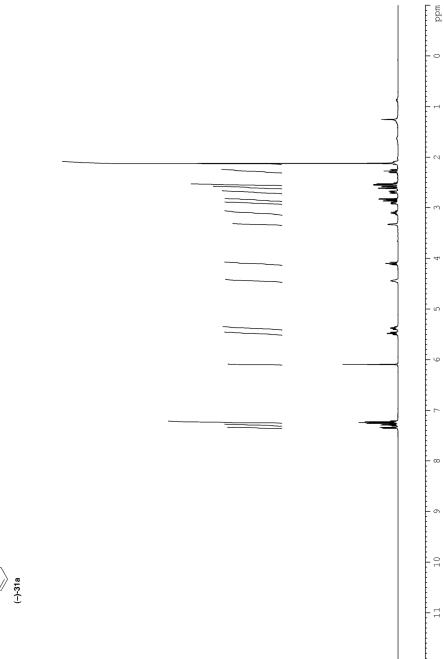
1213 (s), 842 (s) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.61 (d, *J* = 7.5 Hz, 1H), 7.46 (t, *J* = 8.0 Hz, 1H), 7.26 (d, *J* = 8.5 Hz, 1H), 6.34-6.28 (m, 1H), 6.15-6.10 (m, 1H), 5.75-5.71 (m, 1H), 5.13 (d, *J* = 17.0 Hz, 1H), 5.05-5.00 (m, 2H), 2.40-2.35 (m, 1H), 2.23-2.19 (m, 1H), 2.00 (br, 1H), 1.91-1.87 (m, 1H), 1.75-1.69 (m, 1H), 0.47 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 154.6, 153.8, 136.9, 133.6, 132.0, 131.2, 130.1, 125.8, 119.3, 118.5 (q, *J* = 318.5 Hz, CF₃), 115.5, 71.6, 38.7, 29.1, 2.4; high resolution mass spectrum (ESI⁺) *m/z* 431.0926 [(M+Na)⁺; calcd for C₁₇H₂₃F₃O₄SSiNa: 431.0936].



Compound 52. To a solution of **51** (66.4 mg, 0.16 mmol, 1.0 equiv.) in THF (32.5 mL) at -78 °C was added KHMDS (0.5 M in toluene, 0.36 mL, 0.18 mmol, 1.1 equiv.) dropwise. After the addition was complete, the reaction mixture was then warmed to room temperature over 2 h. The resulting solution was concentrated *in vacuo* before THF (5 mL) and TBAF (1.0 M in THF, 0.48 mL, 0.48 mmol, 3.0 equiv.) were added. After 30 min, a saturated aqueous NH₄Cl (5 mL) solution was added, and the resulting mixture extracted with Et₂O (10 mL x 3). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated *in vacuo*. To a solution of cycloadduct in CH₂Cl₂ (2.3 mL) was added PCC (103.5 mg, 0.48 mmol, 3.0 equiv.). After being stirred for 1 h at room temperature, the reaction mixture was filtered through silica gel and concentrated *in vacuo*. Flash chromatography (ethyl acetate/hexane = 1/10) afforded 52 (21.0 mg, 0.114 mmol, 71% yield over 2 steps) as a pale yellow solid. Rf 0.5 (hexane/ethyl acetate = 5/1); mp 80-83 °C; IR (film) 3059 (m), 2927 (m), 2851 (m), 1681 (s), 1619 (m), 1588 (m), 1342 (s), 926 (s) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) & 8.20 (dd, J = 7.0 and 1.0 Hz, 1H), 8.09 (dd, J = 8.0 and 1.0 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.60 (t, J = 7.5 Hz, 1H), 7.51-7.45 (m, 2H), 3.44 (t, J = 7.0 Hz, 2H), 2.98 (t, J = 7.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) & 198.6, 134.0, 133.4, 133.2, 131.6, 129.8, 128.5, 126.2, 125.7, 125.5, 125.0, 38.5, 28.5; high resolution mass spectrum (CI⁺) m/z 182.0730 [(M)⁺; calcd for C₁₃H₁₀O: 182.0732]. Alternative: To a solution of **51** (66.7 mg, 0.17 mmol, 1.0 equiv.) in Et₂O (1.6 mL) at -78 °C was added MeLi (1.6 M in diethyl ether, 0.12 mL, 0.19 mmol, 1.1 equiv.) dropwise. After being stirred for 5 min, Et₂O (31.0 mL) was

added. To the resulting solution, KOt-Bu (1.0 M in THF, 0.19 mL, 0.19 mmol, 1.1 equiv.) was then added at -78 °C. After the addition was complete, the reaction mixture was then warmed to room temperature over 2 h. The resulting solution was concentrated *in vacuo* before THF (5 mL) and TBAF (1.0 M in THF, 0.48 mL, 0.48 mmol, 3.0 equiv.) were added. After 30 min, a saturated aqueous NH₄Cl (5 mL) solution was added, and the resulting mixture extracted with Et₂O (10 mL x 3). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated *in vacuo*. To a solution of cycloadduct in CH₂Cl₂ (2.3 mL) was added PCC (109.9 mg, 0.51 mmol, 3.0 equiv.). After being stirred for 1 h at room temperature, the reaction mixture was filtered through silica gel and concentrated *in vacuo*. Flash chromatography (ethyl acetate/hexane = 1/10) afforded **52** (23.2 mg, 0.127 mmol, 75% yield over 2 steps) as a pale yellow solid.

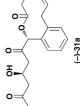
Compound 53. To a solution of **51** (89.6 mg, 0.22 mmol, 1.0 equiv.) in THF (43.9 mL) at -78 °C was added KHMDS (0.5 M in toluene, 0.48 mL, 0.24 mmol, 1.1 equiv.) dropwise. After the addition was complete, the reaction mixture was then warmed to room temperature over 2 h. The resulting solution was concentrated in vacuo before THF (5 mL) and TBAF (1.0 M in THF, 0.66 mL, 0.66 mmol, 3.0 equiv.) were added. After 30 min, a saturated aqueous NH₄Cl (5 mL) solution was added, and the resulting mixture extracted with Et₂O (10 mL x 3). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated in vacuo. To a solution of cycloadduct in Et₂O (2.5 mL) was added MnO₂ (382.5 mg, 4.4 mmol, 20.0 equiv.). After being stirred for 12 h at room temperature, the reaction mixture was filtered through silica gel and concentrated *in vacuo*. Flash chromatography (ethyl acetate/hexane = 1/10) afforded 53 (22.9 mg, 0.127 mmol, 58% yield over 2 steps) as a pale yellow solid. Rf 0.5 (hexane/ethyl acetate = 5/1); mp 150-153 °C; IR (film) 3041 (m), 2926 (m), 2855 (m), 1640 (s), 1581 (s), 1393 (m), 1358 (m), 1557 (m), 1238 (m), 831 (s) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.63 (d, J = 7.5 Hz, 1H), 8.20 (dd, J = 8.0 and 1.0 Hz, 1H), 8.03 (d, J = 8.0 Hz, 1H), 7.80-7.74 (m, 3H), 7.59 (dd, J = 8.5 and 7.0 Hz, 1H), 6.73 (d, J = 10.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 185.6, 141.7, 134.9, 132.2, 131.9, 131.3, 130.4, 129.5, 129.3, 127.9, 127.6, 127.1, 126.6; high resolution mass spectrum (CI⁺) m/z181.0651 [(M+H)⁺; calcd for C₁₃H₉O: 181.0653].

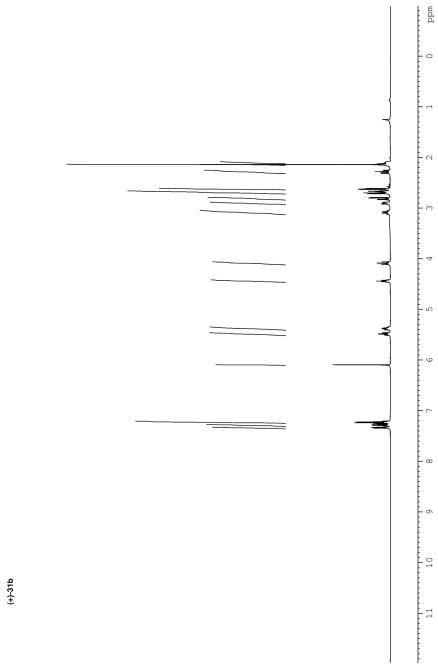


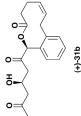
Compound 54. To a solution of **34** (231.2 mg, 0.71 mmol, 1.0 equiv.) in Et₂O (3.5 mL) at 0 °C was added (3-(5-methylfuran-2-yl)propyl)magnesium bromide (0.7 M in diethyl ether, 1.52 mL, 1.06 mmol, 1.5 equiv.) dropwise. After stirring for 5 min at 0 °C, a saturated aqueous NH₄Cl (5 mL) solution was added, and the resulting mixture extracted with Et₂O (10 mL x 3). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated *in vacuo*. Flash chromatography (ethyl acetate/hexane = 1/20) afforded **54** (262.8 mg, 0.58 mmol, 82% yield) as a pale yellow oil. R_f 0.4 (hexane/ethyl acetate = 5/1); IR (film) 3411 (m), 3104 (w), 2951 (s), 2867 (m), 1642 (w), 1600 (m), 1570 (m), 1557 (m), 1418 (s), 1248 (s), 1141 (s), 844 (s) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) & 7.61 (d, *J* = 8.0 Hz, 1H), 7.46 (t, *J* = 8.0 Hz, 1H), 7.26 (d, *J* = 8.5 Hz, 1H), 5.86-5.84 (m, 2H), 5.03 (dd, *J* = 8.5 and 3.5 Hz, 1H), 2.68-2.57 (m, 2H), 2.25 (s, 3H), 1.98-1.90 (m, 2H), 1.83-1.71 (m, 1H), 1.69-1.64 (m, 2H), 0.46 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) & 154.6, 154.1, 153.6, 150.3, 131.2, 129.9, 125.6, 119.2, 118.6 (q, *J* = 319.1 Hz, CF₃), 105.8, 105.7, 72.3, 39.1, 27.8, 24.8, 13.4, 2.4; high resolution mass spectrum (ESI⁺) *m/z* 473.1046 [(M+Na)⁺; calcd for C₁₉H₂₅F₃O₅SSiNa: 473.1042].

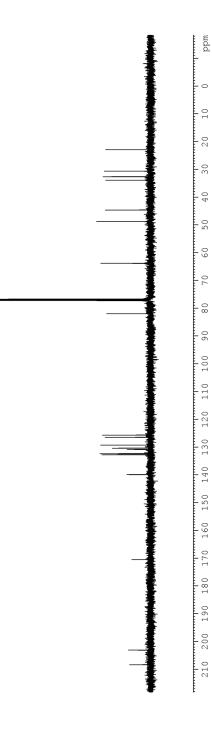
Compound 55. **Intramolecular [4+2] Benzyne Cycloaddition:** To a solution of **54** (51.0 mg, 0.11 mmol, 1.0 equiv.) in THF (22.6 mL) at -78 °C was added KHMDS (0.5 M in toluene, 0.24 mL, 0.12 mmol, 1.1 equiv.) dropwise. After the addition was complete, the reaction mixture was then warmed to room temperature over 2 h. The resulting solution was concentrated *in vacuo* before THF (5 mL) and TBAF (1.0 M in THF, 0.33 mL, 0.33 mmol, 3.0 equiv.) were added. After 30 min, a saturated aqueous NH₄Cl (5 mL) solution was added, and the resulting mixture extracted with Et₂O (10 mL x 3). The combined organic layers were washed with brine, dried over MgSO₄, filtered and

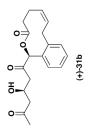
concentrated in vacuo. To a solution of cycloadduct in CH₂Cl₂ (1.6 mL) was added PCC (36.6 mg, 0.17 mmol, 1.5 equiv.). After being stirred for 1 h at room temperature, the reaction mixture was filtered through silica gel and concentrated in vacuo. Flash chromatography (ethyl acetate/hexane = 1/5) afforded 55 (21.0 mg, 0.09 mmol, 82%) yield over 2 steps) as a pale yellow oil. $R_f 0.4$ (hexane/ethyl acetate = 2/1); One-Pot Intramolecular [4+2] Benzyne Cycloaddition: To a solution of iodide 56 (125.0 mg, 0.50 mmol, 2.0 equiv.) in Et₂O (0.6 mL) at -78 °C was added *t*-BuLi (1.7 M in pentane, 0.65 mL, 1.1 mmol, 4.4 equiv.) dropwise. After being stirred for 30 min at -78 °C, the resulting solution was warmed to room temperature. After 5 min at room temperature, the resulting solution was added to a solution of linchpin 34 (81.4 mg, 0.25 mmol, 1.0 equiv.) in Et₂O (1.4 mL) at -78 °C. After being stirred for 10 min at -78 °C, Et₂O (47.9 mL) was added. To the resulting solution, KOt-Bu (1.0 M in THF, 0.50 mL, 0.50 mmol, 2.0 equiv.) was then added at -78 °C. After the addition was complete, the reaction mixture was then warmed to room temperature over 2 h. The resulting solution was concentrated in vacuo before THF (5 mL) and TBAF (1.0 M in THF, 0.75 mL, 0.75 mmol, 3.0 equiv.) were added. After 30 min, a saturated aqueous NH₄Cl (5 mL) solution was added, and the resulting mixture extracted with Et₂O (10 mL x 3). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated in vacuo. To a solution of cycloadduct in CH₂Cl₂ (3.6 mL) was added PCC (81.9 mg, 0.38 mmol, 1.5 equiv.). After being stirred for 1 h at room temperature, the reaction mixture was filtered through silica gel and concentrated *in vacuo*. Flash chromatography (ethyl acetate/hexane = 1/5) afforded 55 (18.9 mg, 0.08 mmol, 33% yield over 2 steps) as a pale yellow oil. Rf 0.4 (hexane/ethyl acetate = 2/1); IR (film) 3069 (w), 2933 (s), 2866 (m), 1672 (s), 1605 (m), 1450 (m), 1417 (m), 1294 (s), 1227 (m), 1134 (m), 982 (s) cm⁻¹; ¹H NMR (500 MHz, $CDCl_3$) δ 7.45 (d, J = 8.0 Hz, 1H), 7.25 (d, J = 6.0 Hz, 1H), 7.06 (t, J = 8.0 Hz, 1H), 6.91 (d, J = 5.5 Hz, 1H), 6.81 (d, J = 5.5 Hz, 1H), 3.02-2.97 (m, 1H), 2.90-2.85 (m, 1H), 2.63-2.59 (m, 1H), 2.36 (app t, J = 12.5 Hz, 1H), 2.27-2.20 (m, 1H), 2.08-2.01 (m, 1H), 1.93 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) & 201.1, 153.4, 151.5, 147.3, 145.6, 130.9, 125.5, 124.4, 122.0, 92.8, 88.5, 46.1, 32.3, 20.6, 15.1; high resolution mass spectrum (CI⁺) m/z227.1065 $[(M+H)^+; calcd for C_{15}H_{14}F_3O_2: 227.1072].$

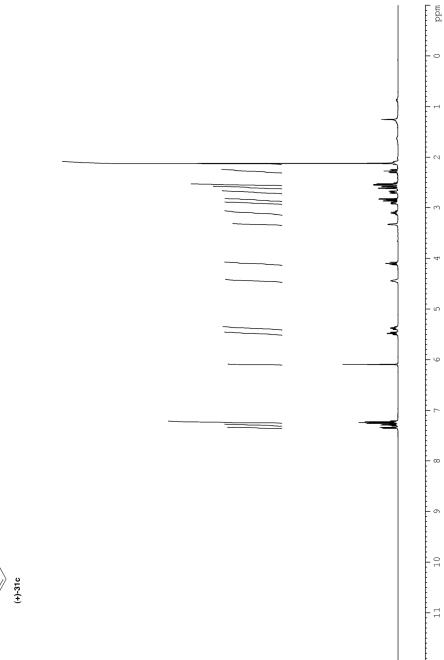




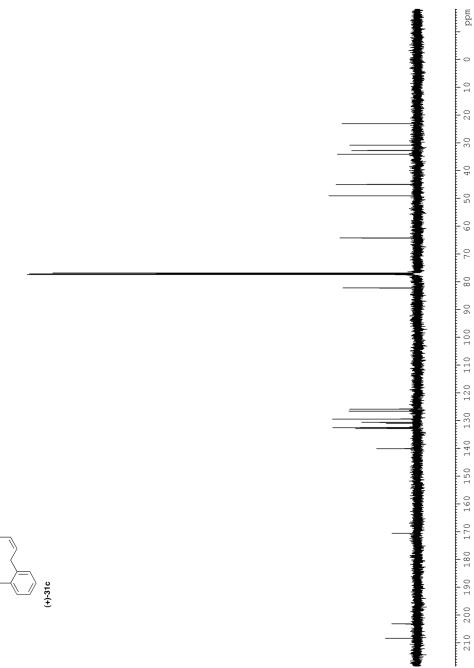

о= Но

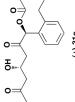

o=

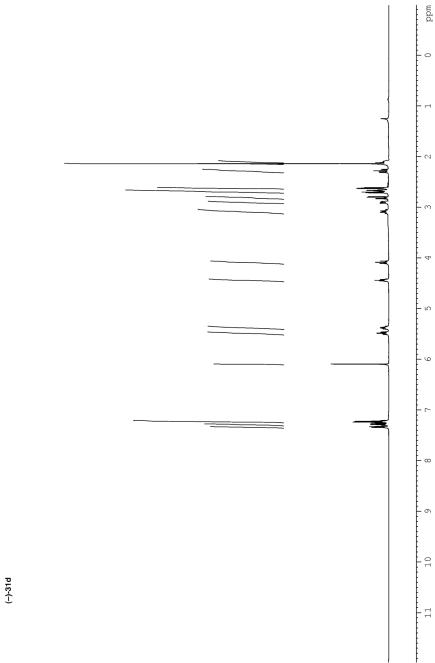


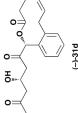


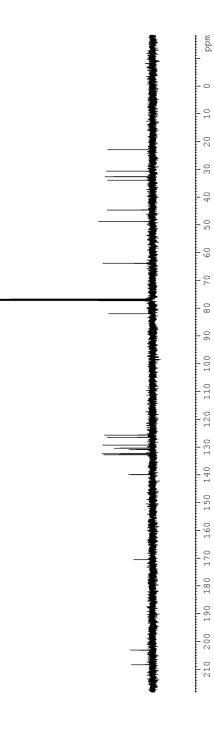


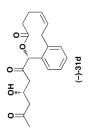


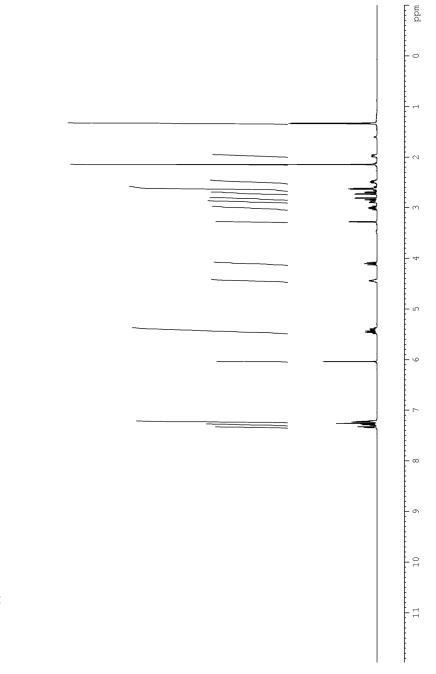


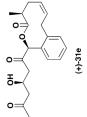


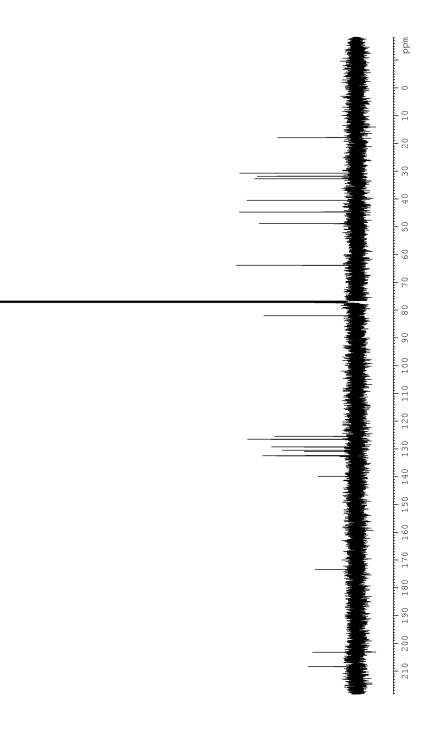


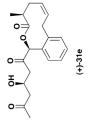


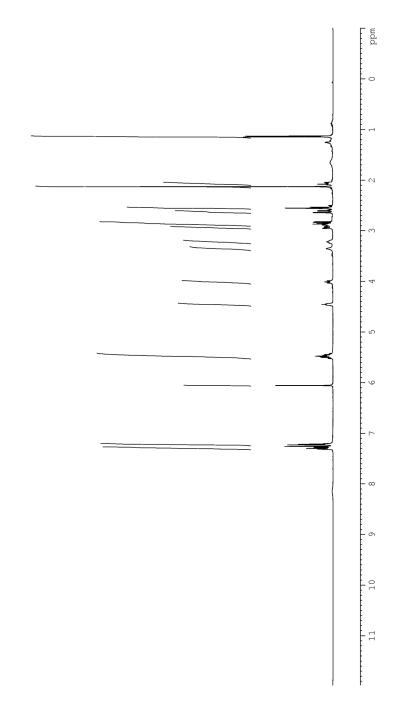


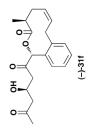


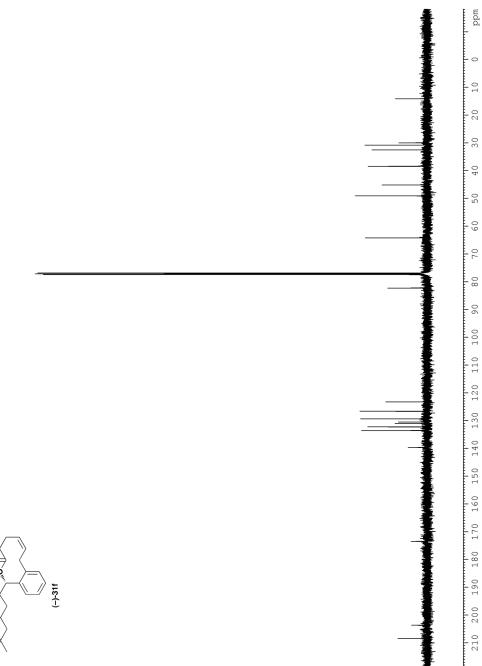


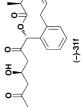


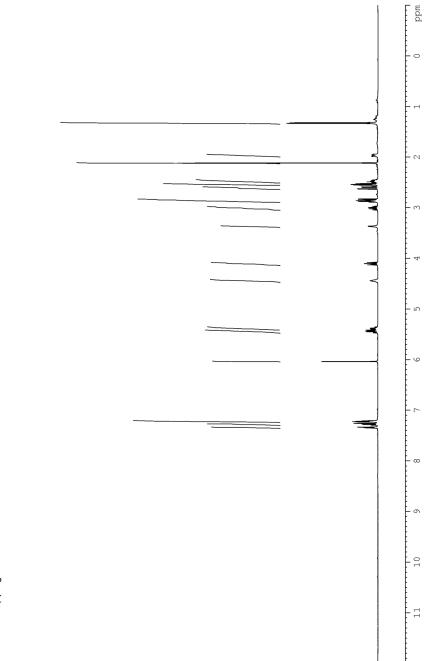


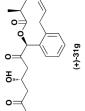


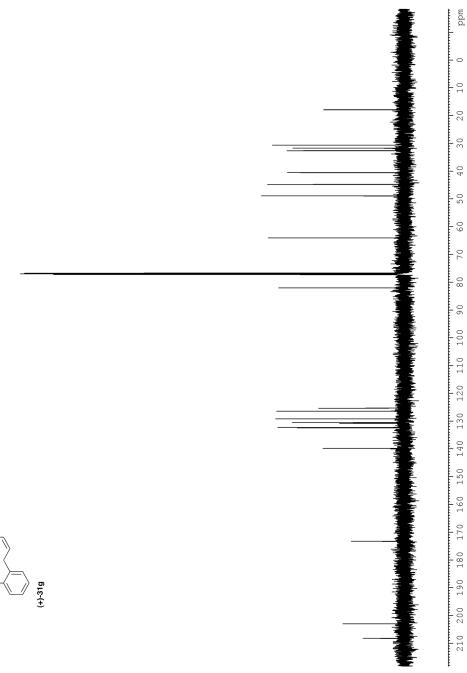


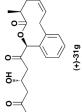


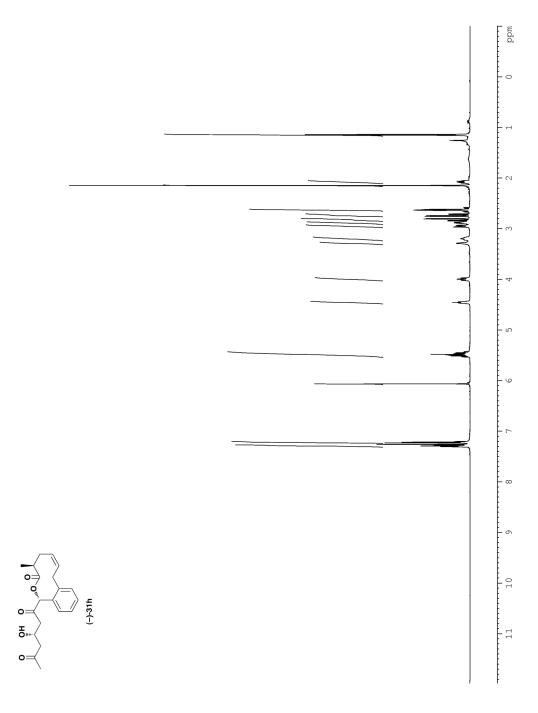


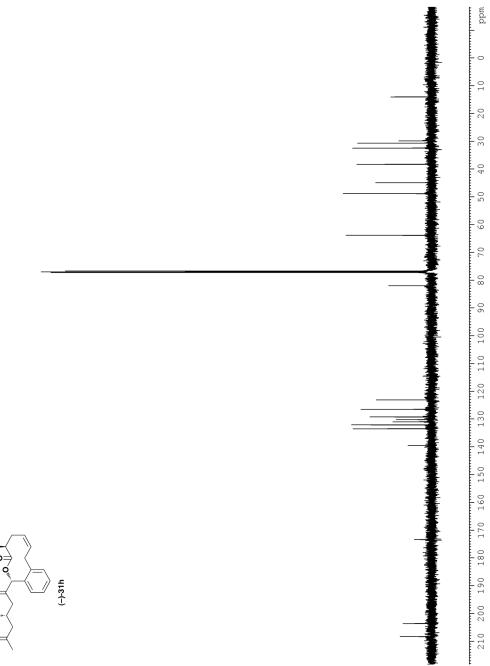


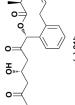


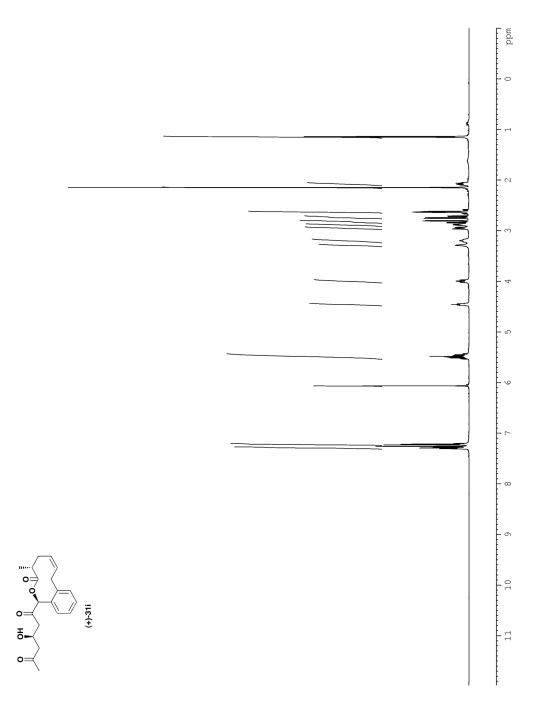


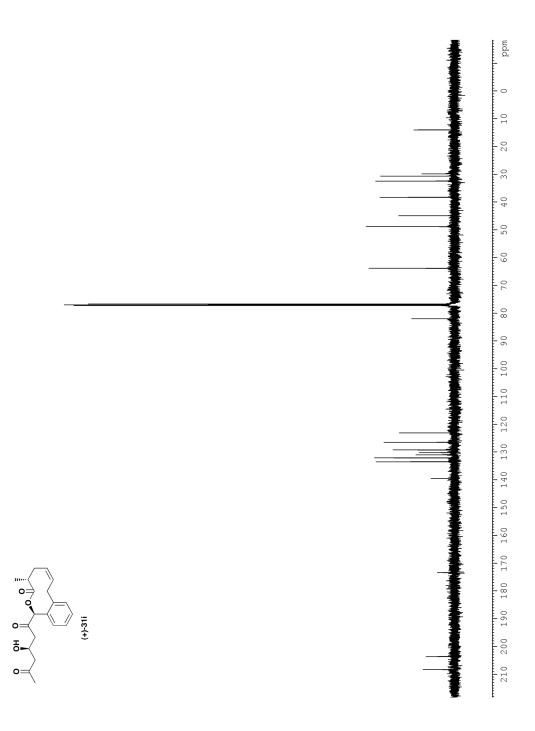


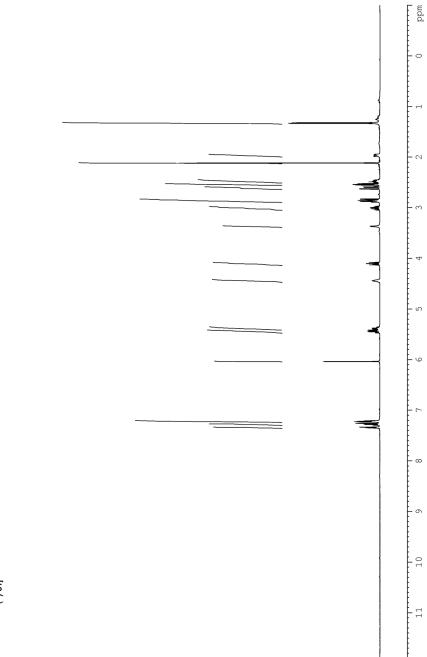


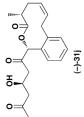


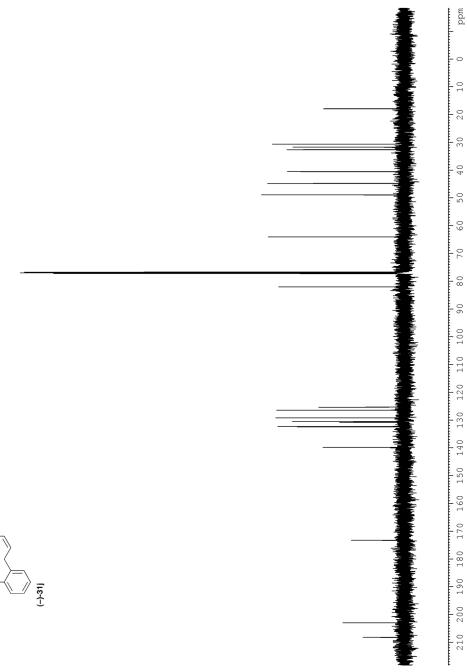


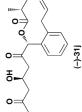


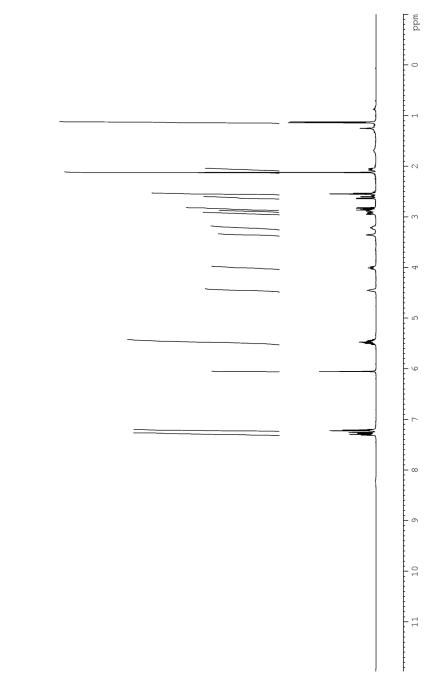


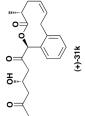


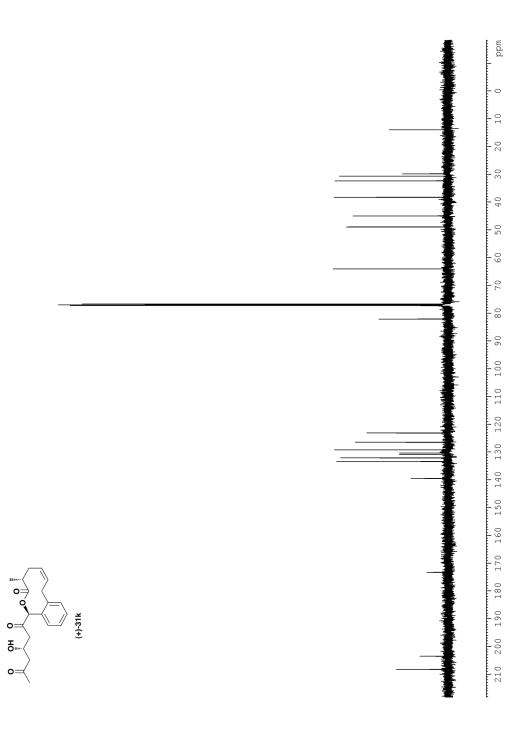


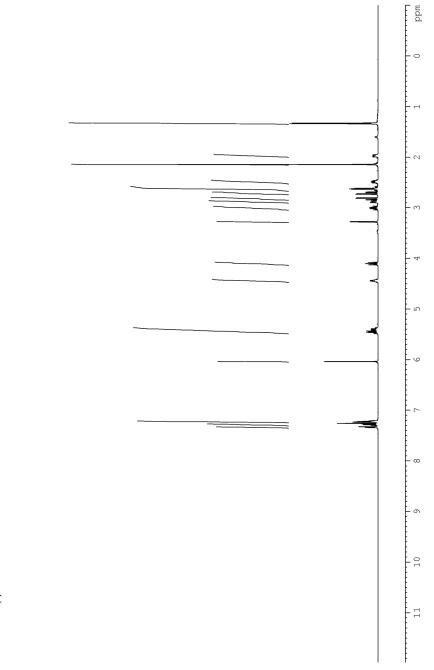


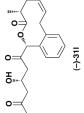


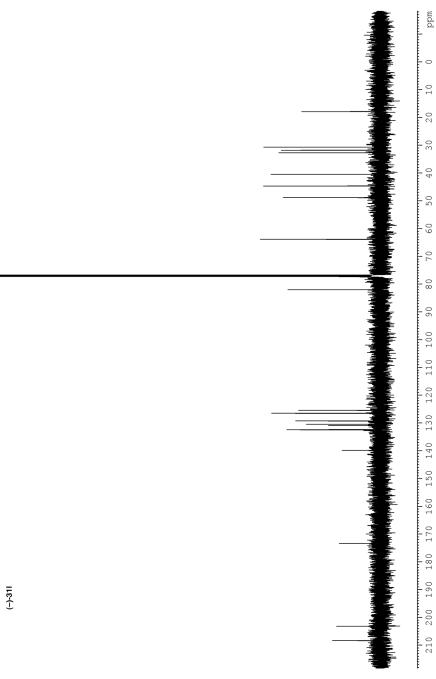


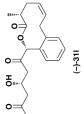


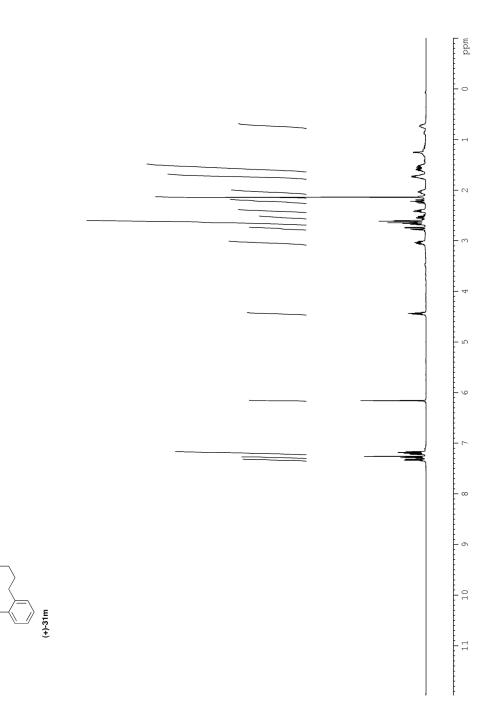


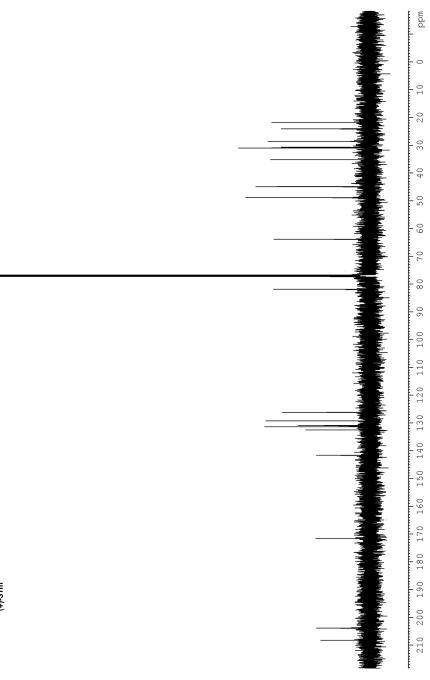


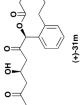


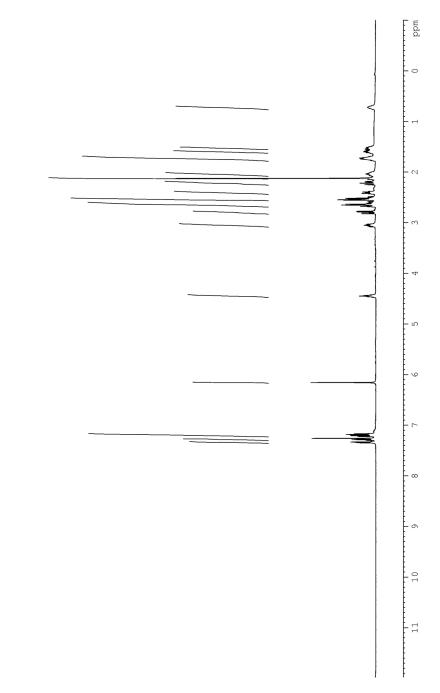


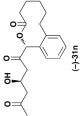


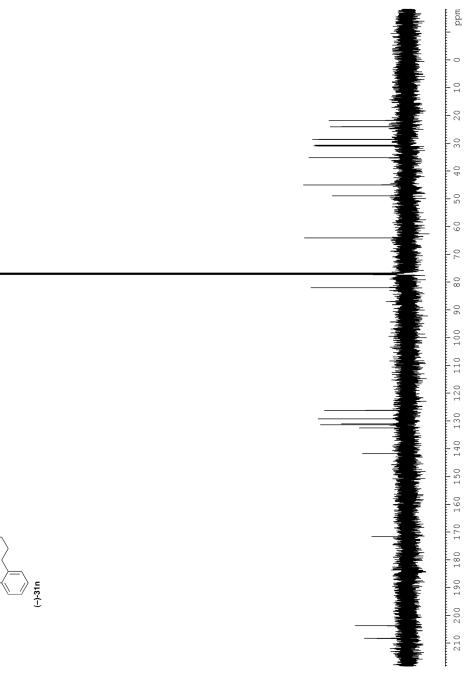


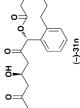


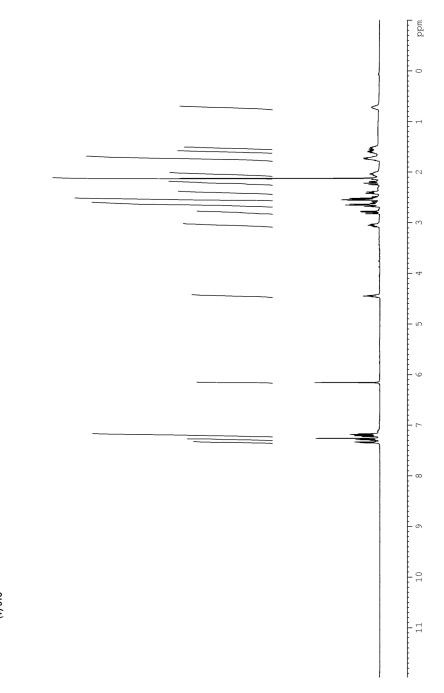


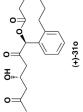


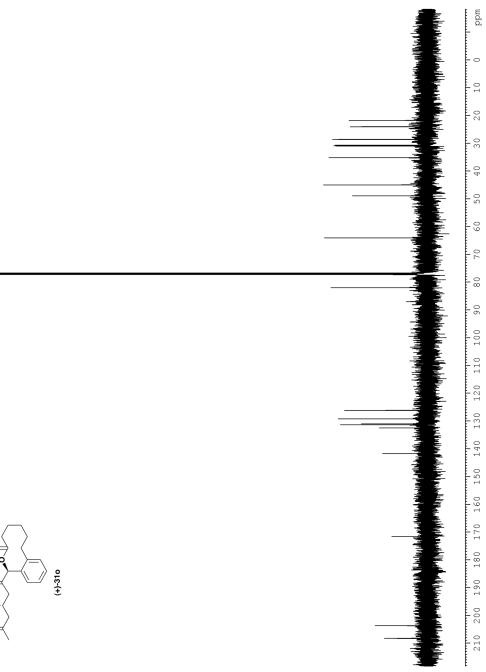

о= НО

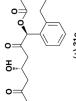

o=

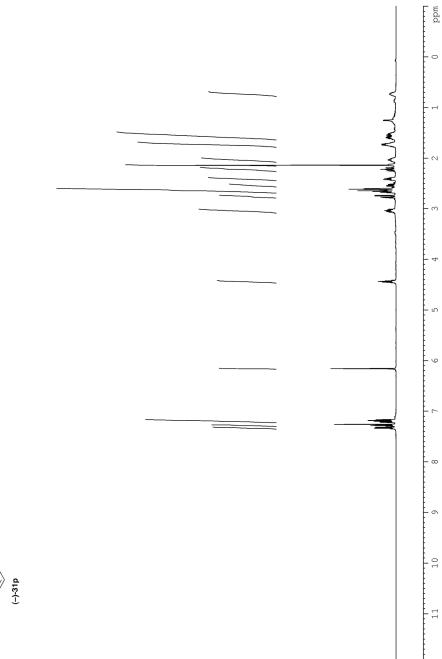


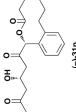


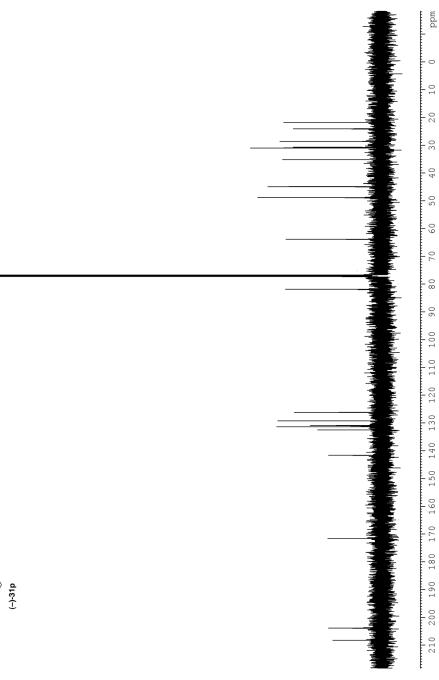


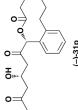


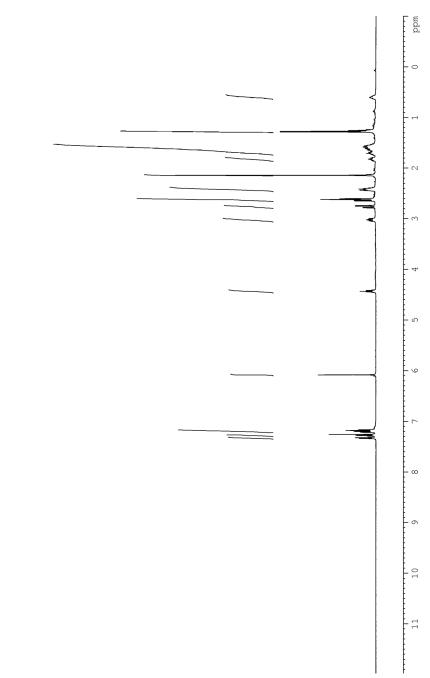


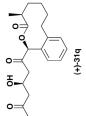


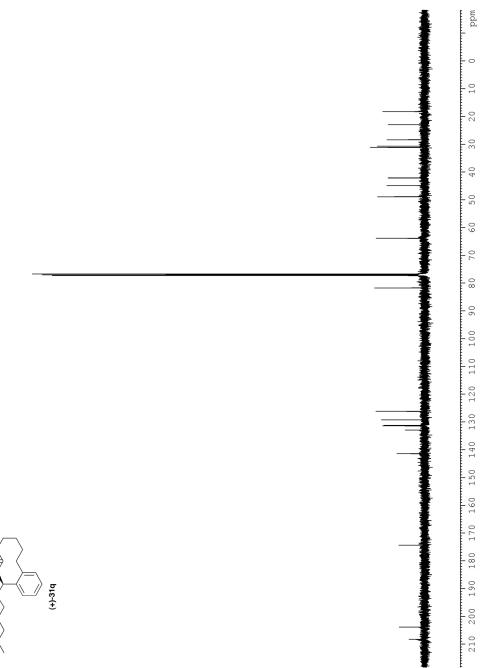


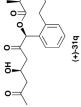


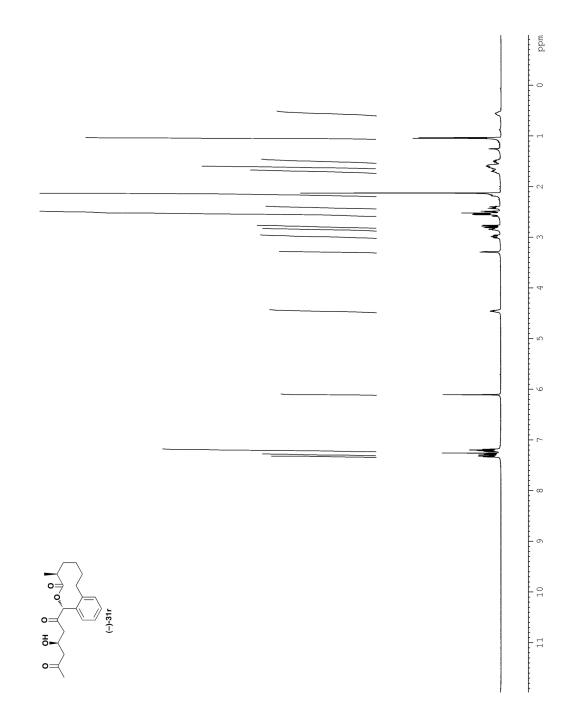


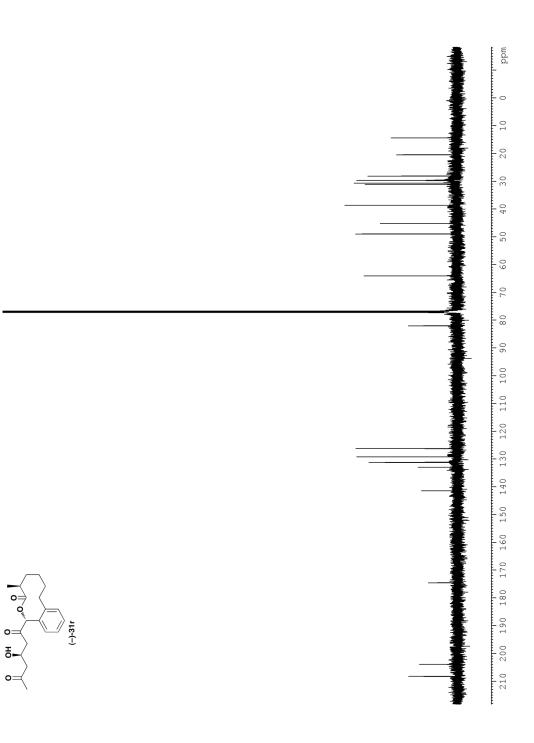


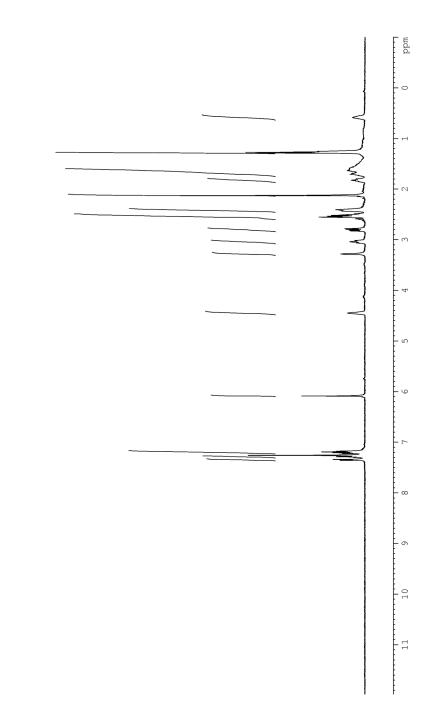


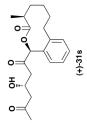


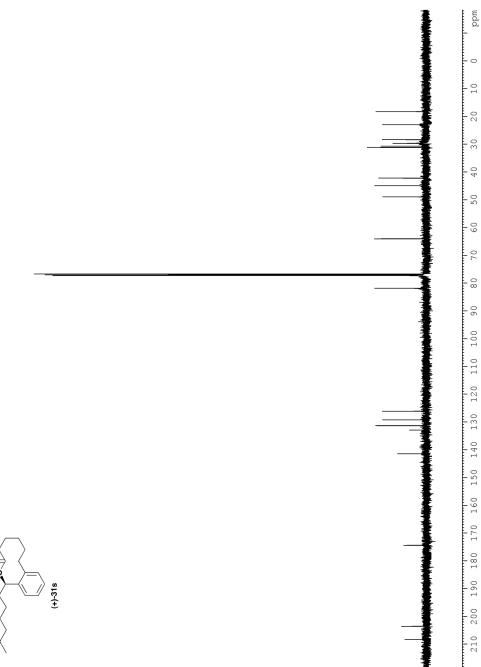


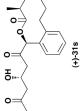


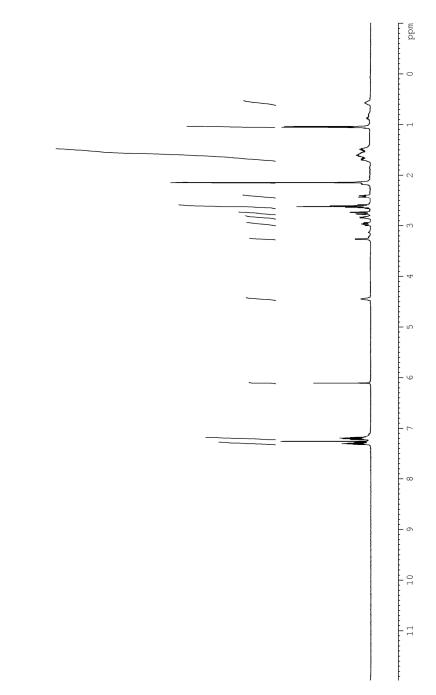


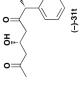


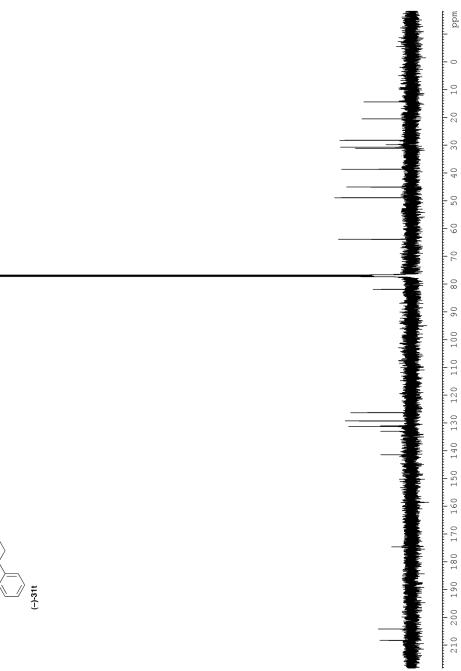


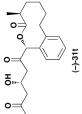


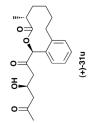


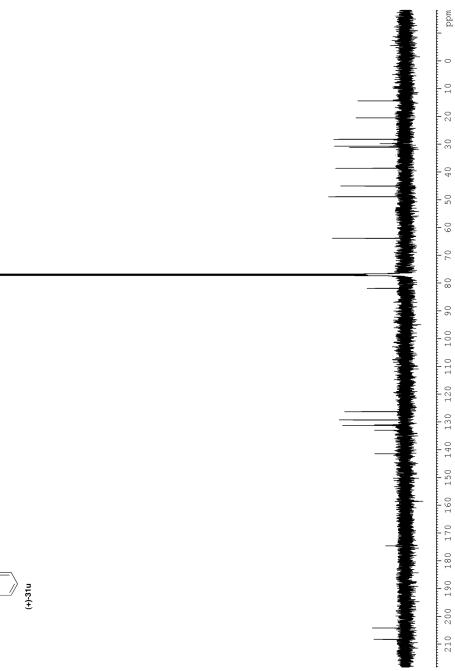


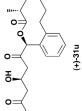


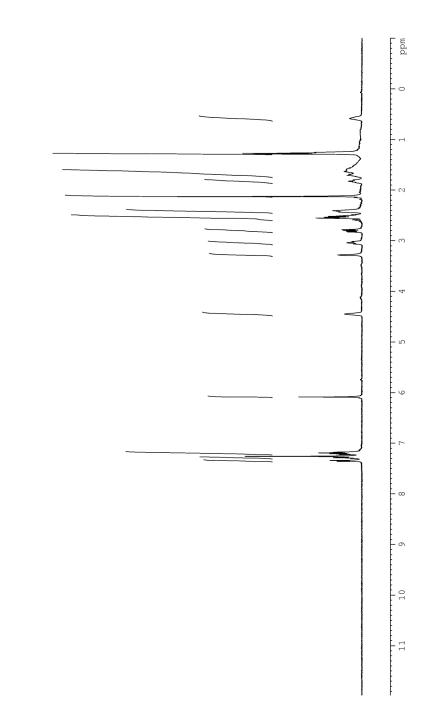


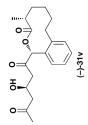


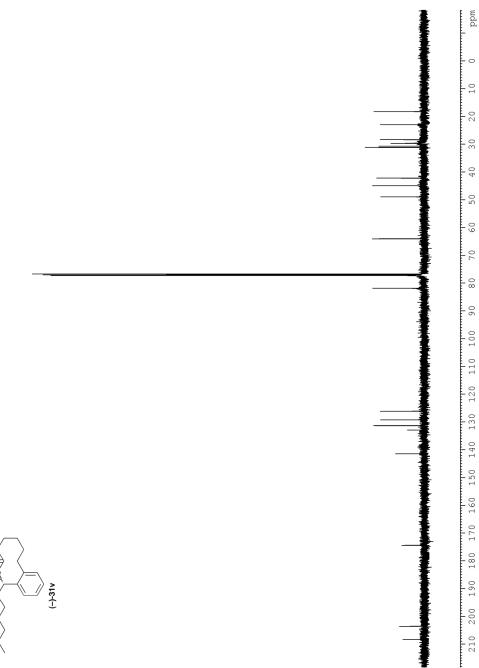

o=

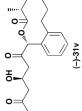

o=

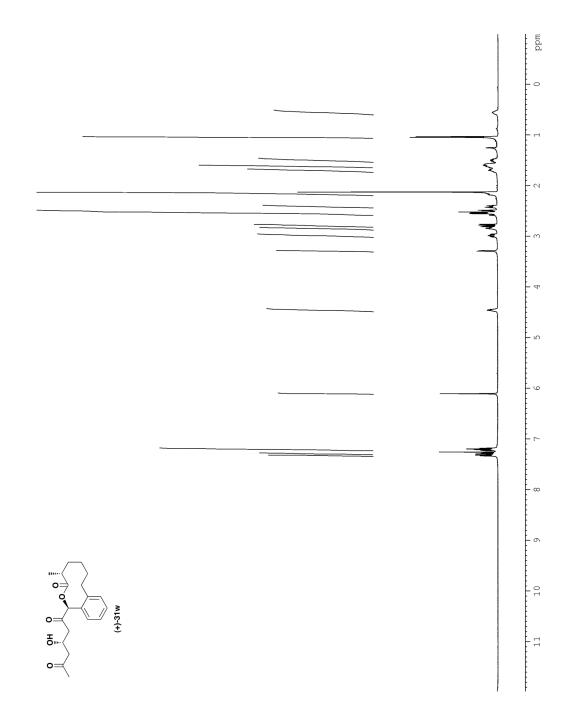


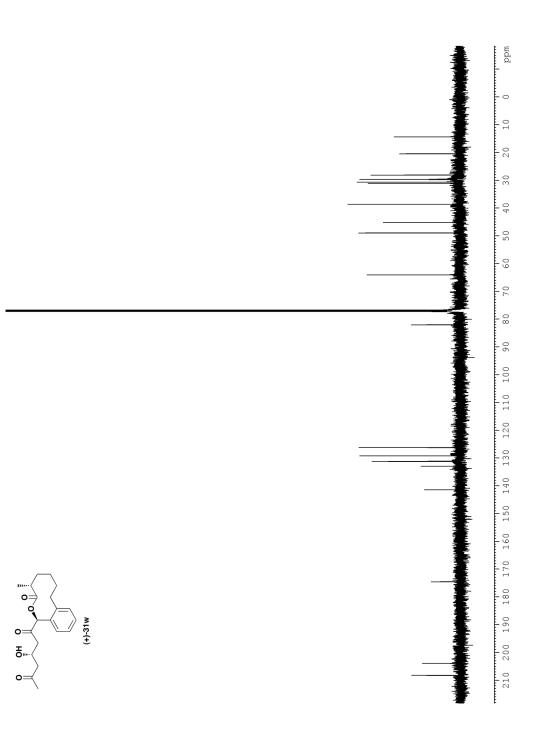


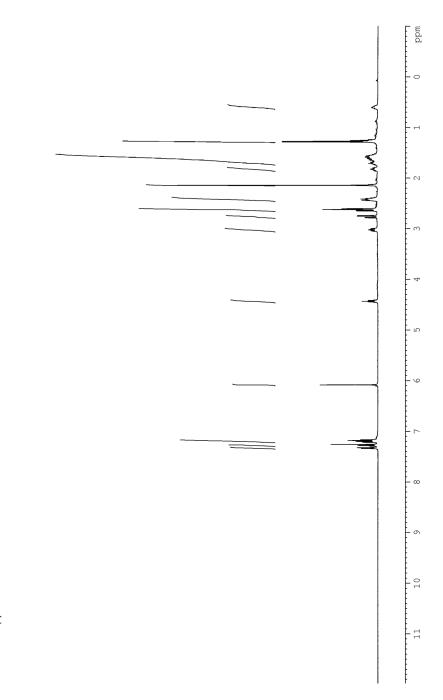


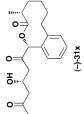


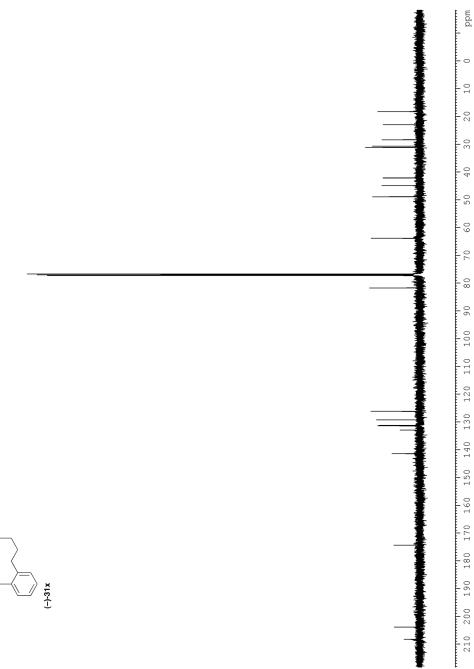


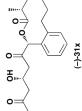


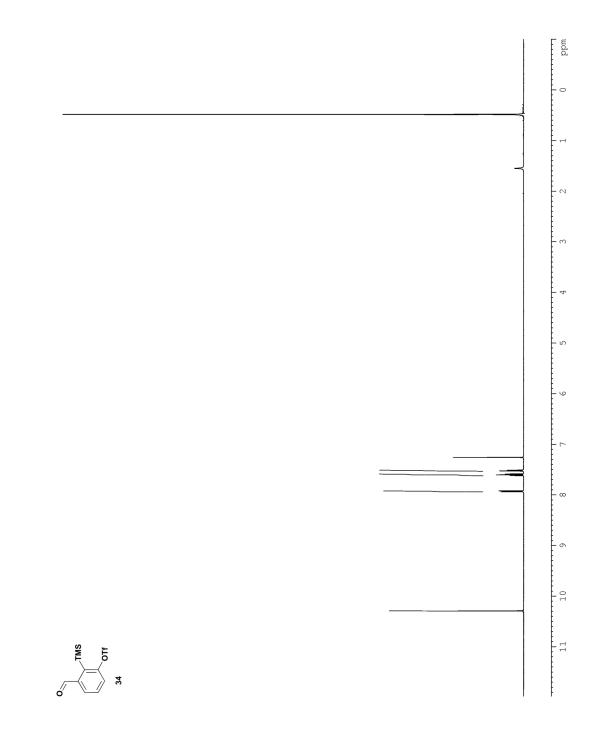


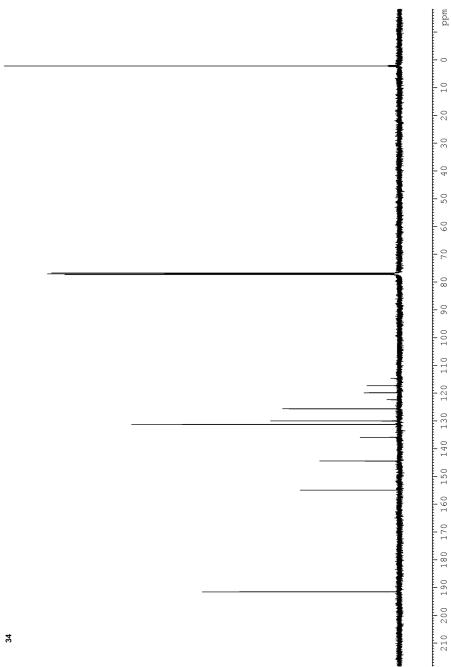


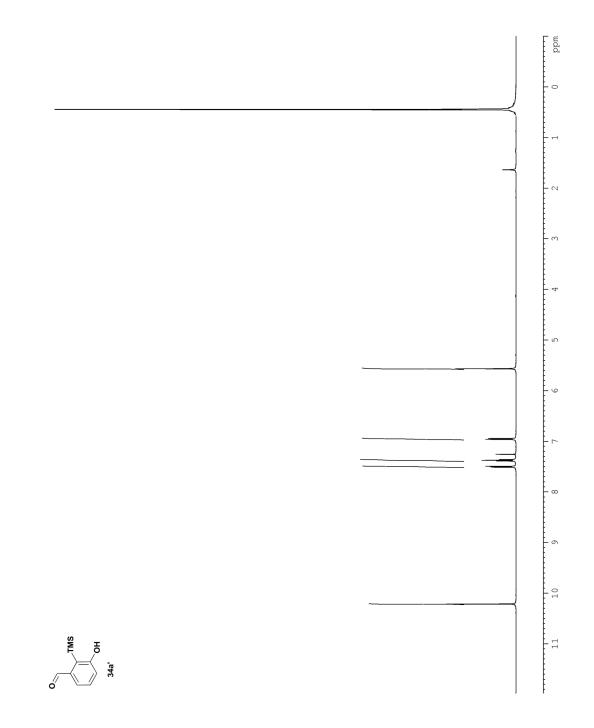


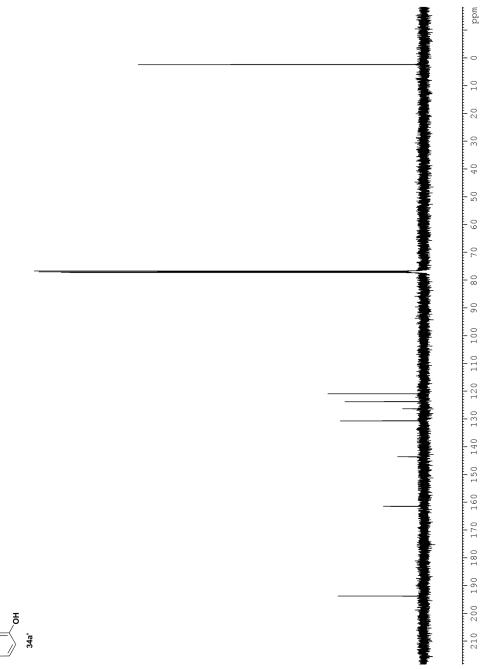


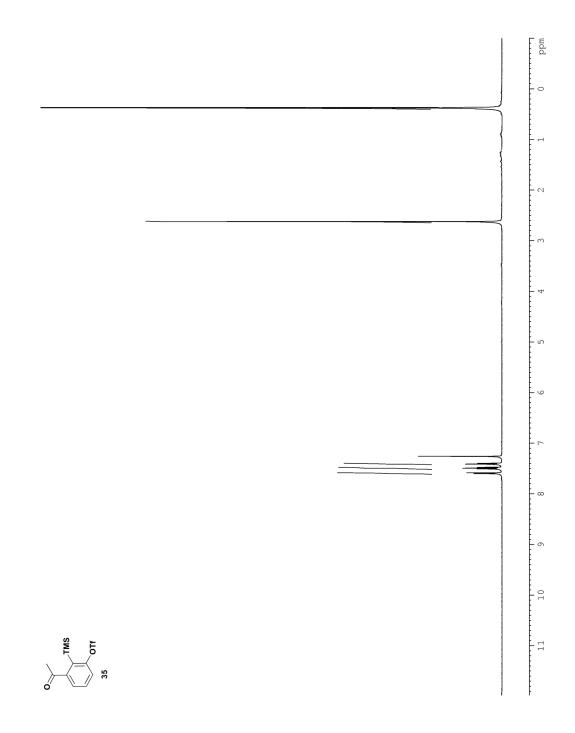


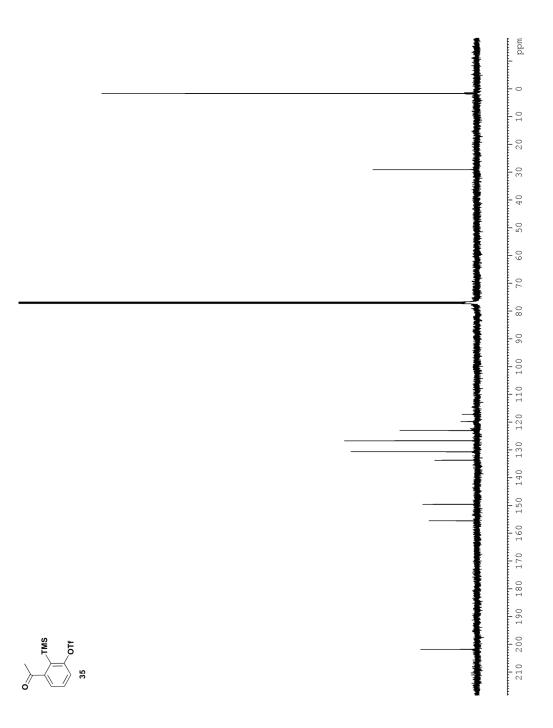


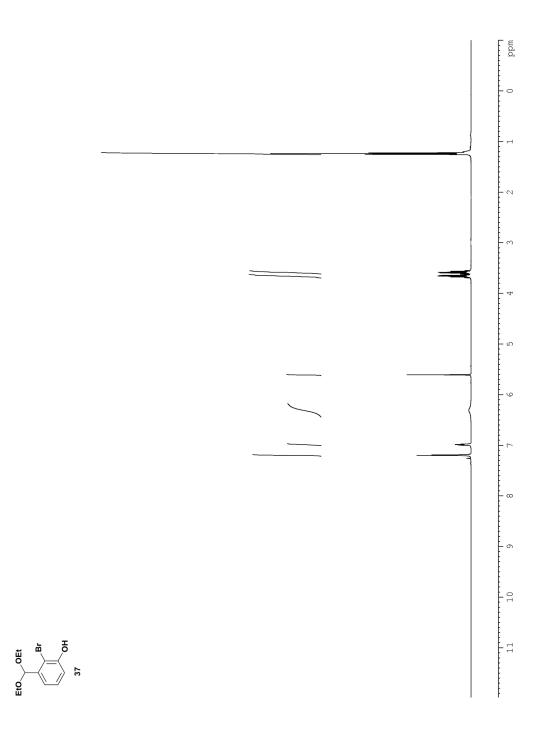


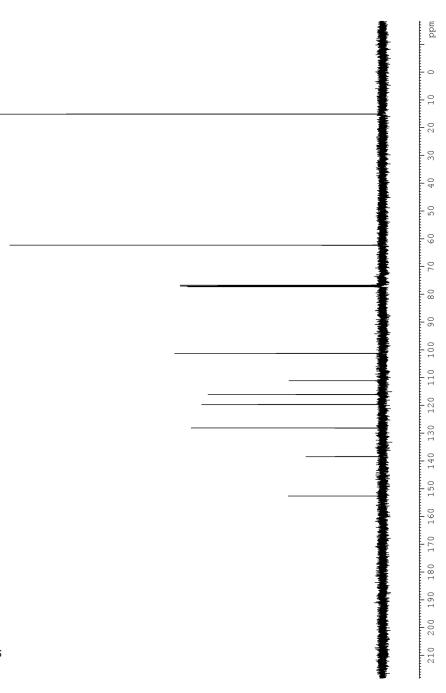


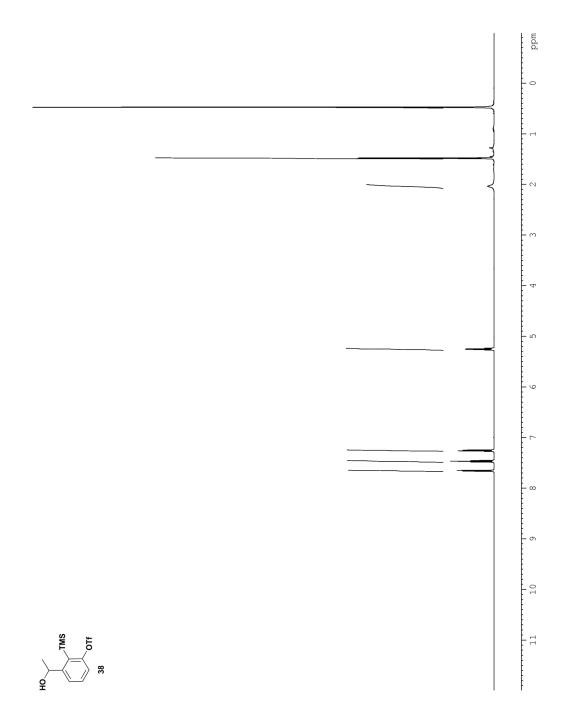


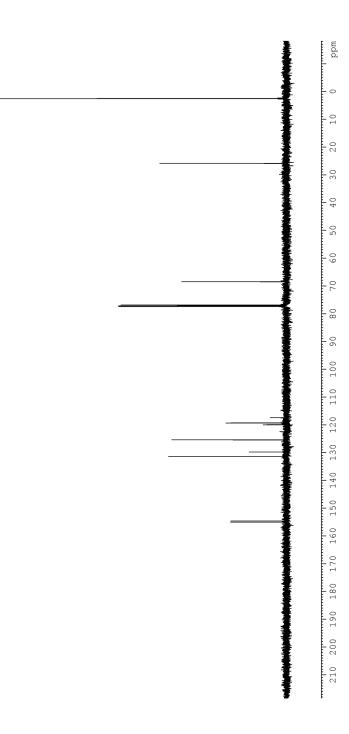


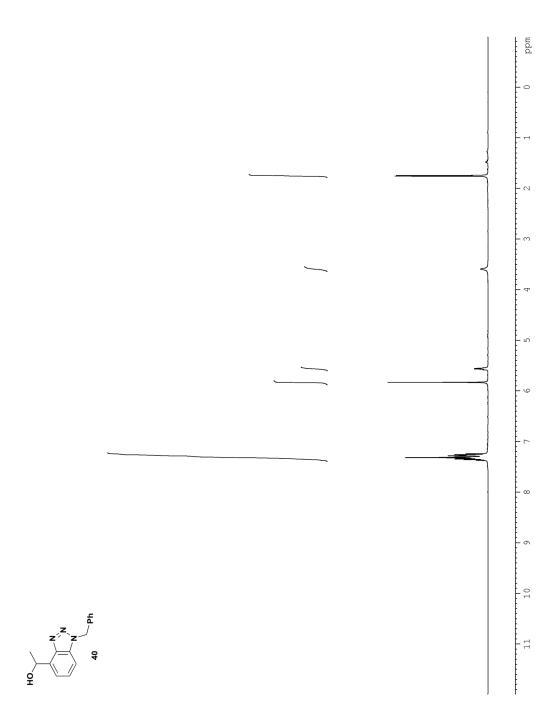

of the second se

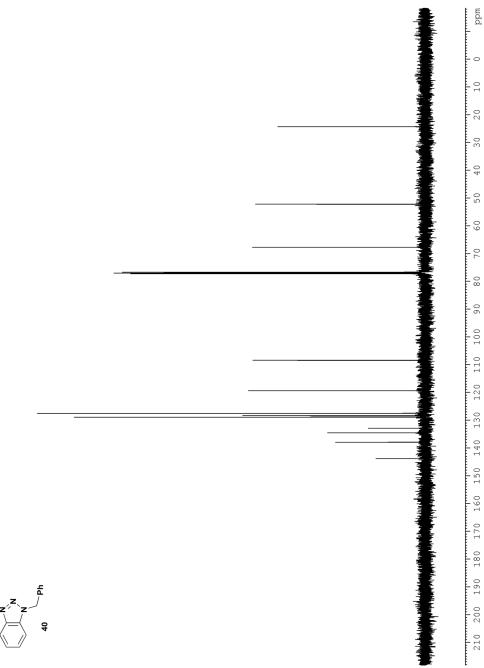


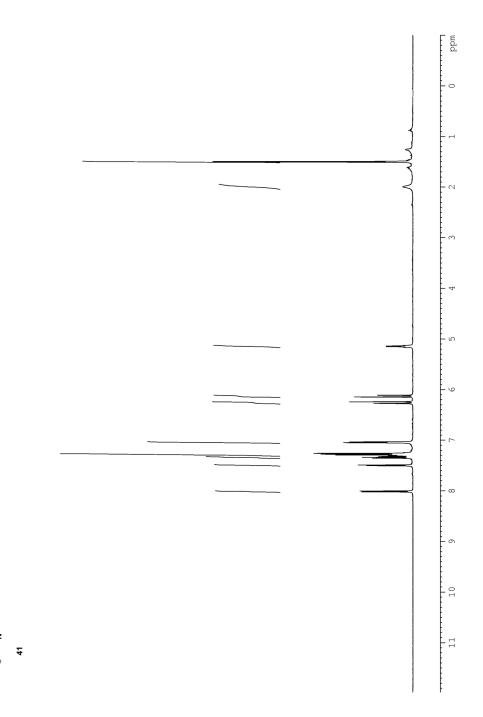


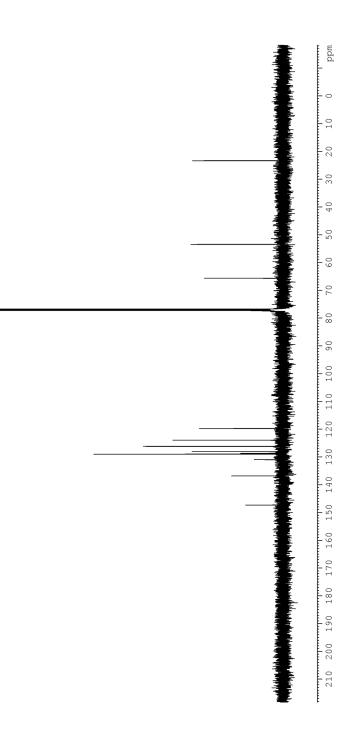


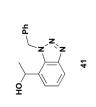


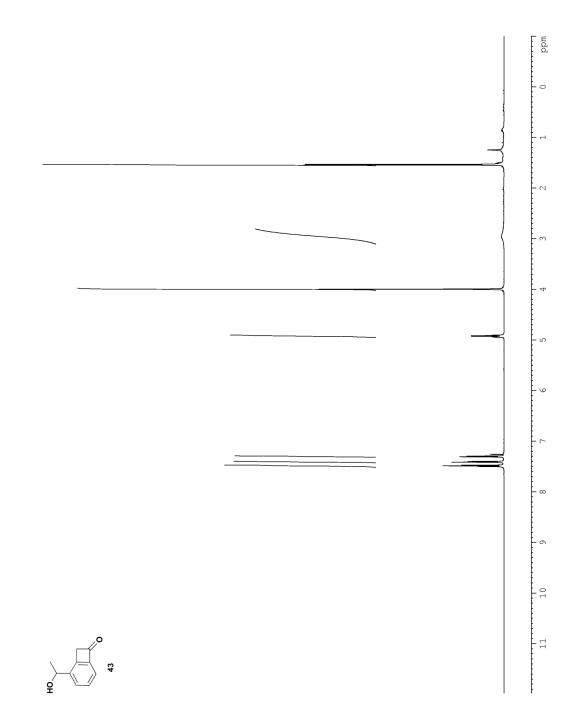


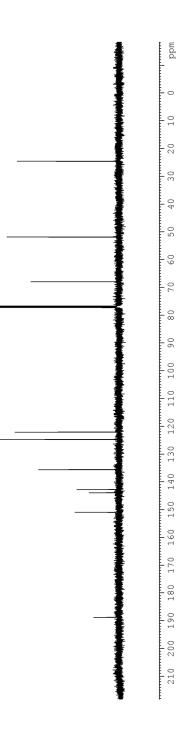




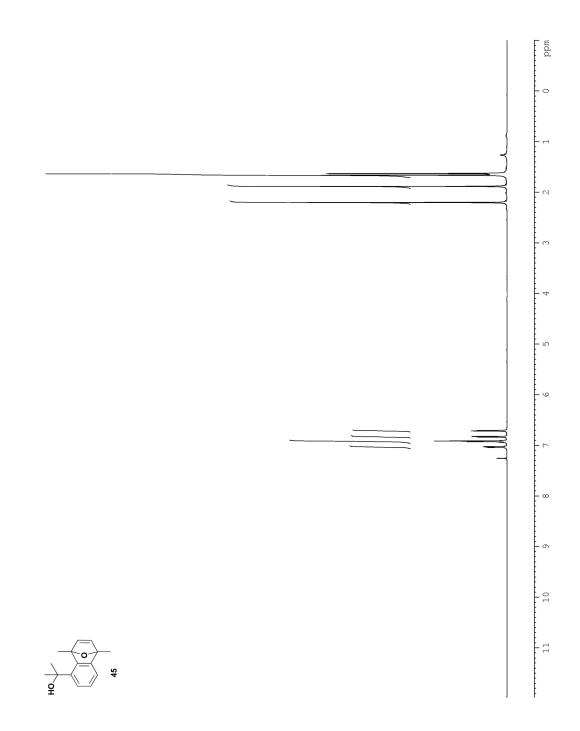


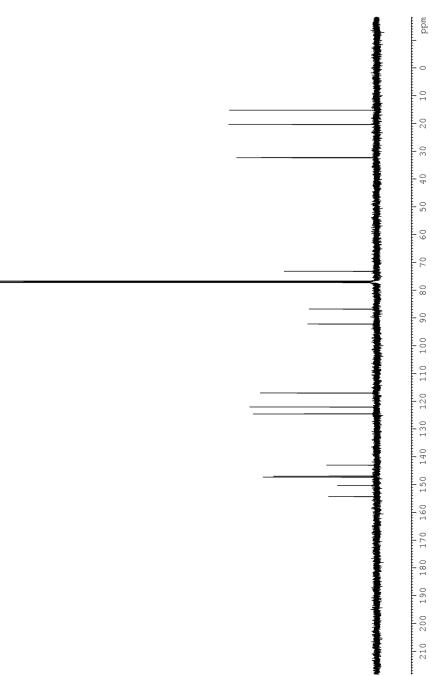


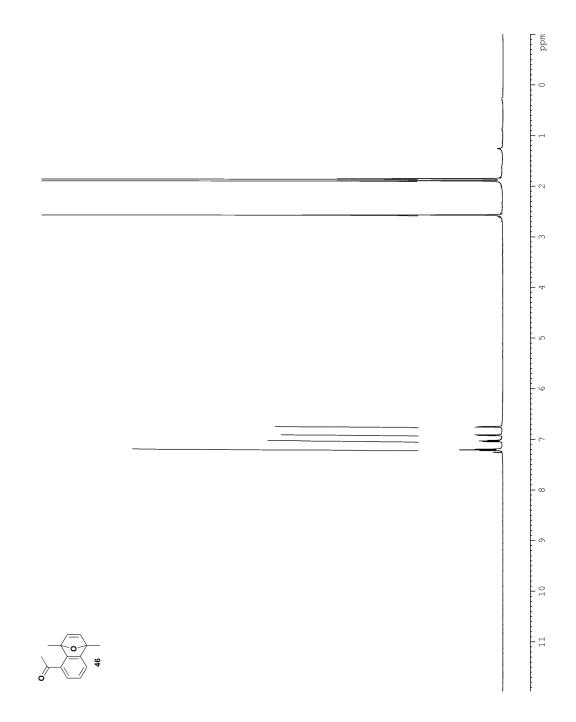


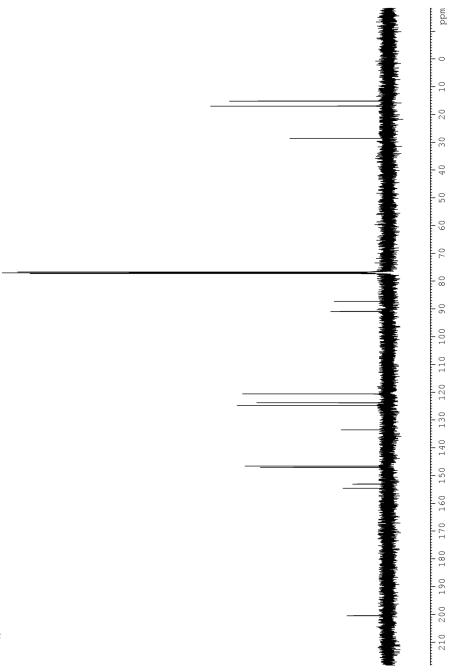

h L

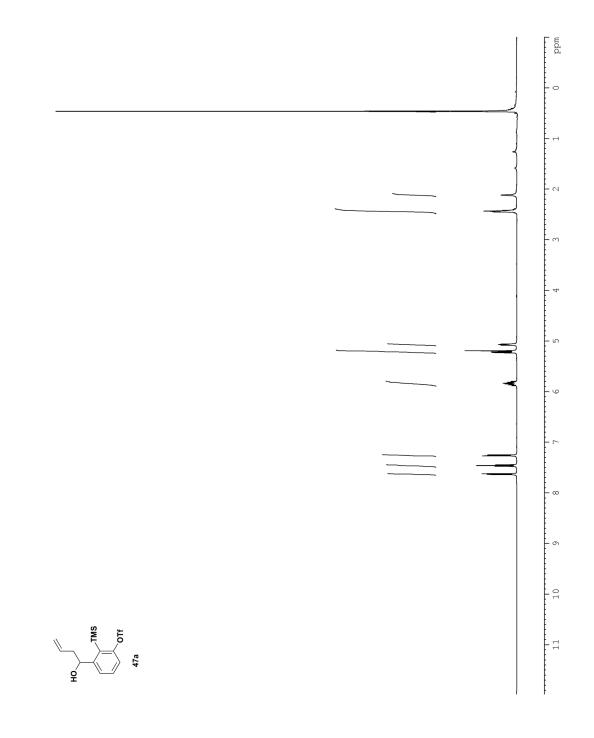
ਵ

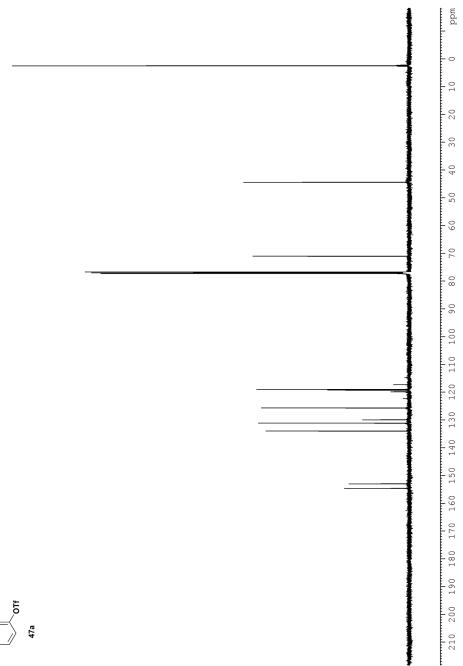


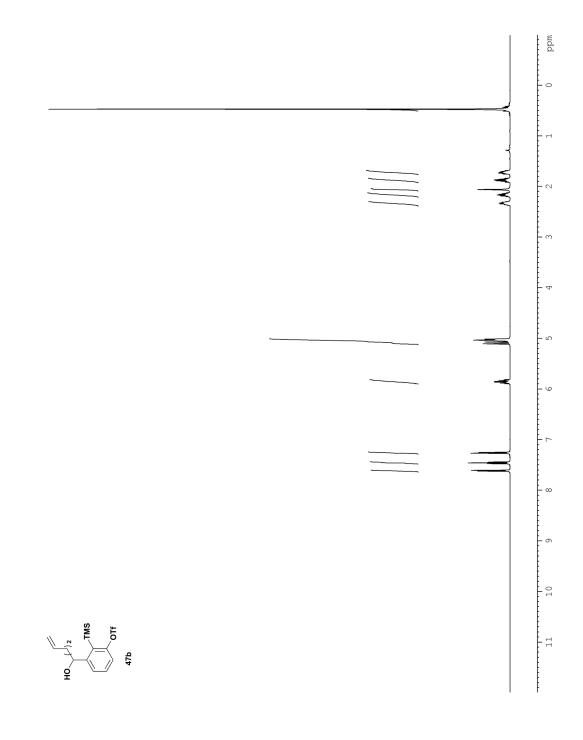


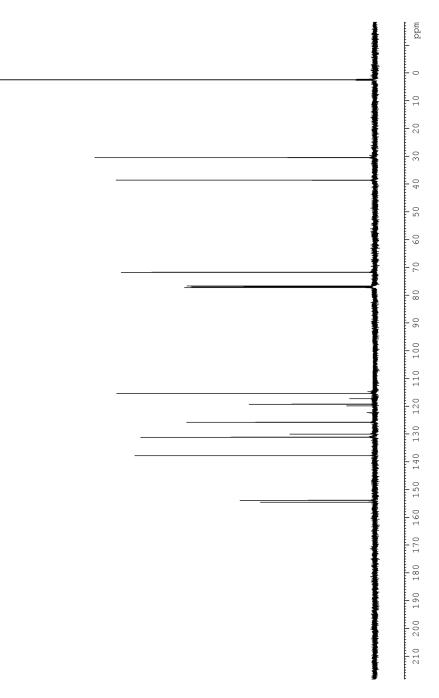


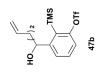

0

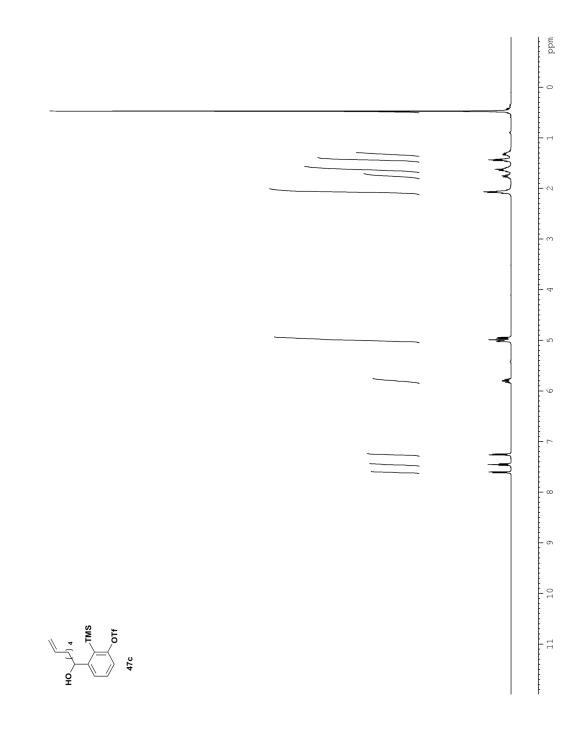


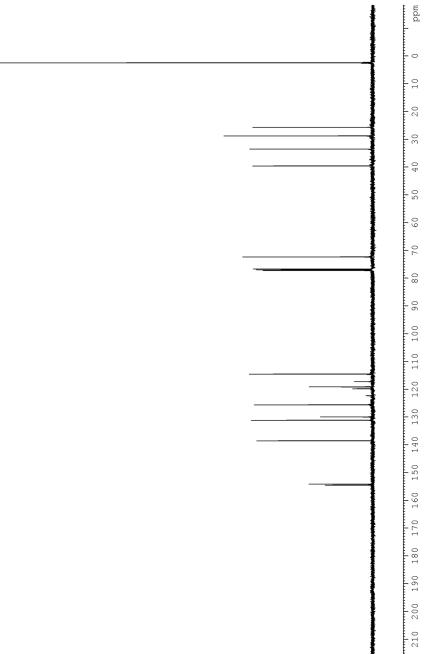


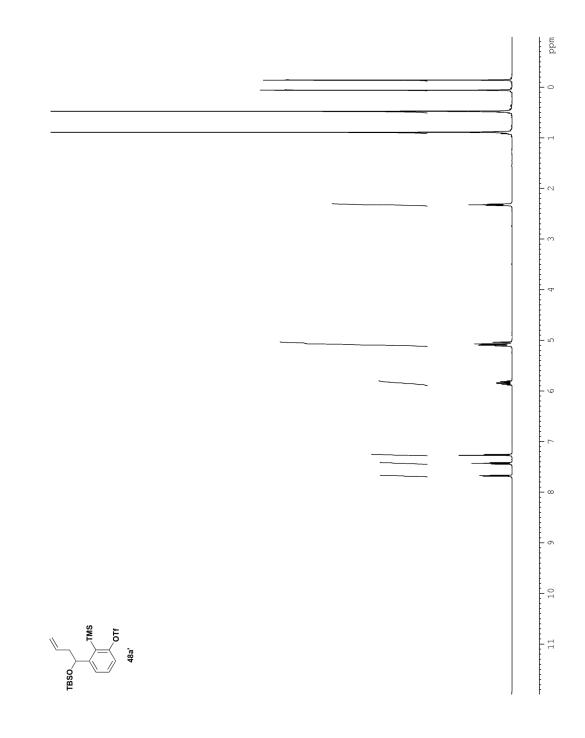


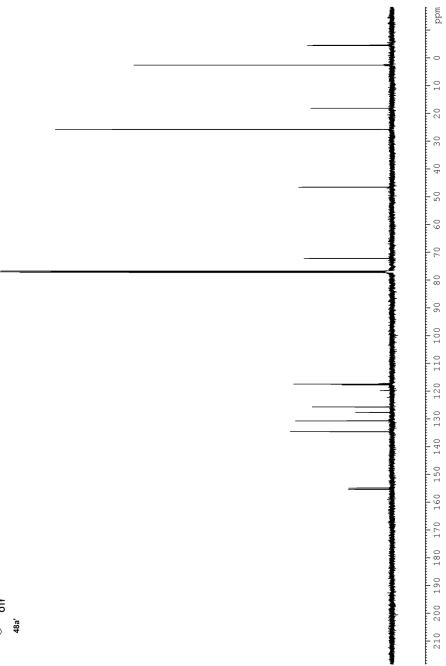


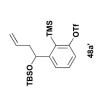


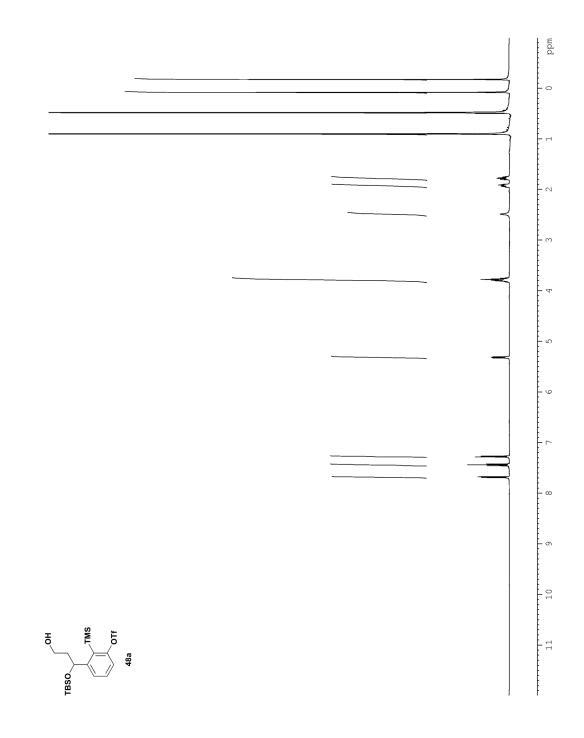


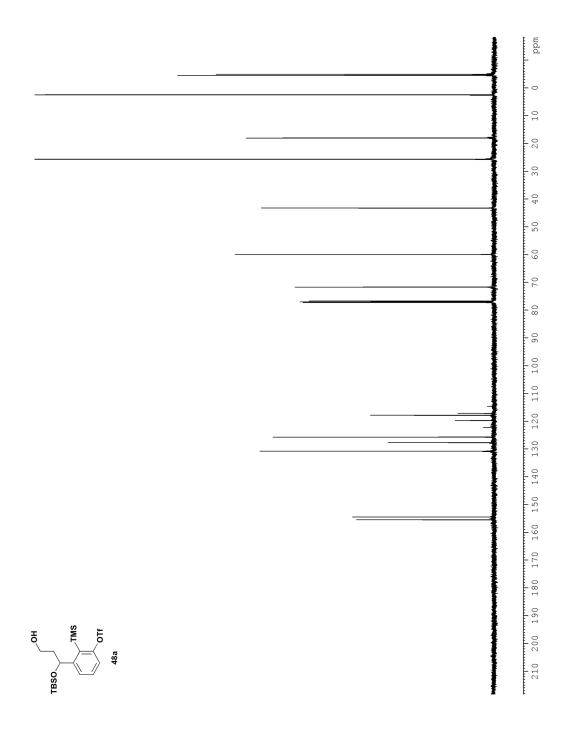

HO OTF OTF

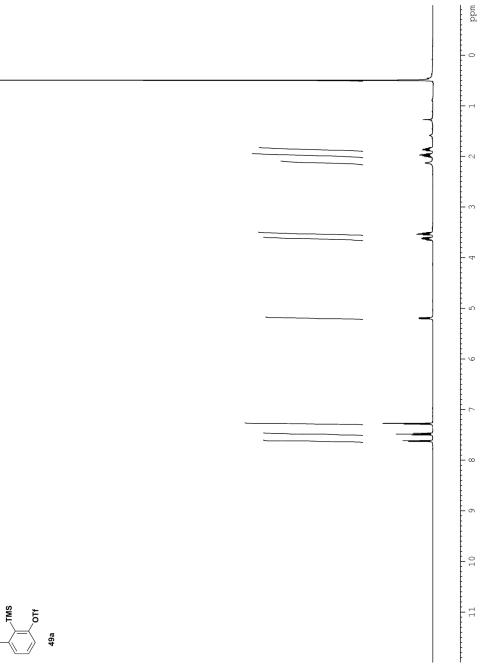


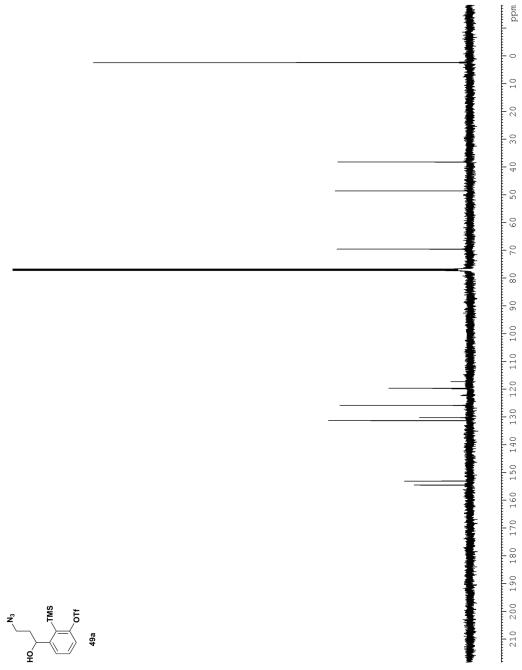




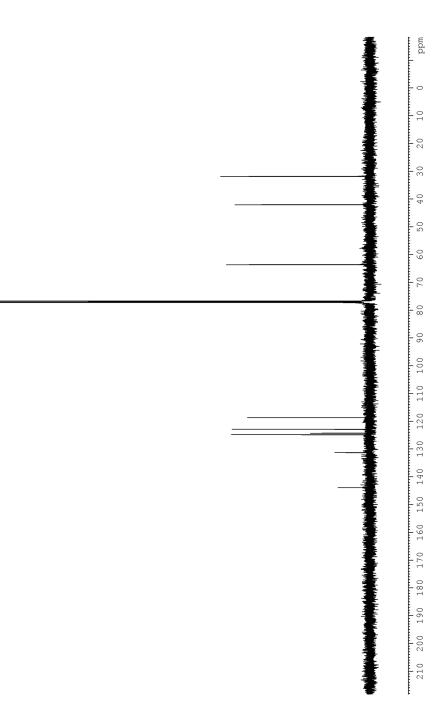











HO OTF A9a

