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1 Model description
Individuals in the cholera transmission model are either susceptible, exposed, infectious, or re-
covered (SEIR), as in [1]. The model runs in discrete time and uses a one-day time step. As
in [2], infectious individuals shed Vibrio cholerae into the environment. Symptomatic infectious
people shed one unit of V. cholerae into their community per day, and asymptomatic infectious
people excrete m units per day (i.e., asymptomatic individuals are m times as infectious). One
study found freshly shed cholera to be up to 700 times more infectious, for between 5 and 18
hours [3]. To represent this effect, symptomatic infectious people also shed one unit of hyper-
infectious V. cholerae per day, and asymptomatic shed m units. A fraction of environmental
V. cholerae is lost per day (δ), while the hyperinfectious V. cholerae disappears completely the
day after it is shed. Susceptible individuals are infected from the environment with a probability
of β × ((B + 100BH)/N)/(κ + (B + 100BH)/N), where N is the number of people in the
community, B is the level of V. cholerae in their community, BH is the level of hyperinfectious
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V. cholerae in their community, κ is the level at which the probability of infection is 50% of
the “maximum” and is related to the infectious dose [2], and β is a scaling parameter. β is the
maximum probability of infection from the environment per day and is related to the amount of
contaminated water consumed by an individual per day. We assume that an individual’s level
of exposure to environmental V. cholerae is proportional to 1/N, which corrects for different
community sizes.

Person-to-person transmission occurs in households using a Reed–Frost-like model. Sus-
ceptible people are infected by contact with infectious household members with probability
p per infectious household member per day. Therefore, the daily probability of infection is
1−

∏
(1− pVi), where Vi is the relative infectiousness (maximum of 1.0) of individual i in the

household. Recall that asymptomatic people are less infectious (m < 1). Vaccination, described
below, may also reduce infectiousness.

We assume that once infected, an individual has a 1, 2, 3, 4, or 5 day latency period with
probabilities of 40%, 40%, 7%, 7%, and 6%, respectively [1]. After latency, an individual is
infectious, with a 20% probability of being symptomatic. The infectious period lasts from 7–14
days, with a uniform distribution. See Fig. 1C.

The level of V. cholerae in the environment at time t+ 1 is:

Bt+1 = Bt + IS +mIA − δBt (1)

where IS is the number of symptomatic individuals and IA the number of asymptomatic. Hyper-
infectious V. cholerae does not persist in the environment for more than one day, and it depends
only on the number of currently infectious individuals:

BH = IS +mIA (2)

The daily probability of infection from the environment is:

penvironment = (1−H)β
(B + 100BH)/N +BR + 100BRH

κ+ (B + 100BH)/N +BR + 100BRH

(3)

H is the strength of a public health campaign that effectively reduces a person’s exposure. We
assume that the level of V. cholerae in the environment is scaled by the population size, while
the level in the river is not. The probability of infection from the household:

phousehold = (1−H)[1− Πfamily
i (1− pvi)] (4)

Individuals live in communities of approximately 500 individuals (Fig. 1B). Each commu-
nity has an independent environmental reservoir of V. cholerae, so infectious individuals shed
into their home communities and possibly the communities of their workplaces, described be-
low. Thus, individuals within each community have the same exposure to pathogen from the
environment. Communities are situated within a rectangular lattice consisting of 1km2 cells.
We use LandScan population estimates (described below) to determine how many individuals
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should live within each cell, and we create the appropriate number of communities per cell to
accommodate these individuals (Fig. 1).

Of the 28% of individuals who work, 30% work in their own cells, and the rest are assigned
to work elsewhere according to a gravity model, described below. If there are multiple com-
munities in a cell, including the home cell, then the worker will be assigned to one of them at
random. Shedding is also proportional to the time spent in a community – a worker sheds 30%
into his or her work community and 70% into their home community and is exposed to environ-
mental V. cholerae levels equal to 70% of that from their home community and 30% from his or
her work community. 75% of workers with symptomatic cholera stop working after one day of
symptom onset [1], which means that they spend all of their time in their home communities.

There are two modes of long-distance travel in the model. The first represents highway
travel. Highway locations were obtained from OpenStreetMap (“primary” or “secondary” high-
ways from http://labs.geofabrik.de/haiti/2010-11-23-17-44.osm.bz2)
and superimposed on the 1km2 lattice (Fig. 1A). Individuals who live in cells through which
a highway runs can travel to any cell, with a daily probability of 5 × 10−5, that has at least
2000 individuals between 30km and 200km away on the highway. Distance along a highway
is computed using a breadth-first search from the source location. Travel is implemented by
selecting random individuals at the source and destination locations and swapping their infec-
tion and vaccination status. If either person has been symptomatic for more than one day, travel
does not occur for this pair. The actual number of swaps per day is drawn from the binomial
B(5 × 10−5, N), where N is the population of the source cell. This disperses the epidemic
geographically while preserving the number of residents in each community. To account for
non-highway travel (e.g., to include smaller roads and domestic flights), we allow an individual
to travel to any cell in the country with a daily probability of 5× 10−6. Note that this will tend
to send people to the large population centers, where most of the people are.

We model vaccine protection through three possible mechanisms: VES is the reduction in
susceptibility per infectious contact, VEI is the reduction in infectiousness (e.g., amount of shed-
ding per day), and VEP is the reduction in probability of becoming ill when infected [4]. None
of these parameters have been directly estimated in phase III vaccine trials where the primary
endpoint is vaccine efficacy against symptomatic cholera with confirmed infection, VESP [4].
If we assume that the vaccine effects are multiplicative, then VESP = 1− (1− VES)(1− VEP),
and we see that the overall effect of the VESP is probably more important than the individual
VES and VEP components (see Section 5.2.3 in [4]). We assume the maximum efficacy of the
cholera vaccine to be VEI = 50%, VEP = 64%, and VES = 0, so that VESP = 64% [5]. In the
model, individuals are vaccinated by a single dose of vaccine. To mimic the efficacy of a two-
dose vaccine, like Shanchol and Dukorol, 50% of maximum efficacy is reached 10 days after
vaccination then relative efficacy rises from 50% to 100% from days 14 to 21, as if two doses
were given exactly 2 weeks apart (Fig. S1).

Pre-vaccination is simulated by vaccinating the desired fraction of individuals such that
these individuals have maximum protection when the simulation starts. Vaccination can also be
reactive, after the simulated epidemic starts. In the simulated reactive vaccination campaigns,
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Figure S1: Vaccine efficacy over time in the model. The second dose is automatically adminis-
tered after 2 weeks.

one can specify the campaign start day and the amount of vaccine made available per day. In a
reactive mass vaccination, the simulation attempts to vaccinate all 1km2 cells with the desired
level of coverage (e.g., 70% of individuals). Each day, randomly selected communities are
chosen and vaccinated until there is insufficient vaccine to cover additional communities at the
desired level. For ring vaccination, one specifies the number of cases that must appear in a 1km2

cell before that cell is prioritized to be vaccinated. When this cumulative number is reached,
this cell is eligible to be vaccinated after a pre-specified number of days (e.g., 5 days). On any
given day, randomly selected eligible communities are chosen to be vaccinated to the desired
level until vaccine runs out. In the “high exposure” strategy, cells that are not along the river
receive vaccine after all cells along the river are vaccinated.

1.1 Gravity model for daily commuting
We use a gravity model to determine how far employed individuals travel to go to work [6, 7].
To determine the distribution of destinations for workers in a given community, we use the
following formula from [7]:

Cij = θ
P τ1
i P

τ2
j

dρij
(5)

where Cij is the workflow from community i to j, dij is the distance between i and j, Pi
is the population of community i, θ is a proportionality constant, and τ is used to tune the
dispersal. For distances under 119km in the United States, they found τ1 = 0.30, τ2 = 0.64, and
ρ = 3.05. However, mobility might be lower in less developed countries. [6] uses 1/[1+(d/a)b]
with a=4km and b=3.8 for rural Thailand, and b=3.0 for England. We chose to use Ferguson
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parameter in the Viboud framework, and set ρ to 3.8. In Fig. S2, you can see that workers based
in the middle of Port-au-Prince or Mirebalais stay in the city (dark green), those just a couple of
kilometers away are a little more dispersed with several venturing into the city (indigo), those
who live just east of Port-de-Paix tend to commute west to get to the city (purple), and those
in the mountains are a little more spread out (blue). In the model, 30% of employed people
are assigned to work in their home cell and the rest are assigned locations by the gravity model
confined to a 40km radius.

1.2 Rivers in the model
River locations were obtained from OpenStreetMap (Features tagged with a key of “waterway”
and “river”, http://labs.geofabrik.de/haiti/2010-11-23-17-44.osm.bz2).
See Fig. 1A. The rivers are recorded as short disconnected segments, so we linked them together
to ensure continuous flow from the mountains to the ocean. Rivers in the model are represented
as directional flow between 1km2 cells. Therefore, multiple rivers entering a single cell are
merged.

The river is treated as a second environmental reservoir – individuals shed V. cholerae both
into their communities and into the river. Infectious individuals shed into the river a proportion
of the amount shed into their regular environment. V. cholerae in the river moves to the next
cell downstream. If there is more than a single adjacent cell downstream, the V. cholerae is
divided evenly among them (Fig. S3). Because V. cholerae may travel more than one cell per
time step, the above procedure is repeated n times to allow it to move n kilometers per day.
That is, individuals shed n times into the river (1/n of the total amount for each iteration) and it
is moved downstream each time. At each step, a small fraction of the V. cholerae is lost. In this
manner, a single source distributes V. cholerae to all communities within n steps downstream.
The next day, this same V. cholerae will move another n cells downstream after it disappears by
the fraction δ, the daily rate of environmental V. cholerae loss.

River access is limited to six communities (about 3,000 people) per cell (Fig. 1B). That is,
if there are 60,000 individuals in a single cell on a river, then 3,000 of them will shed into and
drink from the river, and the rest do not. Fig. S4 shows the simulated incidence of cholera in
Haiti. Note that cholera incidence is highest along the rivers.
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Figure S2: Work distance in Haiti based on a gravity model. The map of Haiti is a heatmap
based on population density (per km2). 10’ in the map is 20 kilometers. For the gravity model
of commuter travel, τ1 = 0.30, τ2 = 0.64, ρ = 3.8, and the maximum distance of travel is 40
km (0 degrees, 25’). Four sample locations were chosen, as indicated by black circles. For each
location, the colored crosses represent the workplaces of 200 people who do not work in their
home location. The lower left plot shows the gravity model distance that people travel to work
in these five locations using the same color scheme. The lower right plot is the same, but for
ρ = 3.05 to show a contrasting United States-like commuter travel.
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Figure S3: The flow of V. cholerae down a river. In this example, 60 units of V. cholerae are
shed into the river at the source, and we assume that the river flows 5 km per day. We compute
the distribution of V. cholerae in five steps, one for each kilometer of flow. We start by adding
10 units (1/6 of the total) of V. cholerae at the source, then we move it to adjacent downstream
communities in each step. In the end, we sum the distribution of V. cholerae from all steps to
get the distribution of the 60 units of V. cholerae shed in one day. The next day, if there is no
more shedding at the source, the V. cholerae in the river near the source is gone, having flowed
another 5km downstream. We can also specify that there is some amount of loss of V. cholerae
per distance traveled, so that levels drop exponentially as you go downstream.
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Figure S4: Cumulative illness incidence in a simulated cholera epidemic in Haiti. The plots
are heatmaps of symptomatic incidence per population (yellow is low, red is high). Rivers are
shown in blue, highways in purple.
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Parameter Value Reference
symptomatic fraction 20% [1, 8]
latency period length 1–5 days [1, 9, 10]
infectious period length 7–14 days [1]
fraction of day spent at work 0.3
m, relative infectiousness of asymptomatic (wrt
symptomatic)

10% [1]

units of cholera shed each day by symptomatic 1 fixed
p, daily person-to-person household contact 0.01
κ, V. cholerae level at which daily infection probabil-
ity is 50%

70

β, scaling parameter for environmental source 0.25
δ, decay rate of cholera in the environment 1/30 day−1 [11]
multiplier for infectiousness of freshly shed vibrio 100 [3, 11]
VES 0.0 [5]
VEI 0.5 [1]
VEP 0.64 [5]
H , relative personal hygiene 0–0.3 baseline is 0, increases to 0.3

in a public health campaign
daily highway travel probability 5× 10−5 per day
daily long-distance travel probability 5× 10−6 per day
τ1 0.3 gravity model parameter [7]
τ2 0.64 gravity model parameter [7]
ρ 3.8 gravity model parameter [6]

Table S1: Summary of model parameters.
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1.3 Population density and total data
We use population estimates at a resolution of 30 × 30 degree cells, which is approximately
1km2 (From http://www.ornl.gov/sci/landscan/, downloaded Nov 11, 2010). In the model, the
population of a single 1km2 cell is divided into communities with equal size populations of
approximately 500 people (Fig. 1B). If a cell contains fewer than 500 people, then the residents
are placed in a single community.

We found the departments to have the following populations in the LandScan and Census
2009 projection data [12]:

Department LandScan Haiti Census projection for 2009
Grand Anse 392,670 425,878
Nord Ouest 587,823 662,777

Sud 665,347 704,760
Artibonite 1,391,690 1,571,020

Centre 636,143 678,626
Nippes 284,582 311,497

Nord Est 330,703 358,277
Nord 922,645 970,495

Ouest 3,157,476 3,664,620
Port-au-Prince 2,223,771 2,509,939

Sud Est 653,565 575,293

We assign individuals to households, to match the distribution of household sizes in Haiti.
From the IHSI document “Enquête sur les conditions de vie en Haı̈ti Vol 1” (Tableau 2.5.1.1),
we find that 9.3% of households have 1 person, 29.0% have 2–3 people, 41.2% have 4–6 people,
16.8% have 7–9 people, and 3.7% have 10 or more. If we assume that the distribution of
household sizes is uniform within each range of people (e.g., 14.5% of households have 2
people and 14.5% have 3) and that 10 is the maximum household size, 2% of people live alone,
16% of people live in households of 2 or 3 (8% for 2, 8% for 3, respectively), 45% in households
of 4–6, 29 in households of 7–9, and 8% in households of 10.
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2 Measuring the basic reproductive number in the model
We estimated R0 in the simulation by infecting a single randomly selected person in the pop-
ulation then running a simulation in which secondary cases are not infectious (do not shed or
transmit person-to-person). We repeated this process 20,000 times to obtain a distribution of
outcomes. We find that a randomly chosen individual will generate a mean of 2.6 (median of
0.0) secondary infections, so R0 = 2.6. If the individual is symptomatic, then the mean is 9.6
and the median is 3.0. If the individual lives on a river, the mean is 10.0 and the median is 2.0.
If the individual is not on a river, the mean is 0.8 and the median is 0.0. See Fig. S5.
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Figure S5: Transmissibility for various populations in the simulator. The simulation was run
20,000 times, infecting a single person and ensuring that secondary cases were not infectious.
The total number of people infected by the index case was counted (in black). We measured
the number of infections if the index case was symptomatic (red), asymptomatic (green), symp-
tomatic and living on a river (blue), and asymptomatic and living on a river (cyan).
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3 Sensitivity analyses
We simulated mass vaccination with different final amounts of vaccine (Fig. S6A). We also
simulated a pro rata approach in which all cells were vaccinated in proportion to their popula-
tions rather than 70% or nothing (Fig. S6B). In these simulations, we first determined the final
vaccine coverage (e.g., 30%), then randomly selected cells were vaccinated at this level each
day. Coverage of less than 50% appeared to give slightly higher attack rates but with slightly
less variability among stochastic runs than the non pro rata strategy that covers 70% of each
cell.

We simulated reactive ring vaccination with different delays after the two cases appeared in
a cell (Fig. S7A). That is, cells were eligible for vaccination n days after two residents become
symptomatic. The effectiveness of the strategy diminishes with the delay length, and we chose
a 5-day delay as the default in the main text. We also simulated vaccination five days after n
cases appear in a cell (Fig. S7B). We can interpret these thresholds as different case detection
ratios.

We qualitatively assess the effect of varying various simulation parameters on the relative
timing of the epidemic among departments. As β is increased or κ is decreased, transmissibility
is increased and the peaks among departments are more clustered (Figs. S8 and S9). Increasing
the amount that infected individuals shed into the river also speeds transmission, and one can
see that both Nord and Port-au-Prince have much earlier peaks (Fig. S10). The long-distance
travel and driving probabilities particularly affect the importation of cholera in the more remote
departments, such as Nippes and Grande Anse (Figs. S11 and S12). If these probabilities are
set too high, then these departments have epidemic peaks that are much earlier than actually
occurred. Increasing these probabilities also causes the peak in Port-au-Prince to occur much
sooner. Changing the daily within-household transmission probability, p, increases the speed
of the epidemic but the effect is the same in all departments since they are assumed to have the
same household structure (Fig. S13). The relative infectiousness of asymptomatic individuals
with respect to symptomatic individuals, m, is not known. We set this value to 10% in our
model. Lower values resulted in slower spread of the epidemic to other departments (Fig. S14),
indicating that asymptomatic infectious individuals play an important role in propagating the
epidemic in the model. Recall that symptomatic individuals are less likely to travel in the
model. We also tested the model with various values for the symptomatic fraction, which is
the fraction of infected individuals who become symptomatic. We found that the size of the
epidemic was sensitive to this parameter, with more cases appearing with higher values of the
symptomatic fraction (Fig. S15). The higher symptomatic fraction results not only in more
infected individuals being reported as cases, but these symptomatic individuals are also more
infectious than asymptomatic. The incidence of symptomatic cholera in small localities within
the model often approached the symptomatic fraction, consistent with 100% of the people being
infected in these regions.
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Figure S6: Cumulative incidence of cholera in simulations of reactive mass vaccination. Vac-
cinations start on day 21, with 50,000 courses available per day. The model was run 50 times
for each scenario. Points represent median numbers of cases, lines indicate range of simulation
results. (A) Reactive mass vaccination, covering 70% of limited regions as described in the
main text. (B) A variant of reactive mass vaccination in which vaccine is distributed pro rata,
i.e., the same fraction of individuals is vaccinated throughout the country rather than attempting
to reach 70% of residents of each cell.
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Figure S8: Effect of changing β in the model. The default is β = 0.12. Each curve represents a
single department, using the color code from Fig. 2A.



Chao, Halloran, Longini: SI Appendix 16

Day

s
y
m

p
to

m
a
ti
c

0 30 60 90 120 150 180

0

5000

10000

15000

20000

Oct 9 Dec 1 Jan 1 Feb 1 Mar 1 Apr 1

kappa=10

Day
s
y
m

p
to

m
a
ti
c

0 30 60 90 120 150 180

0

5000

10000

15000

20000

Oct 9 Dec 1 Jan 1 Feb 1 Mar 1 Apr 1

kappa=70

Day

s
y
m

p
to

m
a
ti
c

0 30 60 90 120 150 180

0

5000

10000

15000

20000

Oct 9 Dec 1 Jan 1 Feb 1 Mar 1 Apr 1

kappa=100

Day

s
y
m

p
to

m
a
ti
c

0 30 60 90 120 150 180

0

5000

10000

15000

20000

Oct 9 Dec 1 Jan 1 Feb 1 Mar 1 Apr 1

kappa=200

Figure S9: Effect of changing κ in the model. The default is κ = 70. Each curve represents a
single department, using the color code from Fig. 2A.
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Figure S10: Effect of changing the fraction of cholera shed into the river. The default is 0.1
(10%). Each curve represents a single department, using the color code from Fig. 2A.
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Figure S11: Effect of changing the daily probability of long-distance travel. The default is
5 × 10−6. Note that for all cases, highway travel occurs with probability of 0. Each curve
represents a single department, using the color code from Fig. 2A.



Chao, Halloran, Longini: SI Appendix 19

Day

s
y
m

p
to

m
a
ti
c

0 30 60 90 120 150 180

0

2000

4000

6000

8000

10000

12000

Oct 9 Dec 1 Jan 1 Feb 1 Mar 1 Apr 1

drive prob=0

Day
s
y
m

p
to

m
a
ti
c

0 30 60 90 120 150 180

0

2000

4000

6000

8000

10000

12000

Oct 9 Dec 1 Jan 1 Feb 1 Mar 1 Apr 1

drive prob=10^−5

Day

s
y
m

p
to

m
a
ti
c

0 30 60 90 120 150 180

0

2000

4000

6000

8000

10000

12000

Oct 9 Dec 1 Jan 1 Feb 1 Mar 1 Apr 1

drive prob=10^−4

Day

s
y
m

p
to

m
a
ti
c

0 30 60 90 120 150 180

0

2000

4000

6000

8000

10000

12000

Oct 9 Dec 1 Jan 1 Feb 1 Mar 1 Apr 1

drive prob=10^−3

Figure S12: Effect of changing the daily probability of driving along a highway. The default is
5× 10−5. Note that for all cases, long-distance travel occurs with probability of 0. Each curve
represents a single department, using the color code from Fig. 2A.
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Figure S13: Effect of changing the daily within-household transmission probability. The default
is 1% per day if the infectious person is symptomatic. Note that in the model, household
composition is the same in all departments. Each curve represents a single department, using
the color code from Fig. 2A.
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Figure S14: Effect of changing m, the infectiousness of asymptomatic individuals relative to
symptomatic individuals. The default is 10%.
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Figure S15: Effect of changing the fraction of infected individuals who become symptomatic.
The default is 20%.
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