

Supplementary Figure S1 Yamazaki et al.

Supplementary Figure S2 Yamazaki et al.

Supplementary Figure S3 Yamazaki et al.

Supplementary Figure S4Yamazaki et al.

Probe Name Signal Detection p-value Gene 1437932 a at 2.6 0.718506 claudin 1 Α 5 Α 1438850 at 0.457764 claudin 1 76.2 Α 0.219482 claudin 2 1417231_at 47.2 1417232 at Α 0.334473 claudin 2 1426332 a at 19 Α 0.828613 claudin 3 1434651 a at 8.4 Α 0.601074 claudin 3 1418283 at 52.5 Α 0.601074 claudin 4 1417839 at 32.9 Α 0.171387 claudin 5 1417845 at 18.8 Α 0.533936 claudin 6 1448393 at 10.7 Α 0.303711 claudin 7 1449091_at 0.9 Α 0.753906 claudin 8 1450524_at 4.6 Α 0.72583 claudin 9 1439427 at 48.2 Ρ 0.001221 claudin 9 1426147_s_at 52.1 Α 0.171387 claudin 10 1416003_at 4.2 Α 0.432373 claudin 11 6573 Ρ 1433781_a_at 0.000244 claudin 12 Ρ 1433782_at 2217.6 0.000244 claudin 12 35.6 Α 0.219482 claudin 13 1422920_at 1420345_at 3.1 Α 0.533936 claudin 14 Α 1418920_at 52.1 claudin 15 0.067627 1420434_at 5.8 Α 0.753906 claudin 16 1425445_a_at 53 Α 0.149658 claudin 18 1449428_at 5.3 Α 0.633789 claudin 18 1425727_at 32 Α 0.45752 claudin 19 95.9 claudin 22 1430237_at Α 0.095215 claudin 23 1424409_at 2.3 Α 0.870361 Ρ 1425191_at 386.5 0.000244 occludin 1448873_at 158.2 Ρ 0.000244 occludin 3.8 0.80542 1426914_at Α tricellulin

Microarray analysis of claudins, occludin, and tricellulin in SF7cells

Supplementary Table S1 Yamazaki et al.

name of gene

Sequence $(5' \rightarrow 3')$

Forward

Cldn1	CTGGAAGATGATGAGGTGCAGAAGA
Cldn2	ATACTACCCTTTAGCCCTGACCGAGA
Cldn3	CAGTGTACCAACTGCGTACAAGAC
Cldn4	GGTAGCTCAGCTGTGACTTTGGACTC
Cldn5	TAACCTGAAAGGGCAGCTGGAGAAAC
Cldn6	TGCCCACTCTATCATCCAGGACTTC
Cldn7	ACGCCCATGAACGTTAAGTACGAG
Cldn8	CTGGGGATAAAAGAGAAGGAGGCTGA
Cldn9	CTTGAGCTAACCCTCTGTAGTGGTTG
Cldn10a	TCCCACACTTCAAGCCATGAGA
Cldn10b	TGGGTGCTAGTGTCTTCCACACTG
Cldn11	CTGCCGAAAAATGGACGAACTG
Cldn12	CAGACCAGTGTGTACTCAGACTTTCTACCC
Cldn13	GTCAACATCCCAGTATGCAGAGACTTTC
Cldn14	GCAGCGTTGATAGCTGAAACTAGGTG
Cldn15	GCAGGGACCCTCCACATACTTG
Cldn16	CTGGAGGTGAGCACTAAATGCAGAG
Cldn17	CTTCCACCAGCTACGTCTAAGGCTTACTTC
Cldn18-1	AGTATGAAGGGCTCTGGAGGAGTTG
Cldn18-2	GTATTCAACTACCAAGGGCTATGGCGTTC
Cldn19	CAGGTCTCTGTACTTTGACTGCTGTCTC
Cldn20	GGTACACCAAGGAGATCATAGCGAAC
Cldn21	CCTGCAGCCTCGAGTCACTATG
Cldn22	CTCCCAGAACGTTCTAATGGGCTTAG
Cldn23	TGGAGTCTGAGGGTGACTTGAACTTCTG
Cldn24	ACTCTGGAAGCATCAGCTTCAGCTACTACC
Occludin	GGACCCTGACCACTATGAAACAGACTAC
Tricellulin	GCAGGCTCCCACATCATTCTG
ZO-1	AGCTCATAGTTCAACACAGCCTCCAG
ZO-2	GGAGACCAGATTCTGAAGGTGAACACAC
ZO-3	GGATGAGATCTTGCAGGTGAATGG
E-cadherin	AGGAAATGCACCCCTCCAAT
N-cadherin	GGTGGAGGAGAAGAAGACCAG

Reverse

CCACTAATGTCGCCAGACCTGAA CAGTAGGAGCACACATAACAGCTACCAC ACCGGTACTAAGGTGAGCAGAG CTGGAGTAACGTGTAGGCTGAGTGAG AGGTCCAGGCTAAGTCCTTTGGTTCAGTAG AGGCCTGAGGCTGCCCAG CTTTGCTTTCACTGCCTGGACA AGGCTGCAAAGCAGGATAGCAGAAAG CCAGAGTAAGAAAGTCCAGGAGAGAGA GCAGACACTGGACAAAACTTCCAC GAATCGGTAACGCAGATCTTCCAC TGCACGTAGCCTGGAAGGATGA GAAGCAACATACTGACTGTCTCCTGACG GCTGGCCATCAAACATCTAAGGTATC CCAAGGCTGCTAGAAACTTTGCTG AGTTCATACTTGGTTCCAGCATACAGTG AGTTACCACCAGCTTCAAGGGATGTTC CTGAAGTACTCACAGTTTCTGGGGTGAC AGAACAATGCCCACGATCATCAG ATCATCAGGGCTCGTACAGCTTGC CCAAATTCGTACCTGGCATTGAC ATGTACAGGGCTCCTCCAGGTTCATA CTTTAGGCTGTACAGTTCCATTTTCTAGG AGTGCGGCAAGTAGTTTGTAAGGCAG AAGGAAGGCTTGACCTCCAGTTAGAGGAAG GGATGCTGTCATCCCAGAAGTCTTGA ATAGGTGGATATTCCCTGACCCAGTC TTGAGGTAATCGCAACGCTCC TTCTTCCACAGCTGAAGGACTCACAG ACCTTTGGGGGATTTCTAGCAGGTAGAGGAC TCCTGTTTGCTCTGTGTTACCAGCTC AATCGGCCAGCATTTTCTG GGCATCAGGCTCCACAGT

Supplementary Table S2 Yamazaki et al.

Supplementary Figure Legends

Supplementary Figure S1

Immunofluorescence micrographs of claudins in SF7 cells. A) Immunofluorescent detection of endogenous claudins in SF7 cells. Claudin-9 was not detected, although it showed a positive signal in the microarray analysis. Green: claudin-9, Red: ZO-1, Bar: 10 μ m. B) Immunofluorescence micrographs of claudin-12. The staining for claudin-12 showed a dotted pattern at cell-cell contacts, but most of it did not coincide with ZO-1 staining. Green: claudin-12 Red: ZO-1, Bar: 10 μ m. C) Immunofluorescence micrographs of the transient expression of Venus-claudin-12 in SF7 cells. Only a small amount of the Venus-claudin-12 overlapped with the ZO-1 staining; most of it was distributed over the whole plasma membrane. Green: Venus, Red: ZO-1, Bar: 10 μ m.

Supplementary Figure S2

Immunofluorescence micrographs of Venus-tagged claudin mutants in which the ZO-1/2-binding regions were deleted, in SF7 cells. The claudin-7, -10, -14, and -19 mutants did not co-localize with ZO-1. Green: Venus, Red: ZO-1, Bar: 10 µm.

Supplementary Figure S3

Immunofluorescence micrographs of Venus-tagged claudin mutants in which the ZO-1/2-binding regions were deleted, in SF7 cells. Note that the mutants of claudin-7 and -19 appeared to polymerize independently of ZO-1. Yellow boxes indicate regions of claudin polymerization. Green: Venus, Red: ZO-1, Bar, 10 µm.

Supplementary Figure S4

Real-time RT-PCR of claudins, other tight-junction proteins, and adherens-junction proteins in Eph4 cells. Various claudin species were detected at the transcriptional level. The expression levels relative to that of GAPDH are shown.

Supplementary Table S1 Microarray analysis of claudin expression in SF7 cells.

Among the twenty-four claudin members, signals for claudin-9 and claudin-12 were detected. The signal for occludin was also positive. Note that only one of two probes against claudin-9 could detect a signal, suggesting that the claudin-9 expression was low.

Supplementary Table S2 Primers for real-time RT-PCR

The primers for real-time RT-PCR are listed.