

Figure S4. Experimental current tracings of $I_{\rm K1}$ from five cells and an example of extrapolated $I_{\rm K1}$ at the voltage step (V_s) +10 mV averaged from these five cells. The data for Cell 1-4 are unpublished data provided by Knock G & Aaronson P (personal communication); data for the fifth cell is from Knock et al., [19]. $I_{\rm K1}$ currents were induced in these cells during a 10 s voltage-clamp at different V_s from a holding potential (V_h) of $-80 \,\mathrm{mV}$. The membrane potentials were increment every 10 mV steps from -100 mV to: +40 mV (Cell 1), +30 mV (Cell 2), +50 mV (Cell 3, Cell 4), and from $-40 \,\mathrm{mV}$ to $+10 \,\mathrm{mV}$ in Knock et al., [19]; each V_s is separated by a different shade of gray. The steps taken to produce the averaged current tracings for $I_{\rm K1}$ from $-40\,{\rm mV}$ to $+30\,{\rm mV}$ were as follows. For each current tracing in Cell 1-5, the values are first offset to zero (so that the current tracing is at zero during V_h), then normalized to the peak value at $V_s = +10 \text{ mV}$. At each V_s , the current values at each time instant from different cells were summed and divided by the total number of cells (for -40 mV to +10 mV, n=5; for +20 mV to +30 mV, n=4); this gave an averaged current tracing for a specific V_s . The example shows an extrapolated I_{K1} at $V_s = +10 \,\mathrm{mV}$ (green), superimposed with the tracings from the five cells at the same V_s (different shade of gray). The averaged current tracings were used for extracting activation and inactivation time constants and for validation of $I_{\rm K1}$ under voltage-clamp conditions.