# Supplementary Material for XANNpred: Neural Nets that Predict the Propensity of a Protein to Yield Diffraction-quality Crystals



**Figure S1.** Summary of relationships between the datasets and their use in training and testing the algorithms XANNpred-PDB and XANNpred-SG. More details of individual datasets are given in Table S1 and in the main manuscript (Methods).

### Section S1: Additional Details on XANNpred-SG Datasets

### 1.1 Balanced Training and Test Datasets

This section provides additional detail to that given in the main manuscript Methods & Materials section. In order to generate balanced datasets for training and testing XANNpred-SG, 521 sequences (PEP\_NEG-2) were randomly selected from PEP\_NEG to balance with the 521 sequences in PEP\_POS. A random selection of 53 sequences from each of PEP\_POS and PEP\_NEG-2 were set aside as the blind test set (TEST-SG, 106 sequences). The remaining 468 sequences from each of PEP\_POS and PEP\_NEG (POS\_TRAIN-SG and NEG\_TRAIN-SG respectively) were combined to form the XANNpred-SG training dataset (TRAIN-SG, 936 sequences), which was input for 10-fold cross-validation.

# 1.2 Hybrid Test Datasets

This section provides additional detail to that given in the main manuscript Methods and Materials section. The 75 PDB sequences in TEST-PDB (POS\_TEST-PDB) were searched against the XANNpred-SG training data with BLASTP<sup>29</sup>. Matches were assigned with published thresholds<sup>32</sup>, and matching sequences were excluded to give POS\_TEST-PDB\_FILT (69 sequences). From POS\_TEST-PDB\_FILT 53 sequences were randomly selected (POS\_TEST-PDB\_FILT53) and combined with the 'work stopped' portion of TEST-SG (NEG\_TEST-SG) to form the HTEST-SG dataset (106 sequences).



Figure S2. Performance over Hybrid Blind Test Dataset HTEST-PDB.

Receiver Operator Characteristic (ROC) curves for XANNpred-PDB, XtalPred, OB-Score, PXS and ParCrys over HTEST-PDB. Areas under the ROC curves are given in the bottom right-hand corner. This figure was generated using the R package<sup>48</sup>.



Figure S3. Performance over Hybrid Blind Test Dataset HTEST-SG.

Receiver Operator Characteristic (ROC) curves for XANNpred-SG XtalPred, OB-Score, PXS and ParCrys over HTEST-SG. Areas under the ROC curves are given in the bottom right-hand corner. This figure was generated using the R package<sup>48</sup>.

# Table S1 Summary of Datasets

| Combined Dataset  | Description                                                                                                                                      | Dataset Name            | Description                                                                                                | Size |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------|------|
| TRAIN-PDB         | XANNpred-PDB training dataset with 'diffraction-quality crystals'                                                                                | POS_TRAIN-PDB           | Positive training dataset based on<br>PDB sequences                                                        | 672  |
|                   | data from PDB and 'work stopped'<br>data from PepcDB                                                                                             | NEG_TRAIN-PDB           | Negative training dataset based<br>on PepcDB sequences                                                     | 672  |
| TEST-PDB          | XANNpred-PDB blind test dataset<br>with 'diffraction-quality crystals'                                                                           | POS_TEST-PDB            | Positive blind test dataset based<br>on PDB sequences                                                      | 75   |
|                   | data from PDB and 'work stopped'<br>data from PepcDB                                                                                             | NEG_TEST-PDB            | Negative blind test dataset based<br>on PepcDB sequences                                                   | 75   |
| TRAIN-SG          | XANNpred-SG training dataset<br>with both 'diffraction-quality                                                                                   | POS_TRAIN-SG            | Positive training dataset based on<br>PepcDB sequences                                                     | 468  |
|                   | crystals' and 'work stopped' data<br>from PepcDB                                                                                                 | NEG_TRAIN-SG            | Negative training dataset based<br>on PepcDB sequences                                                     | 468  |
| TEST-SG           | XANNpred-SG blind test dataset<br>with both 'diffraction-quality                                                                                 | POS_TEST-SG             | Positive blind test dataset based<br>on PepcDB sequences                                                   | 53   |
|                   | crystals' and 'work stopped' data<br>from PepcDB                                                                                                 | NEG_TEST-SG             | Negative blind test set based on<br>PepcDB sequences                                                       | 53   |
| PDB_POOL          | Pool of redundancy-filtered PDB sequences                                                                                                        | -                       | - 8                                                                                                        |      |
| PDB_POS           | Master positive dataset based on<br>PDB, for XANNpred-PDB                                                                                        | POS_TRAIN-PDB           | Positive training dataset based on<br>PDB sequences                                                        | 672  |
|                   |                                                                                                                                                  | POS_TEST-PDB            | Positive blind test dataset based<br>on PDB sequences                                                      | 75   |
| PEP_NEG           | Master negative dataset based on<br>PepcDB, for XANNpred-PDB                                                                                     | NEG_TRAIN-PDB           | Negative training dataset based<br>on PepcDB sequences                                                     | 672  |
|                   |                                                                                                                                                  | NEG_TEST-PDB            | Negative blind test dataset based<br>on PepcDB sequences                                                   | 75   |
| PEP_POS           | Master positive dataset based on<br>PepcDB, for XANNpred-SG                                                                                      | POS_TRAIN-SG            | Positive training dataset based on<br>PepcDB sequences                                                     | 468  |
|                   |                                                                                                                                                  | POS_TEST-SG             | Positive blind test dataset based<br>on PepcDB sequences                                                   | 53   |
| PEP_NEG-2         | Master negative dataset based on<br>PepcDB, for XANNpred-SG                                                                                      | NEG_TRAIN-SG            | Negative training dataset based<br>on PepcDB sequences                                                     | 468  |
|                   |                                                                                                                                                  | NEG_TEST-SG             | Negative blind test dataset based<br>on PepcDB sequences                                                   | 53   |
| POS_TEST-PDB_FILT | Sequences from POS_TEST-PDB<br>remaining after filtering against<br>the XANNpred-SG training data.<br>Used as a pool for POS_TEST-<br>PDB_FILT53 | -                       | -                                                                                                          | 69   |
| HTEST-PDB         | 'Hybrid' blind test data for<br>XANNpred-PDB with'diffraction-<br>quality crystals' and 'work<br>stopped' data from PepcDB                       | POS_TEST-SG_FILT        | Positive blind test set based on<br>PepcDB sequences and filtered<br>against XANNpred-PDB training<br>data | 44   |
|                   |                                                                                                                                                  | NEG_TEST-PDB44          | Negative blind test dataset based<br>on PepcDB sequences                                                   | 44   |
| HTEST-SG          | 'Hybrid' blind test data for<br>XANNpred-SG with'diffraction-<br>quality crystals' data from PDB<br>and 'work stopped' data from<br>PepcDB       | POS_TEST-<br>PDB_FILT53 | Positive blind test set based on<br>PDB sequences and filtered<br>against XANNpred-SG training<br>data     | 53   |
|                   |                                                                                                                                                  | NEG_TEST-SG             | Negative blind test set based on<br>PepcDB sequences                                                       | 53   |

#### **Section S2: Feature Scaling**

In order for the data to be presented to the neural network, each feature was scaled. Table S2 summarises the features chosen and ranges used for scaling. Scaling was done according to Equation 1 for all features except for the amino acid and dipeptide frequencies.

$$S = (r-m)/(x-m)$$
 (1)

Where:

S is the scaled parameter value r is the raw parameter value m is the minimum observed parameter value in the training data x is the maximum observed parameter value in the training data

| Feature                   | Min | Max   |
|---------------------------|-----|-------|
| Fraction Jpred Helix      | 0   | 0.8   |
| Fraction Jpred Strand     | 0   | 0.4   |
| Fraction RONN disorder    | 0   | 0.6   |
| Fraction TMHMM2           | 0   | 0.2   |
| transmembrane regions     |     |       |
| Average GES               | -1  | 1.0   |
| hydrophobicity            |     |       |
| Isoelectric Point         | 4.0 | 12    |
| Sequence Length           | 0   | 800   |
| Molecular Weight          | 0   | 80000 |
| 20 Amino acid frequencies | 0   | 1     |
| 400 Dipeptide frequencies | 0   | 1     |

# Table S2: Summary of Features

**Section S3: Conversion Of XtalPred Classes for Receiver Operator Characteristic Analysis** For the purpose of Receiver Operator Characteristic (ROC) analysis, the five XtalPred classes were translated into scores on a one to five scale where the most crystallisable 'Optimal' class scored 5 through to the least crystallisable 'Very difficult' class that had a score of one.