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ABSTRACT
A hidden Markov model (HMM) has been developed to
find protein coding genes in E.coli DNA using E.coll
genome DNA sequence from the EcoSeq6 database
maintained by Kenn Rudd. This HMM Includes states
that model the codons and their frequencies In E.coli
genes, as well as the patterns found In the intergenic
region, including repetitive extragenic palindromic
sequences and the Shine - Delgarno motif. To account
for potential sequencing errors and or frameshifts in
raw genomic DNA sequence, it allows for the (very
unlikely) possiblity of insertions and deletions of
individual nucleotides within a codon. The parameters
of the HMM are estimated using approximately one
million nucleotides of annotated DNA in EcoSeq6 and
the model tested on a disjoint set of contigs containing
about 325,000 nucleotides. The HMM finds the exact
locations of about 80% of the known E.coli genes, and
approximate locations for about 100%. It also finds
several potentially new genes, and locates several
places were insertion or deletion errors/and or
frameshifts may be present in the contigs.

INTRODUCTION
Sequencing of the genomes of organisms and organelles has and
will continue to produce large quantities of complex map and
DNA sequence data. The development of algorithms, techniques,
software and databases is crucial in accumulating and interpreting
these data in a robust and 'automated' manner. Sequencing of
the E. coli genome is now about 50% complete [1,2] and as such,
it serves as an important testbed for both laboratory and computer
analysis techniques. Here we describe a new computer method
for locating the protein coding genes in unannotated E.coli contigs
and translating them into protein sequences.
There are two principal methods for finding genes, both of

which have been incorporated into systems that analyse eucaryotic
DNA [3]. The first locates signals in DNA like promoter
sequences and splice junctions using techniques such as neural
networks [4,5,6] or statistical methods [7,8,9]. The second
approach scores a certain window of DNA in various ways in
order to decide whether the window belongs to a coding or a

non-coding region (reviewed in [10]). Staden and McLachlan
[11,3] proposed deviation from average codon usage as a way
of determining the probability that the window is coding or not.
Later, Gribskov et al. [12] used a similar measure as a part of
their 'codon preference plot', but their measure did not require
the knowledge of an average codon usage from other sources.
Most other scoring methods are related to codon usage in some
way [13,3]. Recently, neural networks [4,14,15,16] and Markov
chains [17,18,19] have been used to analyze coding (and non-
coding) regions. In particular, the program GeneMark [20] finds
genes in E.coli DNA using a Markov model for the coding region
related to the one discussed here, and a very simple Markov
model for the non-coding regions. Whether looking for signals
in the DNA or using window scoring, there remains the problem
of combining all the scores and/or signals detected in a given
contig to produce a coherent 'parse' into genes separated by
intergenic regions. The output of this final parsing step could
be a list of genes, each represented by its begin and end position
within the contig. Snyder and Stormo have recently proposed
an elegant dynamic programming method to accomplish this final
step [21]. Other more linguistically motivated approaches to this
kind of sequence parsing problem are described in [22,23,24,25].
One aim of this paper is to combine all the aforementioned

methods for locating protein coding regions (the search for
initiation signals, the scoring of possible coding regions, and the
final dynamic programming to get the best parse) in a single
simple framework of Hidden Markov Models (HMMs). HMMs
have been used to analyse DNA [18], to model certain protein-
binding sites in DNA [8,9] and in protein analysis
[26,27,28,29,30,31,32]. TheHMM we use to find genes inE.coli
is much larger and more complex than those used in the early
HMM work. Since only one strand is modelled, the HMM is
applied twice, once to the direct strand and then to the
complementary strand. The basic HMM architectr is identical
to our earlier work [29], but here it is organised into a series
of looping structures (Figure 3) containing explicit submodels
for each of the 64 codons and for gene overlaps. It allows for
the possiblity of insertions and deletions of individual nucleotides
witiin a codon because such errors may result in completely or
partially incorrect translated protein sequences (see [33,34,35]).
These sequence 'errors' are distinct from real frameshifts and
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other programmed recoding events i.e. alternative reading of the
genetic code (see [36,37]). In the HMM, if for example, a base
is omitted such that one of the 'codons' is only two bases long,
the model compensates by skipping one of the bases in the codon
model (similarly for insertions). To avoid modelling any DNA
sequence as a gene with many errors or frameshifts, the
probability of this behavior is small. Models for certain intergenic
features such as repetitive extragenic palindromic sequences
(REPs) [38,39], emerged from what were initially more generic
models during the HMM training procedure i.e. estimation of
the parameters of the HMM.
The HMM was trained on approximately one million

nucleotides from the EcoSeq6 database of labelled genes (Kenn
Rudd, personal communication; [40]) and tested on the remainder
(about 325,000 nucleotides). Since EcoSeq6 is not fully annotated
yet (K. Rudd, personal communication), our results should assist
in identifying the locations of new genes and highlighting errors
and or inconsistencies in the data. For each contig in this test
set we used the Viterbi algorithm [41,29], a standard dynamic
programming procedure for HMMs, to find its most likely path
through the hidden states of the HMM. Based on the stochastic
model represented by our HMM, this path was then used to define
a parse of the contig into genes separated by intergenic regions.
Of about 240 labelled genes in the test set, we found about 80%
of the sequences labeled as protein-coding genes in EcoSeq6
exactly, i.e. with precisely the same start and stop codons. [The
actual percentage of exactly correct predictions on the test set
is about (85%), but since performance on the training set (about
1000 genes) was only 78% exactly correct, we believe that 80%
is a more realistic performance estimate.] Approximately 5%
were found within 10 codons of the start codon, 5% overlap by
at least 60 bases or 50% and about 5% were missed completely.
For each of genes predicted by the parser but not labelled in
EcoSeq6, we performed a database search using the program
BLASTP [42] and the predicted protein sequence. The results
indicate that many of these appear to encode known proteins.
In addition, there are several instances where the HMM suggests
insertion or deletion errors in the labelling of the contigs.
The most distinctive aspects of our work are the complexity

of the intergenic model and the simplicity of the overall HMM
framework for combining coding measures and specific sensors
to produce useful parses. The Viterbi algorithm replaces the
Snyder-Stormo style dynamic programming approach in this
combination of coding measures and specific sensors. To
demonstrate the advantages of explicitly modeling the structures
in the intergenic region, we also trained and tested a much simpler
HMM that did not include a sophisticated intergenic model, but
instead relied only on the statistics of the codon models (Figure
1). While this model performed quite well also (about 70%
exactly correct), our more complex HMM performed
significantly better.

METHODS
A parser with a simple intergenic model
An HMM for DNA patterns generates sequences of A, C, T and
Gs according to a random process. The simplest HMM used in
this research is illustrated in Figure 1 and consists of a collection
of rings, all connected to a central state. Each ring possesses one
or more HMMs whose structure is essentially the same as that

one codon HMM for each of the 61 DNA triplets that code for
amino acids as well as a ring which generates the intergenic region
and its flanking stop and start codons.
The random process used by the HMM to generate a sequence

of nucleotides is a random walk starting in the middle of any

of the HMMs. Assume we begin at the central state and enter
any of the rings by traversing one of the arrows shown in Figure
1. Each such state transition has an associated probability and
transitions out of the central state are chosen at random according
to these probabilities (they sum to one). For example, a transition
leading to the AAC codon model HMM generates the three
nucleotides AAC with very high probability and then, with
probability 1, makes the transition back to the central state.
Subsequently, a new transition out of the central state is selected
randomly and independently of the previous transition. Choosing
one of the 61 codon models repeatedly results in a 'random gene'.
The gene eventually terminates upon entry into one of the rings
below the central state. The probability of such a transition is
fairly small. (This probability is roughly determined by the
number of intergenic regions divided by the number of codons
in a typical contig of E.coli DNA.) One stop codon HMM
generates both TAA and TGA, each according to its frequency
of occurrence in E. coli, and the other TAG. In the simple HMM,
a sequence of nucleotides representing an intergenic region are
produced independently and at random by looping in the state
labelled 'Intergene model'. Next, the start codon HMM generates
either ATG, GTG or TTG, each with the appropriate probability
(TTG is very rare in E. coli). A transition is made back to the
central state and the whole process repeated i.e. generation of
several random codons followed by another intergenic region and
so on. This entire procedure produces a sequence of nucleotides
that is statistically similar to a contig of E. coli DNA consisting
of a collection of genes interspersed with intergenic regions.
Each random walk has a well-defined probability determined

by the probability parameters of the HMM. This probability is
inverted and employed to locate the beginning and ends of genes.
For a given contig of E. coli DNA, the most likely random walk
through the HMM that generates this sequence is calculated with
a dynamic programming method known as the Viterbi algorithm
[described in (41); see also (29)]. The Viterbi algorithm generates
a parse of the contig, i.e. labels genes in the DNA by identifying
portions of the path that begin with the start codon at the end
of the intergenic ring, pass through several amino acid codon
HMMs, and return to one of the stop codons at the beginning
of the intergenic ring. The model parses a gene in one direction
only and thus finds all genes on the direct strand. To locate genes
on the opposite strand, the reverse complement (A and T
interchanged, G and C interchanged, and the sequence reversed)
is parsed as just described.

The gene model

The role of the codon HMMs in Figures 1 and 3 is similar to
the role played by codon usage statistics in many other gene
finding methods [3]. Codon usage statistics are far from what
would be expected if they were based on randomly chosen
nucleotides (see Table 1). In our model, the codons in a gene
are considered random and independent. Therefore, the
probability that a region is coding is simply the product of the
probabilities of the individual codons. The probability of an open
reading frame (ORF) consisting of codons cl, c2,...ck and

used in our work on modelling protein families [29]. There is excluding start and stop codons is
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k

Prob(cl,ck) =IIP(c.), (1)

where p(ci) is the probability of codon ci given in Table 1 for
E. coli. We define the gene index of an ORF to be the negative
logarithm of this divided by the length of the contig,

k

I(cl,..ck) =klog64p(cI) (2)
ki=

The average value for a typical E.coli gene is equal to the entropy
of the E.coli codon probability distribution. (Since logarithm base
64 is used, the entropy of any codon distribution will be at most
1. Therefore, typical genes will have an index less than 1.) Using
an estimate of this distribution obtained from our training set
(Table 1) yields

average (1) = 0.935. (3)

For genes in the training set, relatively few have a large gene
index: roughly 16% have an index greater than 0.96, 7% greater
than 0.98, and only about 2.5% have a gene index larger than
1.0, see Figure 2. This gene index will be used to rank predictions
and resolve ambiguities of the predictions by the HMM.
The gene model uses the codon probability as the probability

of making a transition into the corresponding codon model.
Assume that a particular path through the HMM starts in the
intergenic model and goes through the start codon model before
looping in the gene model k times (producing k codons), and then
enters one of the stop codon models before ending in the
intergenic model. This corresponds to an ORF of length k (not
counting start and stop codons) flanked by intergenic regions.
The probability of that path will contain the probability for the
ORF as given in Equation 1. Thus, using the Viterbi algorithm
with such a model gives an overall parser similar to Staden and
McLachlan's codon-usage method of locating genes [11], or the
related method of Gribskov et al. [ 12], and then following this
by a simple dynamic programming method like that of [21].

The 61 codon models are designed to generate one nucleotide
triplet each. In the main states (squares), the probability of
generating the letters of the codons is set to one and the others
to zero. To allow for the possiblity of firmeshifts and sequencing
errors, insertions or deletions are modelled in the same manner
that insertions and deletions are modelled in our HMMs built
for protein families [29] (see Figure 1). For each of the three
nucleotides in the codon independently, there is a very sall
probability, Pincdel, that that nucleotide is deleted (i.e. missing in
the sequence). Similarly, independently between each pair of
consecutive nucleotides, before the first nucleotide, and after the
last nucleotide, a randomly chosen nucleotide is inserted with
probability Pinldel. Experiments (data not shown) indicated that
'zero-th order' codon statistics were almost as good as higher
order models, for example, those incorporating statistics on which
codons are likely to follow other codons. Thus, we focus on
constructing good models of the intergenic regions while keeping
the gene model simple. This contrasts with the work of others
such as Borodovsky and Mclninch [17,20].

A parser with a complex intergenic model
The more complex HMM (Figure 3), intergenic model consists
of several parts in addition to the start and stop codon models
described earlier. After generating the stop codon, the model
chooses either the transition to the long intergenic HMM or the
short intergenic HMM, with appropriate probabilities. The short
intergenic HMM tends to generate intergenc regions of lengths
from 1 to 14 or so, with statistics determined from examples of
such short intergenic regions in actual E.coli contigs. Similarly,
the paranmters of the long intergenic model are adjusted to captme
the statistics of longer intergenic regions. The parameters of the
two intergenic models were estimated from a set of known
intergenic regions by a learning procedure known as theforward-
backward algorithm. As a result of the training process, the long
intergenic region develops patterns, without having to explicidy
encode them. For example, it discovers a structure about 5 to
10 nucleotides before the start codon that corresponds to the well
known Shine-Delgamo sequence [43] (positions marked 36-40
in Figure 4). The strong nucleotide preferences imediately

Table 1. The relative frequencies of the 64 codons (in percent) in the E.coli DNA training data used in this study ('Usage')

Codon Aa Usage Random Codon Aa Usage Random Codon Aa Usage Random Codon Aa Usage

AAA Lys 3.5 1.3 GAA Glu
AAG Lys 1.1 1.6 GAG Glu
AAC Asn 2.4 1.4 GAC Asp
AAT Asn 1.4 1.3 GAT Asp

4.3
1.8
2.2
3.2

1.6 CAA Gln 1.3 1.4 TAA * * *

1.8 CAG Gln 3.0 1.7 TAG * * *

1.7 CAC His 1.1 1.5 TAC Tyr 1.4 1.4
1.5 CAT His 1.2 1.4 TAT Tyr 1.5 1.3

AGA Arg 0.1 1.6 GGA Gly 0.6 1.8 CGA Arg 0.3 1.7 TGA * * *
AGG Arg 0.1 1.8 GGG Gly 1.0 2.2 CGG Arg 0.4 2.0 TGG Tip 1.4 1.8
AGC Ser 1.6 1.7 GGC Gly 3.2 2.0 CGC Arg 2.4 1.8 TGC Cys 0.7 1.6
AGT Ser 0.7 1.5 GGT Gly 2.8 1.8 CGT Arg 2.5 1.6 TGT Cys 0.5 1.5

ACA Thr 0.5 1.4 GCA Ala 2.0 1.7 CCA Pro 0.8 1.5 TCA Ser 0.6 1.4
ACG Thr 1.4 1.7 GCG Ala 3.6 2.0 CCG Pro 2.6 1.8 TCG Ser 0.8 1.6
ACC Thr 2.5 1.5 GCC Ala 2.5 1.8 CCC Pro 0.4 1.6 TCC Ser 0.9 1.5
ACT Thr 0.9 1.4 GCT Ala 1.6 1.6 CCT Pro 0.6 1.5 TCT Ser 0.9 1.4

ATA Ile 0.3 1.3 GTA Val 1.1 1.5 CTA Leu 0.3 1.4 TTA Leu 1.1 1.3
ATG Met 2.5 1.5 GTG Val 2.7 1.8 CTG Leu 5.7 1.6 TTG Leu 1.2 1.5
ATC Ile 2.7 1.4 GTC Val 1.5 1.6 CTC Leu 1.0 1.5 TTC Phe 1.8 1.4
ATT Ile 2.8 1.3 GTT Val 1.9 1.5 CTT Leu 0.9 1.4 TTT Phe 1.9 1.2

'Random' gives the corresponding values if codon usage was simply a result of the relative frequencies of the four nucleotides (A, 23.66, G, 27.89, C, 25.30,
and T, 23.15). 'Aa' and '*' denote amiino acid and stop codon respectively.

Random
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following the stop codon (positions 5 - 18) resemble a repetitive
extragenic palindrome or REP sequence [38,39]. All of these
features are considered by the Viterbi method when matching
a segment of the sequence to one of the intergenic models and
thus provide statistical information not used in other gene-finding
methods.

Models for overlapping genes
The possibility of overlapping genes are dealt with by two overlap
HMMs. In Figure 3, the box labelled 'Overlap models' represents
separate HMMs for handling overlaps of 1 or 4 nucleotides, each
forming its own ring with the central state. The HMM for
overlaps of 1 generates the sequences TAATG or TGATG with
high probability and other sequences with very small probability.
Each time this overlap model is encountered in a parse, TAA
or TGA is taken to be the stop codon for one gene and ATG
is the start codon for another gene (the middle nucleotide A is
shared). With high probability, the HMM for overlaps of length
4 produces sequences that match the regular expression NN[A-
G]TGANN, where N stands for any of the four nucleotides, and
[AG] means either A or G. TGA is assumed to be the stop codon
of a gene extending to the left, and the triplet ATG (or GTG)
the start codon of a gene extending to the right. The two Ns on
either side are needed to keep the overall HMM in the correct
reading frame both before and after the overlap. In the E. coli
training data, about 75% of the overlaps were of lengths 1 or
4. Instead of modeling the remaining overlaps (greater than 4
bases) explicitly, we find them in a special post-processing step
before the final parse of the contig is produced (described below).

Training data
We used the EcoSeq6 database [40,44] maintained and provided
to us by Kenn Rudd (personal communication). It contains about
460 contigs of E. coli DNA but is not fully annotated yet because
a significant amount of gene discovery remains to be done
(K.Rudd, personal communication). All contigs containing genes
not coding for proteins were omitted leaving 429 contigs which
were then split at random into a training set of 300 contigs and
a test set of 129 contigs. Because of extenstive stretches of bases
of unknown identity i.e. those labelled 'N', 5 of the contigs in
the training set were subsequently modified as follows. Runs of
Ns were excised leaving one contig shortened at one end
(adhEeco), three split into 2 fragments (bolAeco, entDeco,
fimBeco) and one split into 3 pieces (pyrGeco). Statistics for the
two sets are shown in Table 2.
To train models for the intergenic regions, all regions between

two genes in the direct strand (including stop and start codons)
were excised from the training sequences. Intergenic regions at
the beginning or end of a contig and those with non-standard
start or stop codons were removed, leaving a total of 424 for
training. By standard start codons we mean ATG, GTG, and
TTG, and by standard stop codons TAA, TGA, and TAG. For
each contig, the complementary sequence was generated and
intergenic regions between these genes generated in the same
way. Note that intergenic regions often contain genes in the
opposite direction.
Codon usage statistics were then calculated for the genes in

the training set (Table 1). Only genes that did not begin or end
a contig and had a length divisible by 3 were used. All codons
that did not contain the letter 'N', representing an unknown
nucleotide, were counted. The relative frequencies of the 61

probabilities in the codon models. Statistics were collected for
the usage of start and stop codons in the same manner.

Parameter estimation
Although the model contains many parameters (probabilities),
all but one (Pm,,del) are determined automatically from the
training contigs. Because of the problem of overfitting with such
a large number of parameters, the test contigs provide
independent cross validation of the results. The parameters of
the short and long intergenic models were established by a
learning procedure known as the forward-backward algorithm,
a special case of the more general EM method [45]. A detailed
description of the forward-backward algorithm can be found
elsewhere [41]. In our implementation [29], we use the algorithm
to find a maximum a posteriori setting of the parameters given
the training sequences. The prior probabilities are exactly like
those used in [29], but rather than estimating this prior from other
sources, we use a uniform prior on the four possible nucleotides
in each HMM state that generates a nucleotide. The only
significant difference is that the distributions on the four
nucleotides in what are called 'insert states' in [29] are estimated
from the training sequences here, rather than being 'hardwired'
to the uniform distribution.
The long intergenic model (Figure 4) was trained on regions

with 10 or more bases between the stop and start codons, roughly
the minimum length of an intergenic region with a Shine-Delgarno
pattern. Because of the importance of this pattern, it was trained
in two steps. First, a model was trained on the 20 (or fewer)
nucleotides just before the start codon from intergenic regions
longer than 10. This model, of length 15, was incorporated into
a longer model and fixed while training the rest of the long
intergenic model. The final intergenic model had a length of 44.
This length was determined automatically during training by the
'model surgery' method described in [29]. The short model was
trained on sequences of length I to 14. (Note that some sequences
were used to train both.) This model had a length of 9.

Since there is an insufficient number of examples of frameshifts
and indel errors to estimate Pindel, the probability that a
nucleotide is inserted in a codon, this manually-tunable parameter
was fixed at 10-8 after a few experiments (this avoided
modelling any DNA as a gene with many errors or frameshifts).
The remaining parameters are all associated with transitions from
the central state to one of the HMMs or transitions between sub
HMMs. The probability of entering each codon model is set
proportional to the codon usage shown in Table 1. The constant
of proportionality, i.e., the overall probability of making a
transition from the central state to one of the codon models, is
called Pgene. Using the data, one can estimate Pgene by Pgene =

1-1 INOd0, where NWOdn is the average number of codons in
a gene. The other parameters are estimated empirically in a
similar fashion.

Post processing
The parser does make some mistakes. For instance, it sometimes
predicts a frame shift very near to a region of two overlapping
genes, instead of actually predicting overlap between two genes
(particularly long overlaps often lead to a 'frameshift'). Another
common mistake is to predict short genes entirely overlapping
with a long gene in the opposite direction. Predicted genes often
compete with a 'gene' on the opposite strand that is in the
complementary reading frame. These so-called 'shadow genes'

codons that are not stop codons were then used to set the transition [20] arise because coding regions have an excess of self-
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complementary RNY (R:purine, Y: pyrimidine) type cdons [46].
The codons that correspond to stop codons on the other strand
(TTA, TCA, and CTA) are uncommon codons which enhance
the probability of long ORFs opposite from real genes. If the
possibility of stop codons is ignored, the average gene index of
the complementary region is- l p(c*)log-(p(c8)), where
e, is the codon complementary to ci. The sum is only over 58
codons that do not have a stop codon as complementary codon.
The result is:

Average gene index for complementary region = 0.964 (4)

which is less than one and similar to the average index of a real
gene (0.936).
We have devised three simple rules to minimise these errors.

The parameters in these rules are rather ad hoc, but post-
processing appears fairly robust to small changes (the last rule
is the most sensitive). After genes have been predicted in both
directions of a contig ofDNA the predictions are post-processed
as follows:

Each predicted frameshift is checked to see if there is a possible
stop/start pair near by. The first stop coxm up to 200 bases
downstm from the frameshift that is in the reading frame used
prior to the frameshift is located. If such a stop codon is found,
then the nearest start codon is located (if any) up to 40 bases
before or after the stop codon in the reading frame used after
the frameshift. If both a stop and start codon are found the
predicted gene is split into two.
Genes predicted at either end of a contig dt are less than 100

bases long and those in the middle which are less than 20 are
disregarded.

If two predicted genes in opposite directimns overlap by more
than 15 bases, one of them is suppressed. If they are both long
(more than 400 bases), or if they have able lengths (ratio
of short to long >0.5), the prediction with the lower gene index
(as given in Equation (2)) is retained. Otherwise, the shorter of
the two is suppressed (unless the longer one has already been
suppressed by an even longer one). (In principle, this can lead
to odd situations where genes suppress each other in a cascade,

Stop codons Intergene
model

Figure 1. HMM architecture for a parser for E.coli DNA with a simple intergenic model. The central stae (shaded circle), generates no nucleoides and is used
to connect all the models. The 61 triplet or codon models above the cental state all have identical structures, shown in detail for the codon AAC. Squares represent
main states; diamonds denote a state where a nucleotide can be inserted between consecutive codon nucleotides whereas circles genetoe nownleodde and can be
used to delete one of the three nucleotides. The thickness of the arrows indicate the fraction of sequences making the given transistion. he isert state in the middle
of the intergenic model (diamond) produces random sequences from a base distribution estimated from the actual distribution of bases in the intergenic regions of
the training set. The four bases have almost the same frequency.
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but this is very unlikely in practice.) Merely comparing the gene
indices of the two opposite predictions is ineffective because a
very short spurious prediction often has a very low gene index.

One simple rule that works almost as well as is simply to always
suppress the shorter of the two.

0
> 600

0

0~~~~~~~~~~0
.O400-

4060

200 20

35 0.90.95 1 1.05 1.1

Gene index

8.85 0.9 0.95 1 1.05 1.1
Gene index

Figure 2. Distribution of gene index for 920 genes in the training set (lower dark
histogram). Any genes with a length not divisable by 3 or with unusual start codons
(not ATG, GTG and TTG) or stop codons (not TAA, TAG, and TGA) are not
counted. The inset shows the cumulative distribution, i.e. the fraction of genes
with a gene index below a certain value; the vertical line denotes the average
gene index. For comparison the larger histogram shows the gene index for orfs
(open reading frames) in the training data. The following criteria were used for
selecting orfs: 1) they do not have the same stop codon as a labeled gene, 2)
the length is more than 100 base pairs, 3) if several orfs had the same stop codon,
only the one with the lowest gene index was included.

RESULTS
The performances of the simple parser (Figure 1) and parser with
the more complex intergenic region model (Figure 3) were
evaluated by counting the number of whole genes correctly
predicted before and after post-processing in both the training
and test sets (Table 3). Parser mistakes on gene fragments at the
ends of contigs that were less than 100 bases long were not
counted, because such short end fragments generally contain too
little information for reliable recognition. The table does not
include a number of cases we discarded during testing. These
are 19 genes which had either a stop or start codon different from
the standard ones, a stop codon in the reading frame of the gene
or genes with many unknown bases. Also 17 predictions
subsequently identified as tRNA genes were disregarded. In order
to make a fair comparison the simple parser was augmented with
the two overlap models. Thus, the only difference between the
simple and the more complex parsers is the model of the
intergenic region.
The importance of modelling the intergenic region can be seen

by comparing the results from the complex and simple parsers
both with and without post-processing. In all cases, the rate of
false negatives ('Not found') is approximately 5-6%, i.e., the
two parsers discover roughly the same number of genes.
However, the complex parser has a better accuracy; more of the
discovered genes are perfect or almost perfect. Thus, better
modeling of sequence elements prior to the start of a gene ensures
selection of the correct start of the gene in situations with many
possible start codons.
The surprisingly good performance of the simple parser in

terms of identifying labelled genes is accomplished at the cost
of a much greater number of (possible) false positives (about 50%
more than the actual number of genes, which is around 1000
for the training set and 250 for the test set). However, post-

Stop codons Intergene models

Figure 3. HMM architecture for a parser for E. coli DNA with a complex intergenic model. The gene model above the central state that contains the 61 triplet
models is identical to the gene model of the simple parser shown in Figure 1. The detailed structure of the long intergenic model is shown in Figure 4.
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processing reduces this number to less than half without degriding
the number of correctly predicted genes significantly. It seems
like the post-processing is doing most of the work, choosing
between ORFs in opposite directions. This provides good
evidence that the post-processing rules work.
For the more complex parser, post-processing moves about

4% of the predictions from 'partly' found to 'perfect' (for the
training set), because it resolves overlapping genes. The raw
parser often predicts two overlapping genes as one long gene
with a 'frame shift' close to the region of the overlap (before
the stop codon of the first gene). Provided the predicted frame
shift is within 200 bases of the downstream stop codon, post-
processing will resolve this situation. Particularly long overlaps
that are not modelled explicitly are found this way. Note that
the start of the second gene is just chosen as the start codon closest
to the stop codon of the other gene (40 bases upstream or
downstream from the stop codon), which might not be the optnal
one. As with the simple parser, the post-processing also reduces
the number of possible false positives quite considerably.
The parser performs better on the test set than on the training

set, which is the opposite of what one would expect if overfitting
the training data was of concern. We believe that this is simply
fortuitous. For instance, the test set contains only one instance
of a gene overlap of more than 4 bases, whereas the training
set contains 34 such instances. Note that each such instance
influences the prediction of two genes, meaning that about 7%
of the training genes are influenced and less than 1% of the test
genes.

Partly discovered genes and false negatives
Table 4 gives more details on genes in Table 3 that were either
'partly' found or 'not found' (genes 1-101). Since EcoSeq6 is

Table 2. Statistics on the 429 contigs of E.coli DNA used in our experiments.

Training set Test set

Total number of contigs 300 129
Total number of characters 1,271,528 324,684
Number of genes 1007 251
Average length (internal genes) 1008 1015
Overlaping genes, length 1 50 7
Overlaping genes, length 4 40 12
Overlaping genes, length >4 34 1

not fully annotated (K.Rudd, personal communication), some of
the errors made by the parser may be incorrect labelings in the

database or genuine errors in the sequences. We suspect the errors
for genes 102-107 and 109-118 fall into this category because,
for example, the lengths of genes 113 and 115 as given in

EcoSeq6 are each not divisible by 3. The parser often makes

predictions that start a few codons before or after the actual start
codons. Those less than 10 codons off, 'Almost perfect', were
not investigated any further. In the training set, 28 predictions
(2.8%) have a start codon between 10 and 20 codons from the
correct one and 49 (4.9%) have a larger deviation (genes 1-84
in Table 4a that are not marked with ' - '). Most ofthepredictions
that differ by more than 20 codons occur in genes with a large
gene index (those denoted with '# ').
There are 13 cases of genes with inframe stop codons or

stop/start codons that differ from those given in EcoSeq6
(103-107, 109-113, 115-118). The two genes ygiB (number
6 in Table 4a) and ygiA (listed as undiscovered in Table 4b) have
a very large overlap of 146 bases and the parser has concatenated
them into one. In four cases a gene was predicted as being two
genes (108-111). There are 10 instances (86-95) of the parser
predicting a 'frameshift' or error, 8 of these occur in genes with
a high gene index.

In Table 4b, the 13 false negatives (EcoSeq6 labelled genes
that are not identified by the parser) consist of correctly predicted
genes that are suppressed by shadow genes (96-101, 112-118),
genes with different start/stop codons or inframe stop codons and
very short genes. It is unclear why genes 98 and 99 are not found.
The majority of false negatives are listed separately in Table 4c,
because they have unusual codon statistics giving them an

abnormaly large gene index. Of the 53 false negatives in the

training set, 32 had a gene index of more hn 1.0, 17 had a

gene index between 0.98 and 1.0, and 4 had a gene index between
0.96 and 0.98. These numbers are all fairly high compared to
the average of 0.935.

Possible new genes or 'false positives'
Some of the predictions considered as possible false positives
may be real genes which have not been labelled yet whilst others

might be spurious. We examined genes predicted by the complex
parser (after post-processing) in more detail by translating each
into the protein sequence and performing a database search using
BLAST [42] and a non-redundant database composed of Swiss-

Table 3. Performance of the parsers with simple and complex intergenic models in terms of prediction of whole genes

Type of Post- Data set EcoSeq6 genes found by parser Possible
intergenic processing false
model Perfect Almost Partly Not positive

perfect found

Complex None Training 731 (74.7) 57 (5.8) 141 (14.4) 50 (5.1) 665
Test 203 (86.0) 12 (5.1) 11 (4.7) 10 (4.2) 191

After Training 767 (78.7) 62 (6.4) 88 (9.0) 57 (5.9) 310
Test 201 (85.2) 13 (5.5) 8 (3.4) 14 (5.9) 82

Simple None Training 692 (70.8) 81 (8.3) 163 (16.7) 42 (4.3) 1524
Test 179 (75.8) 23 (9.7) 25 (10.6) 9 (3.8) 412

After Training 694 (71.3) 81 (8.3) 143 (14.7) 55 (5.7) 331
Test 174 (72.5) 22 (9.3) 23 (9.7) 17 (7.2) 98

'Perfect' indicates cases where the starts and ends of the predicted genes are the same as those given in EcoSeq6; 'Almost perfect', the start codon of the prediction
is within 10 codons of that specified in EcoSeq6 (and in the same reading frame); 'Partly', the prediction overlaps the labelled gene by at least 60 bases or 50%;
'Not found', EcoSeq6 genes that are not predicted by the parser (false negatives); and 'Possible false positive', genes that are predicted but not labelled as such
in EcoSeq6. Numbers in parenthesis are in percent.
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Prot 27.0, PIR 38.0 and translated GenBank 79.0. Of 286
predicted genes, 95 matched a known protein. Some of these
are known E. coli genes which have been not labeled in EcoSeq6
but will be in EcoSeq7 (Kenn Rudd, personal communications).
Of the rest, 63 had a significant similarity to a known protein
(Poisson Probability P < 0.05) and the rest (128) did not have
any significant similarity. At the same time we became aware
of similar work by Mark Borodovsky, Eugine Koonin and Kenn
Rudd (personal comunications) carried out with a different
method, but with strongly correlated results. Details of their
results are given in their forthcoming paper. Based on further
examination and analysis of the results from the parser, we found
a new putative S-adenosyl-L-methionine methyltransferase
domain that appears to be present in proteins from a variety of
phylogenetically diverse organisms and organelles. These results
are described in [47].

DISCUSSION
Here we have described a completely automated HMM based
method that makes predictions about the locations of genes in
E. coli DNA. The predictive power of the method was tested in
terms of finding whole genes in EcoSeq6, a database of labelled
E. coli DNA contigs. The HMM parser predicts about 80% of
the genes correctly i.e. same stop/start codons as that given in

EcoSeq6 and another 4.5-6% almost correctly (about 6% better
than a model with a very simple treatment of the intergenic
region). About 5% the genes are missed completely, almost
entirely due to those genes having unusual codon statistics. Of
the remaining roughly 10% of the genes, the parser makes fairly
good predictions in about half of these instances. This gives a
total rate of useful predictions of about 90%. The results from
our parser should aid in the process of identifying the location
of new genes and highlighting errors and inconsistencies in the
data. Indeed, we find that many of the genes predicted by the
parser but not identified in EcoSeq6 do correspond to existing
sequences in the protein databases. Examination of the results
from performing database searches on these false positives
suggests the possible function of some of these and revealed a
novel putative methyltransferase domain present in a
phylogenetically diverse group of organisms [47].
With the current approach the parser is not very likely to

perform better than 90%. Firstly, there is no reason to believe
that the 5% of the genes that the parser missed because of unusual
codon usage can be found with the kind of model we use for
the coding region since it only looks at codon usage. Similarly,
many of the roughly 5% serious errors the parser makes occur
in genes with unusual codon usage. To locate these genes
correctly would require a more sophisticated gene model. One
significant improvement in the model of codon usage would be

v~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~TTI=
' / ' / ' / / ' ' ' \//\A I A Aa A A' 0\ t sK \sK \/uKG/9<G <uG/<\ ĜfIN/oGK/sC G<C

U~~~~~~~~~~~~~~~~~~~~~ c

GAM AM A h A.\ A: Aa Al \n<<h<<<^v
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c 1

Figure 4. The model for long intergenic regions shown in Figure 3. This model was trained by the forward-backward algorithm on 424 intergenic regions of lengths
larger than 10.
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Table 4. Details on the 'partly' and 'not found' genes of Table 3 and labelled EcoSeq6 genes with possible errors (incorrect predictions of 102-118 were not counted)
a)

- - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - 1- - - - - - - - - - - - - -- - - - - - - -I
ILabelled Len. IStartil Labelled I Len. IStartll Labelled Len. IStartll Labelled Len. IStartl
EcoSeq6 l of II EcoSeq6 lof II EcoSeq6 of 11 EcoSeq6 lof
IGene I IlGene IlGene IGene
I--- -- -.--I------ -- -- --- .--- . - -- -- -- -- I . -- -----. . -I .--.--

IlglpG I8311 331 22 cysN 9121 541 43 yacA 8 4441 691 64 fhuE 1219011291
22rnpA SI3601 331 23 pcnB I1407 I541 44 yjeB * I4261 721 65SleuS I2583 I1471
33hemB I10081 331 24 phnJ I8461 541 46SmvrA -I8071 731 66 lipA I8461 1521
44secD 118481 331 25 trxA I3841 541 46 glgP 124301 751 67 xylE 1147611801
SyfhC I5371 331 26 deoD I7201 571 47 xseA 113711 781 68 ycaE I67511831
66ygiB 7051 331 27 gcpE 11191 571 48 phnA I3361 781 69 sohA SI3361 1951
77fruF'I 3131 341 28 ycaG SI2941 571 49 araJ SI11851 841 70OyicD *I8251 1981
8rpoS -I10891 361 29 yebD I4531 571 SO arol S 4351 841 71 menD S 13891 2041
99rbsD I4201 361 30OcyoA I9481 601 51idasA 123581 871 72 trg - 16081 2281
10ObioD SI6601 391 31laraE 114191 601 52 yjjB SI3871 901 73 yggC SI47412401

Ill srlQ I6721 391 32 speC 121961 601 53 tdk SI6181 901 74 nirC I55512521
122ygdB SI3661 421 33 recO I7291 601 54 cirA 119921 961 75 bax' # 4781 2521
13lgalE 110531 421 34 rho 112601 601 55J.acA *I6121 961 76 celB 112541 2791
14 hypE I9691 42135 fes 5 11251 63II56ychE SI5491 991177 cynT SI34813091
I15 yjeCI 258 I.42 II36 yfhB I573 I63 II57 carA I1149 105 II78 rfe I774 I330I
166ygjC I441 I421 37 yggD I4021 661 58 cdsA *I750 11081 79 malS 1203114771
17lfepB I9571 481 38 pcm -I6271 661 59 ybeB I2101 1081 8O mcrB SI13981 501I
18ldnaE 134831 481 39 prs I9481 661 60OfabA - I5161 108 11 81ydbD' --*I 1050 1 534 1
199sdaA 113471 481 40ObisC 121811 661 61lglpR 90011111 82 cadC 5 1 1539 1558 1
20 yhbDI 397 I49 II41 rfaQ SI969 I66 II62 cysB *I975 I114 II83 hsdS S 1 1395 11038

I21 hisF I777 I51 II42 dnaA I1404 I69 II63 yhdG SI966 I120 II84 hsdR 3273 12097
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - -

b)

Labelled EcoSeq6 Gene

Name Len. Gene
Index

begin-end
in contig

I1IPredicted EcoSeq6 Gene I
--II.--- - - - - -- - - - - - - - I

II begin-end
I I
I I

Framneshift
or error
at baselN I

I85 thdF
I86 ygjA I
I87 -ybjB'I
I88 -rhsE'
I89 rhsD
I90 -rhsB
991 rhsAI
992 -rhsC

I93 yjdA
I94 -ydiB'
I95 -mukB
I96 -nadR'
I97 -pheN
I98 rpmJ
I99 ybdD
I100 trpL
I101 -uiaB'
I102 -fepE
I103 dacB
I104 --ydbA'
I105 yadBl
I106 holC
I107 -infC
I108 -ycaF'I
1109 fdnG
I110 barAI
I111 -fdhF
I112 TerC
I113 -ydbB)
I114 rpsG
I115 prfBI
I116 -holA)
I117 ssrA
I118 micF

1320
876
369

2047
4281
4236
4134
4194
2229
520

4605
366
45

117
198
45

137
267

1434
1129
600
443
543
293

3051
2757
2148

22
3497 &
537

1099 &
230
362
174

I1.030 S
I0.989 S
I0.986 S
I0.975 S
I0.972 *I
I0.962 S
I0.962 S
I0.961 S
I0.958
I0.957
I0.922

I0.957
I0.957
I0.948
I0.938
I0.932

I0.958 1
I0.939
I0.936
I1.054

I1.1245
O.0951

11894-10575
334-1209

1-369
1-2047

460-4740
101-4336
759-4892
101-4294

13444-15672
1-520

459-5063
3403-3768
7131-7087
3198-3082
12848-13045
12670-12626
150-286

10230-10496
? 993-2426

1-1129
? 2295-1696

3595-3153
? 8498-7956

1-293
451-3501
114-2870

2223-76
? 270-249

? 3739-7235
3984-3448
2712-1614
230-1

? 147-508
? 1477-1650

II 11317-11141
II 331-1240
II 1-323 I
II 47-1532
II 460-4168
II 101-3879
II 759-4590
II 101-4109
II 13444-15916 1[
II 5-672
II 459-4909
II I~~

II 10359-x
? (25) II 992-2425
? (15) II 1-1170

II 2043-1693
IHl 3595-3137
II 8390-x
II8-115 & 112-3181

(1) 11451-1038 & 1087-x I
? (10) 11114-821 & 815-28691

(1) 1 12223-1804 & 1755-xl
II *I
II *~~+ I

(24)
( 3)

? ( 5)
? C 1)

I I
I I
I I
I I
I I

984
160

1525
4160
3858
4510
3868

15664,15915
318

4621

*
+

*I
*I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
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c)

Gene Index Undiscovered labelled EcoSeq6 Gene
I--------------------------------------------------------------------------I

> 1.0 ydcA
^ydcB'
-yzzA

I mcrA
relF
yibA
xylU

> 0.98 ygiA
bicB
cysX

^glnD3'
> 0.96 glgS

pgpA
-div'
dsdC
fimB
yidD
fimB
hisL
ycfA
rem
yiaB
ygdA
hycA

avtA
mcrC
sulA
phnQ
sufI'
yjfA
pyrL
fimE
tnaL
^glnD5'
^yeiA'
yhhA

yebB rfaK -priB
selC rfaZ ^-fucT'
yjjC rfaS -rmf
fruL radC -ycdA
leuL -trkG
rfaL -appY
yibB -lit
pinO rfaB ^_yahA'
ivbL -ompT
rfaJ -pheL
rfaI -rcsA
rfaY -fecE

(a) Genes predicted with the start codon more than 10 codons from the correct location. Last column shows how far the predicted start is from the correct start.
(b) Other mistakes made by the parser and possible errors in the database labeling. 'begin-end' gives the nucleotide positions for the beginnings and ends of the
labelled genes as given in EcoSeq6 and for the genes predicted by the parser; 'x' signifies that the stop codon is in correct location. (c) Genes undiscovered by
the parser. All have high gene indices. The symbols are as follows: '': gene located at the beginning or end of contig; '-': genes from the test set; '#': gene
has a large gene index (> 0.96); '&': genes whose length is not divisible by 3 (note genes 107 and 111 are very short); '!': gene index not calculated because
of in frame stop codon(s) or many codons with unknown bases (for example, genes 85 and 113 have 71% and 33% dirty codons respectively); '*': labelled gene
that was not predicted; '+': predicted gene is suppressed by a shadow gene; '?': potentially mislabelled start (left hand side) and stop (right hand side) codons.
The number in parenthesis is the number of stop codons in the reading frame of the gene.

to take into account the non-stationary character of the G+C vs
A+T content. It has been shown that there is a significant drift
in the average G+C content in the E. coli genome over periods
of several kilobases that cannot be accounted for solely by the
change from coding to noncoding regions [48]. A new class of
'Walking Markov' models has been proposed to model this
phenomenon. The results of some preliminary calculations to see
if extreme variations in G+C content could account for some
of our erroneous predictions show that this indeed may account
for some of the problems, but that it does not account for all
of it. At this point, it is still unclear as to the best means to
combine the walking Markov idea with the kind of hidden
Markov model that we use. However, we suspect that other
nonstationary aspects of the time series represented by the E. coli
genome will also have to be taken into account.
The modularity ofHMM design, exploited in modeling proteins

[49], is a great advantage in building complex models to capture
the structure of biological sequences. In future work, we plan
to incorporate more explicit models of intergenic regulatory
regions and of structural RNA coding regions. We also intend
to try to integrate our protein models with HMMs at the level
ofDNA by having a subHMM for each of the widely occurring
protein motifs and domains, so that a DNA parser could pick
out proteins in a particular family at the DNA level as well. There
is a dual advantage in this, because the more precise the model
(e.g., modeling all the motifs instead ofjust the triplets in a gene,
and explicitly modeling regulatory regions), the more accurate
the parse. This arises because consideration of higher-level
patterns constrains the parse much better than low level statistical
information alone.

Post script
An electronic mail server has been set up with the program
described in this paper. It is possible to mail an E.coli DNA
sequence to the server, and it will reply with a parse. Send a
mail message to ECOPARSE@cse.ucsc.edu containing the single
word 'help' to obtain information on how to use the parser.

ACKNOWLEDGEMENTS
We would like to thank Ken Rudd, Mark Borodovsky, Flemming
Hansen, Jacob Engelbrecht, Soren Brunak, Richard Durbin, and
Harry Noller, for valuable comments on this work. Special thanks
to Kenn Rudd for supplying the labeled E. coli sequences used
in these experiments. This work was supported by NSF grants
CDA-9115268 and IRI-9123692, ONR grant N00014-91-J-1 162,
NIH grant GM 17129, and a grant from the Novo Nordisk
Foundation.

REFERENCES
1. Kroger, M., Wahl, R., and Rice, P. (1993) Nucleic Acids Res. 21,

2973 -3000.
2. Rudd, K. (1993) ASM News 59, 335-341.
3. Staden, R. (1990) Meth. Enzymol. 183, 163-180.
4. Lapedes, A., Barnes, C., Burks, C., Farber, R., and Sirotkin, K. (1989)

In G. Bell and T. Marr, (ed.), Computers and DNA, SFI Studies in the
Sciences of Complexity, volume VII, pp. 157-182 Addison-Wesley.

5. Brunak, S., Engelbrecht, J., and Knudsen, S. (1991) J. Mol. Biol. 220,
49-65.

6. O'Neill, M. (1992) Nucleic Acids Res. 20, 3471-3477.
7. Stormo, G. and Hartzell, G. W. (1989) Proc. Natl. Acad. Sci. U.S.A. 86,

1183-7.
8. Lawrence, C. E. and Reilly, A. A. (1990) Proteins 7, 41-51.
9. Cardon, L. R. and Stormo, G. D. (1992) J. Mol. Biol. 223, 159-170.

10. Fickett, J. and Tung, C. (1992) Nucleic Acids Res. 20, 6441-6450.
11. Staden, R. and McLachlan, A. D. (1982) NucleicAcids Res. 10, 141-156.
12. Gribskov, M., Devereux, J., and Burgess, R. (1984) Nucleic Acids Res.

12, 539-549.
13. Fickett, J. (1982) Nucleic Acids Res. 17, 5303-5318.
14. Uberbacher, E. and Mural, R. (1991) Proc. Natl. Acad. Sci. U.S.A. 88,

11261 -11265.
15. Farber, R., Lapedes, A., and Sirotkin, K. (1992) J. Mol. Biol. 226, 471-479.
16. Craven, M. and Shavlik, J. (1993) In Proc. of the Hawaii Int. Conf. on

System Sciences, Los Alamitos, CA: IEEE Computer Society Press. pp.
773-782.

17. Borodovsky, M., Sprizhitsky, Y., Golovanov, E., and Alexandrov, A. (1986)
Molecular Biology 20, 1145-1150.

18. Churchill, G. A. (1989) Bull. Math. Biol. 51, 79-94.
19. Tavare, S. and Song, B. (1989) Bull. Math. Biol. 51, 95-115.



4778 Nucleic Acids Research, 1994, Vol. 22, No. 22

20. Borodovsky, M. and McIninch, J. (1993) Computers and Chemistry 17,
123- 133.

21. Snyder, E. and Stormo, G. (1992) Nucleic Acids Res. 21, 607-613.
22. Searls, D. B. (1992) American Scientist 80, 579-591.
23. Searls, D. B. (1994) GenLang Manual, Dept. of Genetics, U. Penn. PA

19104.
24. Searls, D. B. and Dong, S. (1993) In H. A. Lim, J. Fickett, C. R. Cantor,

and R. J. Robbins, (ed.), Proc. 2nd Int. Conf. on Bio as,
Supercomputing, and Complex Genome Analysis, World Scientific: pp.
89-101.

25. Collado-Vides, J. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 9405-9409.
26. Asai, K., Hayamizu, S., and Onizuka, K. (1993) In Proc. of the Hawaii

Int. Conf. on System Sciences, Los Alamitos, CA: IEEE Computer Society
Press. pp. 783-791.

27. Stultz, C. M., White, J. V., and Smith, T. F. (1993) Protein Science 2,
305-315.

28. Baldi, P., Chauvin, Y., Hunkapillar, T., and McClure, M. (1994) Prec.
Natl. Acad. Sci. U.S.A. 91, 1059-1063.

29. Krogh, A., Brown, M., Mian, I. S., Sj'olander, K., and Haussler, D. (1994)
J. Mol. Biol. 235, 1501-1531.

30. Brown, M. P., Hughey, R., Krogh, A., Mian, I. S., Sj6&aner, K., and
Haussler, D. (1993) In L. Hunter, D. Searls, and J. Shavlik,(ed.), Proc.
of First Int. Conf. on Intelligent Systems for Molecular Biology, Menlo Park,
CA: AAAI/MIT Press. pp. 47-55.

31. Hughey, R. (1993) Technical Report UCSC-CRL-93-14 University of
California Santa Cruz, CA.

32. Tanaka, H., Ishikawa, M., Asai, K., and Konagaya, A. (1993) In First Int.
Conf. on Intelligent Systems for Molecular Biology, Menlo Park: AAAI
Press. pp. 395-401.

33. States, D. J. and Botstein, D. (1991) Proc. Natl. Acad. Sd. U.S.A. 88,
5518-5522.

34. Koop, B. F., Rowan, L., Chen, W. Q., Deshpande, P., Lee, H., and Hood,
L. (1993) Biotechniques 14, 442-447.

35. Churchill, G. A. and Waterman, M. S. (1992) Genomics 14, 89-98.
36. Gesteland, R. F., Weiss, R. B., and Atkins, J. F. (1992) Science 257,

1640-1641.
37. Farabaugh, P. J. (1993) Cell 74, 591-596.
38. F. C. Neidhardt, J. L. Ingraham, K. Brooks Low, B. Mgsanik, M.

Schaechter, and H. E. Umbarger, (ed.) (1987) Eschericia coli andSmhea
typhimurium. Cellular and molecular biology, volume 1, American Society
for Microbiology, Washington, D.C.

39. Stern, M. J., Ames, G. F., Smith, N. H., Robinson, E. C., and Higgins,
C. F. (1984) Cell 37, 1015-1026.

40. Rudd, K., Miller, W., Werner, C., Ostell, J., Tolstoshev, C., andS ld,
S. (1991) Nucleic Acids Res. 19, 637-647.

41. Rabiner, L. R. (1989) Proc. IEEE 77, 257-286.
42. Altschul, S., Gish, W., Miller, W., Myers, E., and Lipman, D. (1990) J.

Mol. Biol. 215, 403-410.
43. Shine, J. and Delgarno, L. (1974) Proc. Natl. Acad. Sci. U.S.A. 71,

1342-1346.
44. Rudd, K. and Miller, W. (1992) In Jeffrey Miller, (ed.), A Short Course

in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia
coli and Related Bacteria., pp. 2.3-2.43 Cold Spring Harbor Laboratory
Press Cold Spring Harbor, New York.

45. Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977) J. Roy. Statist.
Soc. B 39, 1-38.

46. Shepard, J. C. W. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 1596-1600.
47. Krogh, A., Mian, I. S., and Haussler, D. (1993) Technical Report UCSC-

CRL-93-33 University of California at Sant Cruz Computer and n on
Sciences Dept., Santa Cruz, CA 95064.

48. Fickett, J., Torney, D., and Wolf, D. R. (1992) Genomics 13, 1056-1064.
49. White, J., Stultz, C., and Smith, T. (1994) Math. Biosciences 119, 35-75.


