Supporting Information

Gold-Catalyzed Nitrene Transfer to Activated Alkynes: Formation of $\alpha,\,\beta\text{-}$

Unsaturated Amidines

Chaoqun Li and Liming Zhang

Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, 93106

Content	Page Number
General	2
General procedure : preparation of oxidants	2
General procedure : preparation of alkynes	3
General procedure : Gold-catalyzed synthesis α , β -unsaturated amidines	3
ORTEP drawing of <i>E</i> -14j	21
¹ H and ¹³ C NMR spectra	22

General Ethyl acetate (ACS grade), hexanes (ACS grade), diethyl ether (ACS grade) and anhydrous 1, 2-dichloroethane (HPLC grade) were purchased from Fisher Scientific and used without further purification. Methylene chloride and tetrahydrofuran were purified using MBraun Solvent Purifier. Commercially available reagents were used without further purification. Reactions were monitored by thin layer chromatography (TLC) using Sorbent Technologies' pre-coated silica gel plates. Flash column chromatography was performed over Sorbent Technologies' silica gel (230-400 mesh). ¹H NMR and ¹³C NMR spectra were recorded on a Varian 500 MHz Unity plus spectrometer and a Varian 400 MHz spectrometer using residue solvent peaks as internal standards. Infrared spectra were recorded with a Perkin Elmer FT-IR spectrum 2000 spectrometer and are reported in reciprocal centimeter (cm⁻¹). Mass spectra were recorded with Micromass QTOF2 Quadrupole/Time-of-Flight Tandem mass spectrometer using electron spray ionization.

General procedure A : preparation of oxidants

Compound I were prepared according to the literature procedure.¹ Iminopyridinium ylide II were prepared from I according to the following procedure: to an ice-cold solution of I (2 mmol) and Et_3N (4 mmol) in anhydrous tetrahydrofuran (15 ml) was added 4methylbenzenesulfonyl chloride (3 mmol). The reaction was allowed to reflux for 24 h at 70 °C. After cooling to room temperature, the reaction mixture was concentrated under *vacuum*. The residue was purified via silica gel flash chromatography to afford the desired product.

¹ Yoon, K.; Kode, B.; Bowen, L.; Redda, K. K. J. Heterocyclic Chem. 2001, 38, 69-76.

General procedure B: preparation of alkynes

The *N*-alkynyloxazolidinones were prepared according to the literature procedure² as follows: to a mixture of a 2-oxazolidinone (2.0 equiv), K_3PO_4 (2.0 equiv), $CuSO_4 \cdot 5H_2O$ (0.1 equiv), and 1,10-phenanthroline (0.2 equiv) in a round flask was added a solution of 1-bromoalkyne (1.0 equiv, 1 M) in DMF/toluene (1/10). The reaction mixture was heated to 100 °C for 24 h while being monitored with TLC analysis. Upon completion, the reaction mixture was cooled to room temperature, diluted with EtOAc, and filtered through Celite, and the filtrate was concentrated under *vacuum*. The crude products were purified by silica gel flash column chromatography to afford the desired alkyne products.

General procedure C: Gold-catalyzed synthesis α, β-unsaturated amidines

An oven-dried vial was charged with an alkyne (0.2 mmol) and (3,5dichloropyridinium-1-yl)tosylamide (0.24 mmol, 1.2 equiv). DCE (4 ml) and IPrAuNTf2 (8.6 mg, 5 mol %) were added. The reaction mixture was stirred at the indicated temperature until the substrate was completely consumed. The reaction mixture was concentrated under *vacuum*. The residue was purified via silica gel flash chromatography to give the amidine product.

Dibenzothiophene, 5,5-dihydro-5-[[(4-methylphenyl)sulfonyl]imino]³

² Zhang, X.; Zhang, Y.; Huang, J.; Hsung, R. P.; Kurtz, K. C. M.; Oppenheimer, J.; Petersen, M.; E.; Sagamanova, I. K.; Shen, L.; Tracey, M. R. J. Org. Chem. **2006**, *71*, 4170.

³ Morita, H.; Tatami, A.; Maeda, T.; Kim, B. J.; Kawashima, W.; Yoshimura, T.; Abe, H.; Akasaka, T. J. *Org. Chem.* **2008**, *73*, 7159.

Compound **1** was prepared in 60 % yield according to the following procedure (eluents: ethyl acetate: hexanes = 10: 1): an oven-dried round flask was charged with a toluenesulfonamide (1.0 mmol), diacetoxyiodobenzene (1.3 mmol, 1.3 equiv), dibenzothiophene (1.3 mmol, 1.3 equiv), MgO (4.0 mmol, 4.0 equiv), DCM (10 ml) and Rh₂(OAc)₄ (8.82 mg, 2 mol %) was added. The reaction mixture was stirred at the room temperature while being monitored with TLC analysis. After 20 h, the reaction mixture was concentrated under *vacuum*. The residue was purified via silica gel flash chromatography to give desired the product. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, 2H, *J* = 8.0 Hz), 7.82 (d, 2H, *J* = 8.0 Hz), 7.61 -7.66 (m, 4H), 7.42 -7.47 (m, 2H), 7.25 (d, 2H, *J* = 8.0 Hz), 2.43 (s, 3H),); ¹³C NMR (125 MHz, CDCl₃) δ 142.0, 141.3, 137.4, 137.2, 132.9, 130.0, 129.3, 127.5, 126.6, 122.4, 21.6; IR (neat): 3448, 1446, 1298, 1284, 1085, 939; MS (ES⁺) Calculated for [C₁₉H₁₅NO₂S₂Na]⁺: 376.04; Found: 376.04

Dibenzothiophene, 5,5-dihydro-5-[(methanesulfonyl)imino]⁴

Compound **2** was prepared in 58 % yield according to the same procedure to compound **1**. (eluents: ethyl acetate: hexanes = 1: 1). ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, 2H, *J* =

⁴ Desikan, V.; Liu, Y.; Toscano, J. P.; Jenks, W. S. J. Org. Chem. 2008, 73, 4398.

8.0 Hz), 7.92 (d, 2H, J = 8.0 Hz), 7.70 (td, 2H, J = 7.2, 1.2 Hz), 7.59 (td, 2H, J = 7.6, 1.2 Hz), 3.07 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 138.0, 137.2, 133.1, 130.1, 127.4, 122.6, 43.2; IR (neat): 3733, 3079, 1540, 1282, 1122, 968; MS (ES⁺) Calculated for [C₁₃H₁₁NO₂S₂Na]⁺: 300.01; Found: 300.04

1-Propyl-1 λ^4 -benzo[1,3,2]dithiazole 3,3-dioxide

Compound 3 was prepared in 60 % yield from 2-chloro-benzenesulfonamide according to the following procedure: to a solution of potassium hydroxide (85%, 1.2 g, 20 mmol) and n-propylmercaptan (1.81 ml, 20 mmol) in 10 ml DMF at 90°C was added a solution of 2chlorobenzenesulfonamide (1.91 g, 10 mmol) in 10 ml DMF. The reaction mixture was heated to reflux for 5 h, cooled, and the solvent was removed under *vacuum*. The residue was neutralized to pH = 7.0 by using 2 N hydrochloric acid and extracted with ether. The ether extracts were combined, washed with water and brine, dried with MgSO₄ and concentrated under vacuum. The resulting residue was purified via silica gel flash chromatography (eluents: ethyl acetate: hexane 1: 1) give 2to propylsulfanylbenzenesulfonamide (1.62 g, 70% yield).

To a solution of the above sulfide (2 mmol, 462 mg) in MeOH/H₂O (10 mL/2mL) was add Br₂ (3 mmol, 0.54 mL) and NaOH (4 mmol, 160 mg). The reaction mixture was stirred at room temperature for 30 min, and the solvent was removed under *vacuum*. The ether extracts were washed with water and brine, dried with MgSO₄ and concentrated. The resulting residue was purified via silica gel flash chromatography (eluents: ethyl acetate: hexane = 2: 1) to give the desired cyclic sulfilimine **3** (0.412 g, 90% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, 1H, J = 8.0 Hz), 7.79 (dd, 1H, J = 7.5, 7.5 Hz), 7.73 (dd, 1H, J = 7.0, 7.0 Hz), 7.70 (dd, 1H, J = 7.0, 7.0 Hz), 3.29 (dt, 1H, J = 13.0, 8.0 Hz), 3.00 (dt, 1H, J = 13.0, 8.0 Hz), 1.88 – 1.96 (m, 2H), 1.13 (t, 1H, J = 7.5 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 137.4, 133.6, 133.3, 132.4, 124.3, 123.7, 55.0, 18.0, 12.9; IR (neat): 3459, 1650, 1635, 1444, 1284, 1151,; MS (ES⁺) Calculated for [C₉H₁₁NO₂S₂Na]⁺: 252.01; Found: 252.04

2-(tert-Butylsulfonyl)(p-toluenesulfonyliminoiodo)benzene

Compound 4 was prepared in 80 % yield according to the literature procedure.^{5 1}H NMR (400 MHz, CDCl₃) δ 8.35 (d, 1H, *J* = 8.4 Hz), 7.90 (dd, 1H, *J* = 7.6, 1.6 Hz), 7.86 (dd, 1H, *J* = 8.4, 1.6 Hz), 7.82 (d, 2H, *J* = 7.6 Hz), 7.71 (dd, 1H, *J* = 7.6, 7.6 Hz), 7.22 (d, 2H, *J* = 8.0 Hz), 2.39 (s, 3H), 1.45 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 142.0, 140.5, 136.1, 133.4, 131.9, 130.6, 129.3, 128.5, 126.7, 115.3, 63.5, 23.5, 21.5; IR (neat): 3367, 1648, 1299, 1162, 1137, 1089, 732; MS (ES⁺) Calculated for [C₁₇H₂₀NIO₄S₂Na]⁺: 516.98; Found: 516.02

1-(*p*-toluenesulfonylimino)pyridinium ylide⁶

Compound **5** was prepared in 72 % yield according to the general procedure A (eluents: ethyl acetate: methanol = 20: 1). ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, 2H, *J* = 7.6 Hz),

⁵ Macikenas, D.; Skrzypczak-Jankun, E.; Protasiewicz, J. D. J. Am. Chem. Soc. 1999, 121, 7164.

⁶ Jiang, Y.; Zhou, G. C.; He, G. L.; He, L.; Li, J. L.; Zheng, S. L. Synthesis, 2007, 10, 1459.

7.97 (dd, 1H, J = 7.6, 7.6 Hz), 7.61 (d, 2H, J = 8.4 Hz), 7.57 (d, 2H, J = 7.6 Hz), 7.17 (d, 2H, J = 8.4 Hz), 2.36 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 145.2, 141.6, 138.6, 138.2, 129.2, 127.0, 126.6, 21.4; IR (neat): 3419, 1650, 1635, 1465, 1272, 1133; MS (ES⁺) Calculated for [C₁₂H₁₂N₂O₂SNa]⁺: 271.05; Found: 271.08

1-(p-toluenesulfonylimino)-4-acetylpyridinium ylide

Compound **6** was prepared in 75 % yield according to the general procedure A (eluents: ethyl acetate: methanol = 10: 1). ¹H NMR (400 MHz, CDCl₃) δ 8.66 (d, 2H, *J* = 6.8 Hz), 7.95 (d, 2H, *J* = 6.8 Hz), 7.71 (d, 2H, *J* = 7.6 Hz), 7.21 (d, 2H, *J* = 7.6 Hz), 2.65 (s, 3H), 2.37 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 193.3, 142.6, 140.5, 138.3, 129.7, 127.4, 125.2, 121.7, 26.9, 21.7; IR (neat): 3120, 1697, 1436, 1157, 1128; MS (ES⁺) Calculated for [C₁₄H₁₄N₂O₃SNa]⁺: 313.06; Found: 313.09

1-(*p*-toluenesulfonylimino)-2-methylopyridinium ylide⁶

Compound 7 was prepared in 58 % yield according to the general procedure A (eluents: ethyl acetate: methanol = 10: 1). ¹H NMR (400 MHz, CDCl₃) δ 8.62 (d, 1H, *J* = 6.0 Hz), 7.82 (td, 1H, *J* = 8.0, 1.2 Hz), 7.58 (d, 2H, *J* = 8.0 Hz), 7.48 (d, 1H, *J* = 8.0 Hz), 7.43 (dd, 1H, *J* = 7.6, 7.6 Hz), 7.17 (d, 2H, *J* = 8.0 Hz), 2.46 (s, 3H), 2.37 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.3, 146.6, 141.3, 140.7, 137.8, 129.3, 127.9, 126.5, 123.8, 21.4, 20.1;

IR (neat): 3419, 1492, 1459, 1276, 1137, 1087; MS (ES⁺) Calculated for $[C_{13}H_{14}N_2O_2SNa]^+$: 285.07; Found: 285.06

1-(*p*-toluenesulfonylimino)-3,5-dichloropyridinium ylide

Compound **8** was prepared in 80 % yield according to the general procedure A (eluents: ethyl acetate: methanol = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 8.51 (s, 2H), 7.77 (s, 1H), 7.71 (d, 2H, *J* = 8.5 Hz), 7.24 (d, 2H, *J* = 8.5 Hz), 2.39 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 142.8, 139.6, 137.9, 135.7, 134.5, 129.8, 127.4, 21.8; IR (neat): 3419, 1650, 1635, 1556, 1294, 1132; MS (ES⁺) Calculated for [C₁₂H₁₀N₂O₂Cl₂SNa]⁺: 338.97; Found: 338.98

1-(4-methoxybenzenesulfonylimino)-3,5-dichloropyridinium ylide

Compound was prepared in 75 % yield according to the general procedure A (eluents: ethyl acetate: methanole = 10: 1). ¹H NMR (500 MHz, CDCl₃) δ 8.51 (s, 2H), 7.78 (s, 1H), 7.76 (d, 2H, *J* = 8.0 Hz), 6.92 (d, 2H, *J* = 8.0 Hz), 3.84 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 162.6, 139.2, 135.4, 134.5, 132.5, 129.5, 114.3, 55.8; IR (neat): 3095, 1593, 1495, 1255; MS (ES⁺) Calculated for [C₁₂H₁₀N₂O₃Cl₂SNa]⁺: 354.97; Found: 354.96

1-(4-nitrobenzenesulfonylimino)-3,5-dichloropyridinium ylide

Compound was prepared in 78 % yield according to the general procedure A (eluents: ethyl acetate: methanol = 10: 1). ¹H NMR (500 MHz, CDCl₃) δ 8.49 (s, 2H), 8.29 (d, 2H, J = 9.0 Hz), 7.97 (d, 2H, J = 9.0 Hz), 7.95 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 147.3, 144.2, 140.8, 134.8, 128.1, 128.0, 124.2; 137.6, IR (neat): 3099, 2981, 1920, 1556, 1527, 1348, 1139; (ES^+) MS Calculated for $[C_{11}H_7N_3O_4Cl_2SNa]^+$: 369.94; Found: 369.95

1-(2,4,6-trimethylbenzenesulfonylimino)-3,5-dichloropyridinium ylide

Compound was prepared in 60 % yield according to the general procedure A (eluents: ethyl acetate). ¹H NMR (500 MHz, CDCl₃) δ 8.37 (s, 2H), 7.68 (s, 1H), 6.92 (s, 2H), ^{13}C 2.64 6H), 2.27 (s, 3H); NMR (125)MHz, (s, CDCl₃) δ 144.2, 139.0, 137.8, 134.2, 133.8, 133.7, 131.4, 22.7, 20.6; IR (neat): 2958, 1720, 1560, 1382, 1313, 1148; MS (ES⁺) Calculated for $[C_{14}H_{14}N_2O_2Cl_2SNa]^+$: 367.01; Found: 366.95

1-(p-toluenesulfonylimino)-8-methylquinolinium ylide

Compound **9** was prepared in 20 % yield according to the general procedure A (eluents: ethyl acetate: methanol = 10: 1). ¹H NMR (400 MHz, CDCl₃) δ 8.77 (dd, 1H, *J* = 6.0, 1.6 Hz), 8.41 (dd, 1H, *J* = 8.0, 1.6 Hz), 7.79 – 7.82 (m, 1H), 7.56 – 7.61 (m, 2H), 7.48 (dd, 1H, *J* = 8.4, 6.0 Hz), 7.40 (d, *J* = 8.4 Hz), 7.05 (d, *J* = 8.4 Hz), 3.08 (s, 3H), 2.31 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 148.7, 141.5, 141.0, 140.8, 139.4, 137.9, 133.7, 131.8, 129.0, 128.9, 127.3, 126.6, 119.8, 26.0, 21.4; IR (neat): 3419, 3066, 2933, 2244, 1519, 1276, 1135, 1085, 881; MS (ES⁺) Calculated for [C₁₇H₁₆N₂O₂SNa]⁺: 335.08; Found: 335.11

3-(6-(*tert*-Butyldimethylsilyloxy)hex-1-ynyl)oxazolidin-2-one⁷

Compound **10** was prepared in 70 % yield according to the general procedure B (eluents: ethyl acetate: hexanes = 1: 2). ¹H NMR (500 MHz, CDCl₃) δ 4.41 (t, 2H, *J* = 7.5 Hz), 3.87 (t, 2H, *J* = 7.5 Hz), 3.62 (t, 2H, *J* = 6.0 Hz), 2.32 – 2.35 (m, 2H), 1.55 – 1.62 (m, 4H), 0.89 (s, 9H), 0.05 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.5, 71.0, 70.1, 62.8, 62.6, 47.0, 32.0, 26.0, 25.3, 18.4, -5.2; IR (neat): 2929, 2857, 2271, 1770, 1415, 1112, 836; MS (ES⁺) Calculated for [C₁₅H₂₇NO₃SiNa]⁺: 320.17; Found: 320.18

3-(Hex-1-ynyl)oxazolidin-2-one⁸

Compound **13a** was prepared in 75 % yield according to the general procedure B (eluents: ethyl acetate: hexanes = 1: 2). ¹H NMR (400 MHz, CDCl₃) δ 4.41 (t, 2H, *J* = 8.0 Hz), 3.87 (t, 2H, *J* = 8.0 Hz), 2.30 (t, 2H, *J* = 7.2 Hz), 1.47 – 1.55 (m, 2H), 1.36 – 1.45 (m, 2H), 0.90 (t, 3H, *J* = 7.2 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 156.5, 71.2, 70.0, 62.8, 47.1, 30.9, 22.0, 18.1, 13.6; IR (neat): 2933, 2873, 2273, 1770,

⁷ Lu, B.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 14070-14072.

⁸ Davies, P. W.; Cremonesi, A.; Martin, N. Chem. Commun. 2011, 379.

1415, 1207, 1116, 1033; MS (ES⁺) Calculated for $[C_9H_{13}NO_2Na]^+$: 190.08; Found: 190.10

3-(6-Chlorohex-1-ynyl)oxazolidin-2-one⁸

13b

Compound **13b** was prepared in 50 % yield according to the literature procedure (eluents: ethyl acetate: hexanes = 1: 2). ¹H NMR (500 MHz, CDCl₃) δ 4.38 – 4.42 (m, 2H), 3.84 – 3.88 (m, 2H), 3.54 – 3.57 (m, 2H), 2.33 – 2.36 (m, 2H), 1.84 – 1.89 (m, 2H), 1.65 – 1.69 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 156.5, 70.6, 70.2, 62.8, 46.9, 44.5, 31.5, 25.9, 17.8; IR (neat): 2946, 2267, 1770, 1417, 1207, 1114, 1035; MS (ES⁺) Calculated for [C₉H₁₂NClO₂Na]⁺: 224.05; Found: 224.05

3-(5-Phenylpent-1-ynyl)oxazolidin-2-one

Compound **13c** was prepared in 80 % yield according to the general procedure B (eluents: ethyl acetate: hexanes = 1: 2). ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.31 (m, 2H), 7.17 – 7.21 (m, 3H), 4.42 (t, 2H, *J* = 8.0 Hz), 3.87 (t, 2H, *J* = 8.0 Hz), 2.72 (t, 2H, *J* = 7.6 Hz), 2.33 (t, 2H, *J* = 7.2 Hz), 1.82 – 1.89 (m, 2H),; ¹³C NMR (125 MHz, CDCl₃) δ 156.6, 141.4, 128.4, 128.3, 125.8, 70.7, 70.5, 62.8, 47.0, 34.8, 30.3, 17.9; IR (neat): 2923, 2269, 1770, 1415, 1112, 1207; MS (ES⁺) Calculated for [C₁₄H₁₅NO₂Na]⁺: 252.10; Found: 252.13

6-(2-Oxooxazolidin-3-yl)hex-5-ynyl acetate

13d

Compound **13d** was prepared in 76 % yield according to the general procedure B (eluents: ethyl acetate: hexanes = 1: 2). ¹H NMR (500 MHz, CDCl₃) δ 4.41 (t, 2H, *J* = 8.0 Hz), 4.07 (t, 2H, *J* = 7.0 Hz), 3.87 (t, 2H, *J* = 8.0 Hz), 2.35 (t, 2H, *J* = 7.0 Hz), 2.04 (s, 3H), 1.70 - 1.76 (m, 2H), 1.56 - 1.62 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 171.0, 156.5, 70.5, 63.9, 62.8, 47.0, 27.8, 25.2, 21.0, 18.1; IR (neat): 2954, 2269, 1770, 1729, 1417, 1245, 1035; MS (ES⁺) Calculated for [C₁₁H₁₅NO₄Na]⁺: 248.09; Found: 248.09

6-(2-Oxooxazolidin-3-yl)hex-5-ynyl methanesulfonate

Compound **13e** was prepared in 65 % yield according to the general procedure B (eluents: ethyl acetate: hexanes = 1: 1). ¹H NMR (500 MHz, CDCl₃) δ 4.41 (t, 2H, *J* = 8.0 Hz), 4.26 (t, 2H, *J* = 6.5 Hz), 3.87 (t, 2H, *J* = 8.0 Hz), 3.01(s, 3H), 2.38 (t, 2H, *J* = 7.0 Hz), 1.85 - 1.91 (m, 2H), 1.61 - 1.69 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 156.5, 70.9, 70.0, 69.5, 62.8, 46.9, 37.4, 28.2, 24.6, 17.9 ; IR (neat): 2938, 1768, 1419, 1349, 1170; MS (ES⁺) Calculated for [C₁₀H₁₅NO₅SNa]⁺: 284.06; Found: 284.09

3-(3-(Benzyloxy)prop-1-ynyl)oxazolidin-2-one

13f

Compound **13f** was prepared in 70 % yield according to the general procedure B (eluents: ethyl acetate: hexanes = 1: 1). ¹H NMR (400 MHz, CDCl₃) δ 7.27 – 7.37 (m, 5H), 4.60 (s, 2H), 4.46 (t, 2H, *J* = 8.0 Hz), 4.34 (s, 2H), 3.92 (t, 2H, *J* = 8.0 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 156.0, 137.3, 128.3, 128.0, 127.7, 71.5, 67.8, 64.8, 63.0, 57.5, 46.7; IR (neat): 2861, 2260, 1770, 1419, 1205; MS (ES⁺) Calculated for [C₁₃H₁₃NO₃Na]⁺: 254.08; Found: 254.08

3-(Cyclohexylethynyl)oxazolidin-2-one⁸

Compound **13g** was prepared in 80 % yield according to the general procedure B (eluents: ethyl acetate: hexanes = 1: 2). ¹H NMR (500 MHz, CDCl₃) δ 4.38 (t, 2H, *J* = 8.5 Hz), 3.85 (t, 2H, *J* = 8.5 Hz), 2.44 – 2.48 (m, 1H), 1.75 – 1.83 (m, 2H), 1.63 – 1.71 (m, 2H), 1.46 – 1.52 (m, 1H), 1.36 – 1.46 (m, 2H), 1.22 – 1.32 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.7, 75.2, 70.4, 63.0, 47.4, 33.0, 29.0, 26.0, 25.1; IR (neat): 2929, 2854, 2269, 1770, 1415, 1209; MS (ES⁺) Calculated for [C₁₁H₁₅NO₂Na]⁺: 216.10; Found: 216.10

3-(Cyclopentylethynyl)oxazolidin-2-one

Compound **13h** was prepared in 77 % yield according to the general procedure B (eluents: ethyl acetate: hexanes = 1: 2). ¹H NMR (400 MHz, CDCl₃) δ 4.38 (t, 2H, *J* = 8.0 Hz), 3.84 (t, 2H, *J* = 8.0 Hz), 2.65 – 2.73 (m, 1H), 1.84 – 1.94 (m, 2H), 1.64 – 1.71 (m, 2H), 1.48 – 1.61 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 156.7, 75.2, 70.0, 63.0, 47.3, 34.1, 30.0, 25.1; IR (neat): 2960, 2869, 1770, 1421, 1209, 1114; MS (ES⁺) Calculated for [C₁₀H₁₃NO₂Na]⁺: 202.08; Found: 202.09

N-1-Hexyn-1-yl-4-methyl-N-phenylbenzenesulfonamide⁸

Compound **131** was prepared in 55 % yield according to the general procedure B (eluents: ethyl acetate: hexanes = 1: 2). ¹H NMR (500 MHz, CDCl₃) δ 7.55 (d, 2H, *J* = 8.5 Hz), 7.24 - 7.33 (m, 7H), 2.43 (s, 3H), 2.29 (t, 2H, *J* = 7.0 Hz), 1.40 - 1.52 (m, 2H), 1.35 -

1.39 (m, 2H), 0.90 (t, 3H, J = 7.5 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 144.5, 139.3, 132.9, 129.2, 128.8, 128.2, 127.2, 126.0, 73.8, 70.3, 30.9, 21.9, 21.7, 18.2, 13.6; IR (neat): 2931, 2254, 1594, 1488, 1373, 1176; MS (ES⁺) Calculated for [C₁₉H₂₁NO₂SNa]⁺: 350.11; Found: 350.12

N-(6-(*tert*-Butyldimethylsilyloxy)-1-(2-oxooxazolidin-3-yl)hex-2-enylidene)-4methylbenzenesulfonamide

Compound **11** (E/Z = 4/1) was prepared in 92 % yield according to the general procedure C (eluents: ethyl acetate: hexanes = 1: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.80 (d, 2H, *J* = 8.0 Hz), 7.28 (d, 2H, *J* = 8.0 Hz), 6.86 (dt, 1H, *J* = 16.0, 7.0 Hz), 6.73 (d, 2H, *J* = 16.0 Hz), 6.29 (minor, d, 2H, *J* = 12.5 Hz), 6.86 (minor, dt, 1H, *J* = 12.0, 7.5 Hz), 4.37 (t, 2H, *J* = 8.0 Hz), 3.95 (t, 2H, *J* = 8.0 Hz), 3.68 (t, 2H, *J* = 6.5 Hz), 2.41 (s, 3H), 2.36 – 2.42 (m, 2H), 1.71 – 1.77 (m, 2H), 0.89 (s, 9H), 0.05 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 162.0, 153.0, 150.2, 143.1, 139.4, 129.3, 126.6, 118.8, 62.2, 61.9, 44.6, 30.8, 29.9, 25.9, 21.5, 18.3, -5.4; IR (neat): 3419, 2952, 2929, 1650, 1573, 1394, 1089; MS (ES⁺) Calculated for [C₂₂H₃₄N₂O₅SSiNa]⁺: 489.19; Found: 489.19

4-Methyl-N-(1-(2-oxooxazolidin-3-yl)hex-2-enylidene)benzenesulfonamide

Compound **14a** (E/Z = 4/1) was prepared in 93 % yield according to the general procedure C (eluents: ethyl acetate: hexanes = 1: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.75 (d, 2H, *J* = 8.0 Hz), 7.23 (d, 2H, *J* = 8.0 Hz), 6.82 (dt, 1H, *J* = 16.0, 7.0 Hz), 6.68 (d, 2H, *J* = 16.0 Hz), 4.32 (t, 2H, *J* = 8.0 Hz), 3.88 (t, 2H, *J* = 8.0 Hz), 2.37 (s, 3H), 2.24 – 2.29 (m, 2H), 1.48 – 1.56 (m, 2H), 0.93 (t, 3H, *J* = 8.0 Hz); ¹³C NMR (125 MHz, CDCl₃)

δ 162.0, 152.9, 150.4, 143.0, 139.3, 129.2, 126.5, 118.7, 61.9, 44.7, 35.4, 21.5, 21.0, 13.7; IR (neat): 3419, 1783, 1648, 1540, 1394, 1349, 1153, 1089 ; MS (ES⁺) Calculated for $[C_{16}H_{20}N_2O_4SNa]^+$: 359.10; Found: 359.10

N-(6-Chloro-1-(2-oxooxazolidin-3-yl)hex-2-enylidene)-4-methylbenzenesulfonamide

Compound **14b** (E/Z = 2/1) was prepared in 81 % yield according to the general procedure C (eluents: ethyl acetate: hexanes = 1: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, 2H, *J* = 8.0 Hz), 7.28 (d, 2H, *J* = 8.0 Hz), 6.72 – 6.81 (m, 2H), 6.37 (minor, d, 1H, *J* = 12.0 Hz), 5.91 (minor, dt, 1H, *J* = 12.0, 8.0 Hz), 4.38 – 4.42 (minor, m, 2H), 4.35 – 4.40 (m, 2H), 4.00 (minor, t, 2H, *J* = 8.0 Hz), 3.94 (t, 2H, *J* = 8.0 Hz), 3.64 (t, 2H, *J* = 7.0 Hz), 3.54 (minor, t, 2H, *J* = 6.0 Hz), 2.46 – 2.52 (m, 2H), 2.37 (s, 3H), 2.22 – 2.28 (minor, m, 2H), 1.97 – 2.04 (m, 2H), 1.84 – 1.90 (minor, m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 162.4, 161.9, 153.3, 152.7, 147.8, 147.7, 143.7, 143.5, 139.5, 138.9, 137.4, 129.6, 127.3, 126.9, 121.0, 120.4, 64.5, 62.4, 62.2, 44.9, 44.8, 44.3, 44.2, 30.9, 30.7, 30.5, 27.5, 21.8; IR (neat): 3312, 2936, 2763, 2739, 2119, 1443, 1352; MS (ES⁺) Calculated for [C₁₆H₁₉CIN₂O₄SNa]⁺: 393.07; Found: 393.07

4-Methyl-N-(1-(2-oxooxazolidin-3-yl)-5-phenylpent-2-enylidene)benzenesulfonamide

Compound 14c (E/Z = 3/1) was prepared in 88 % yield according to the general procedure C (eluents: ethyl acetate: hexanes = 1: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, 2H, *J* = 8.5 Hz), 7.16 – 7.32 (m, 7H), 6.88 (dt, *J* = 16.0, 6.0 Hz, 1H), 6.79 (d, 1H, *J* = 16.0 Hz), 6.30 (minor, d, 1H, *J* = 12.0 Hz), 6.02 (minor, dt, 1H, *J* = 12.0, 7.5 Hz), 4.37 (t,

1H, J = 8.0 Hz), 3.95 (t, 1H, J = 8.0 Hz), 2.86 (t, 1H, J = 8.0 Hz), 2.63 – 2.67 (m, 2H), 2.43 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 161.8, 152.9, 148.8, 143.0, 140.8, 139.3, 129.3, 128.4, 128.3, 127.0, 126.3, 119.0, 62.0, 44.6, 35.1, 33.9, 21.6; IR (neat): 2923, 2854, 1781, 1648, 1552, 1382, 1313, 1149, 1091; MS (ES⁺) Calculated for $[C_{21}H_{22}N_2O_4SNa]^+$: 421.12; Found: 421.16

(6E)-6-(2-Oxooxazolidin-3-yl)-6-(tosylimino)hex-4-enyl acetate

Compound **14d** (E/Z = 2/1) was prepared in 79 % yield according to the general procedure C (eluents: ethyl acetate: hexanes = 1: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, 2H, *J* = 8.0 Hz), 7.27 (d, 2H, *J* = 8.0 Hz), 6.84 (dt, 1H, *J* = 16.0, 6.5 Hz), 6.74 (d, 1H, *J* = 16.0 Hz), 6.31 (minor, d, 1H, *J* = 12.5 Hz), 5.99 (dt, 1H, *J* = 12.5, 7.5 Hz), 4.41 (minor, t, 2H, *J* = 8.0 Hz), 4.36 (t, 2H, *J* = 8.0 Hz), 4.14 (t, 2H, *J* = 8.0 Hz), 3.97 – 4.06 (m, 2H), 3.93 (t, 2H, *J* = 8.0 Hz), 2.41 (s, 3H), 2.28 – 2.42 (m, 2H), 2.09 – 2.13 (minor, m, 2H), 2.07 (s, 3H), 2.02 (minor, s, 3H), 1.84 – 1.90 (m, 2H), 1.70 – 1.74 (minor, m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 171.3, 171.2, 162.4, 162.0, 153.3, 152.6, 148.5, 143.7, 143.4, 139.6, 138.9, 138.6, 129.6, 127.3, 126.8, 119.8, 119.6, 101.9, 63.9, 63.7, 62.2, 44.8, 44.3, 30.0, 29.8, 27.6, 27.2, 27.0, 21.8, 21.7, 21.2, 19.3; IR (neat): 3747, 3733, 2954, 1783, 1731, 1558, 1540, 1394, 1243, 1153, 1089; MS (ES⁺) Calculated for [C₁₈H₂₂N₂O₆SNa]⁺: 417.11; Found: 417.10

(6Z)-6-(2-Oxooxazolidin-3-yl)-6-(tosylimino)hex-4-enyl methanesulfonate

Compound 14e (E/Z = 3/2) was prepared in 72 % yield according to the general procedure C (eluents: ethyl acetate: hexanes = 1: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.77

(d, 2H, J = 8.0 Hz), 7.28 (d, 2H, J = 8.0 Hz), 6.71 – 6.78 (m, 2H), 6.39 (minor, d, 1H, J = 12.5 Hz), 5.94 (minor, dt, 1H, J = 12.5, 7.5 Hz), 4.43 (minor, t, 2H, J = 8.0 Hz), 4.38 (t, 2H, J = 8.0 Hz), 4.33 (t, 2H, J = 6.0 Hz), 4.20 (minor, t, 2H, J = 6.0 Hz), 4.00 (minor, t, 2H, J = 8.0 Hz), 3.93 (t, 2H, J = 8.0 Hz), 3.03 (s, 3H), 2.99 (minor, s, 3H), 2.43 – 2.49 (m, 2H), 2.42 (s, 3H), 2.22 – 2.27 (minor, m, 2H), 1.99 – 2.03 (m, 2H), 1.86 – 1.90 (minor, m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 162.2, 161.8, 153.3, 152.9, 146.8, 143.7, 143.5, 139.5, 138.9, 137.2, 129.6, 129.1, 127.2, 126.8, 121.2, 120.8, 69.9, 69.3, 62.4, 62.3, 44.7, 44.2, 37.6, 37.3, 29.1, 28.1, 27.5, 26.5, 21.8, 21.7; IR (neat): 2925, 1781, 1648, 1552, 1402, 1351, 1172, 1153; MS (ES⁺) Calculated for [C₁₇H₂₂N₂O₇S₂Na]⁺: 453.08; Found: 453.07

N-(3-(Benzyloxy)-1-(2-oxooxazolidin-3-yl)allylidene)-4-methylbenzenesulfonamide

Compound **14f** (E/Z = 5/1) was prepared in 75 % yield according to the general procedure C (eluents: ethyl acetate: hexanes = 1: 1). ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, 2H, *J* = 12.0 Hz), 7.80 (d, 2H, *J* = 8.0 Hz), 7.35 – 7.41 (m, 5H), 7.27 (d, 2H, *J* = 8.0 Hz), 6.61 (d, 2H, *J* = 12.0 Hz), 5.09 (s, 2H), 4.33 (t, 2H, *J* = 8.0 Hz), 3.95 (t, 2H, *J* = 8.0 Hz), 2.42 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.4, 160.5, 153.6, 142.9, 139.6, 134.6, 129.3, 128.7, 128.6, 127.9, 126.4, 96.2, 73.8, 61.7, 45.2, 21.6; IR (neat): 3747, 3733, 3033, 2321, 1772, 1633, 1540, 1384, 1145, 1089; MS (ES⁺) Calculated for [C₂₀H₂₀N₂O₅SNa]⁺: 423.09; Found: 423.14

(*E*)-*N*-(2-Cyclohexylidene-1-(2-oxooxazolidin-3-yl)ethylidene)-4methylbenzenesulfonamide

Compound **14g** was prepared in 90 % yield according to the general procedure C (eluents: ethyl acetate: hexanes = 1: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, 2H, *J* = 8.0 Hz), 7.35 (d, 2H, *J* = 8.0 Hz), 5.98 (s, 1H), 4.46 (t, 2H, *J* = 8.0 Hz), 4.12 (t, 2H, *J* = 8.0 Hz), 2.50 (s, 3H), 2.29 – 2.32 (m, 2H), 2.02 – 2.07 (m, 2H), 1.69 – 1.73 (m, 2H), 1.52 – 1.60 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 163.4, 152.3, 152.0, 143.1, 138.7, 129.1, 127.1, 110.9, 61.7, 44.3, 36.3, 31.6, 27.1, 26.6, 25.8, 21.5; IR (neat): 3419, 2933, 2857, 1791, 1650, 1540, 1384, 1375, 1155, 1089; MS (ES⁺) Calculated for [C₁₈H₂₂N₂O₄SNa]⁺: 385.12; Found: 385.12

N-(2-Cyclopentylidene-1-(2-oxooxazolidin-3-yl)ethylidene)-4methylbenzenesulfonamide (14h)

Compound **14h** was prepared in 76% yield along with the cyclohexene side product in 15% yield according to the general procedure C (eluents: ethyl acetate: hexanes = 1: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, 2H, *J* = 8.0 Hz), 7.36 (d, 2H, *J* = 8.0 Hz), 6.34 (brs, 1H), 5.98 (minor, brs, 1H), 4.47 (t, 2H, *J* = 8.0 Hz), 4.12 (t, 2H, *J* = 8.0 Hz), 2.50 – 2.53 (m, 2H), 2.50 (s, 3H), 2.13 – 2.19 (m, 2H), 1.73 – 1.76 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 163.6, 159.4, 152.4, 143.4, 138.9, 129.4, 127.2, 110.5, 62.2, 44.8, 34.8, 31.6, 26.4, 25.6, 21.8; IR (neat): 3448, 2956, 2356, 1791, 1540, 1384, 1155, 1087; MS (ES⁺) Calculated for [C₁₇H₂₀N₂O₄SNa]⁺: 371.10; Found: 371.11

4-Methoxy-N-(1-(2-oxooxazolidin-3-yl)hex-2-enylidene)benzenesulfonamide

Compound **14i** (E/Z = 5/1) was prepared in 85 % yield according to the general procedure C (eluents: ethyl acetate: hexanes = 1: 1). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, 2H, *J* = 8.8 Hz), 6.94 (d, 2H, *J* = 8.8 Hz), 6.78 – 6.86 (m, 1H), 6.70 (d, 1H, *J* = 16.0 Hz), 4.36 (t, 2H, *J* = 8.0 Hz), 3.96 (t, 2H, *J* = 8.0 Hz), 3.85 (s, 3H), 2.27 – 2.32 (m, 2H), 1.50 – 1.60 (m, 2H), 0.97 (t, 3H, *J* = 7.2 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 162.9, 162.1, 153.3, 150.6, 134.4, 129.0, 119.0, 114.1, 62.2, 55.8, 44.9, 35.7, 21.3, 13.9; IR (neat): 3312, 2936, 2763, 2739, 2119, 1443, 1352; MS (ES⁺) Calculated for [C₁₆H₂₀N₂O₅SNa]⁺: 375.10; Found: 375.10

4-Nitro-N-(1-(2-oxooxazolidin-3-yl)hex-2-enylidene)benzenesulfonamide

Compound **14j** (E/Z = 4/1) was prepared in 88 % yield according to the general procedure C (eluents: ethyl acetate: hexanes = 1: 1). ¹H NMR (500 MHz, CDCl₃) δ 8.34 (d, 2H, *J* = 8.5 Hz), 8.12 (d, 2H, *J* = 8.5 Hz), 7.02 (td, 1H, *J* = 16.0, 7.0 Hz), 6.82 (d, 1H, *J* = 16.0 Hz), 4.40 (t, 2H, *J* = 8.0 Hz), 3.93 (t, 2H, *J* = 8.0 Hz), 2.33 – 2.38 (m, 2H), 1.56 – 1.64 (m, 2H), 1.01 (t, 3H, *J* = 7.5 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 163.3, 152.8, 152.3, 150.0, 148.2, 128.1, 124.3, 119.3, 62.2, 44.8, 35.9, 21.4, 13.9; IR (neat): 3733, 2960, 1783, 1648, 1558, 1384, 1313, 1153, 1089; MS (ES⁺) Calculated for [C₁₅H₁₇N₃O₆SNa]⁺: 390.07; Found: 390.10

2,4,6-Trimethyl-N-(1-(2-oxooxazolidin-3-yl)hex-2-enylidene)benzenesulfonamide

Compound 14k (E/Z = 5/1) was prepared in 80 % yield according to the general procedure C (eluents: ethyl acetate: hexanes = 1: 2). ¹H NMR (400 MHz, CDCl₃) δ 6.92 (s, 2H), 6.69 (dt, 1H, *J* = 16.8, 6.8 Hz), 6.60 (d, 1H, *J* = 16.8 Hz), 4.37 (t, 2H, *J* = 8.0 Hz),

3.96 (t, 2H, J = 8.0 Hz), 2.61 (s, 6H), 2.19 (s, 3H), 2.19 - 2.25 (m, 2H), 1.47 - 1.53 (m, 2H), 0.94 (t, 3H, J = 7.2 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 161.9, 153.2, 149.4, 141.9, 139.4, 138.7, 131.5, 118.6, 61.9, 44.8, 35.3, 22.8, 21.0, 20.8, 13.6; IR (neat): 3744, 3032, 1558, 1440, 1297, 1139; MS (ES⁺) Calculated for [C₁₈H₂₄N₂O₄SNa]⁺: 387.14; Found: 387.08

(1E)-N-Phenyl-N,N'-ditosylhex-2-enimidamide

Compound **14I** (E/Z = 3/2) was prepared in 62 % yield according to the general procedure C (eluents: ethyl acetate: hexanes = 1: 1). ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, 2H, *J* = 8.4 Hz), 7.35 – 7.40 (m, 5H), 7.16 – 7.25 (m, 4H), 6.98 (d, 2H, *J* = 8.4 Hz), 6.55 (dt, 1H, *J* = 16.0, 7.2 Hz), 6.11 (d, 1H, *J* = 16.0 Hz), 2.50 (s, 3H), 2.37 (s, 3H), 1.94 - 1.99 (m, 2H), 1.12 – 1.21 (m, 2H), 0.63 (t, 3H, *J* = 7.2 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 163.0, 151.7, 144.7, 143.5, 138.8, 138.3, 135.1, 130.3, 129.6, 129.5, 129.4, 129.0, 127.4, 121.8, 101.8, 35.2, 21.9, 21.3, 13.6; IR (neat): 3735, 2960, 1648, 1596, 1560, 1540, 1371, 1155, 1087; MS (ES⁺) Calculated for [C₂₆H₂₈N₂O₄S₂Na]⁺: 519.14; Found: 519.13

ph	al		
3.000	Ins	nn	ns
	t i	Ŷ	ap
2903.6	rfp	n	'n
4501.8	rfi	n	=
261.78	is	FLAGS	;
14.16	hzmm	nnot used	gal
250	WC	ck n	alo
0	SC	10	ct
28	SA	10	nt
3539.3	wp	-6.9	tof
-185.7	ds	3.000	d1
DISPLAY		г 57	tpw
	wnt	8.0	bM
	wbs	8.0	pw
	wexp	22	sq
	WELL	not used	fb
		7196.8	MS
+	math	36008	qu
65536	fn	2.502	at
0.10	lb	H1	tn
PROCESSING		q 399.951	sfr
200	dmf	ACQUISITION	6
0	dmm	i/lcq2-36-3.fid	þ
nnn	dm	e /home/Zhang/c~	fil
-1425.0	dof	vent cdc13	sol
H1	dn	e Aug 19 2010	dat
DEC. & VT		SAMPLE	
		25 s2pu1	exp
		2-36	lcq

19.4

1 n = 5 1 = 5 4 4 0 = 2 × 139 x = 120 x = 5 120 x = 5 100 x 4 4 90 = 0.139 80 = 2 2 870 = 12 9 60 = 2 0 4 50 80 = 40 36 80 30 2 9 7 0 20 19 50 10 0 3 50 4 0 3 80 30 2 9 10 0 20 19 50 10 0 3 50 4 0 3 80 30 2 9 10 0 20 19 50 10 0 3 50 4 0 3 80 30 2 9 10 10 10 10 10 50 4 0 3 80 30 2 9 10 2 9 date Jan 16 2011 solvent cdc13 file exp sfrq 100.577 tn C13 at 0.701 np 23972.0 fb not used sfrq ath sw fb fb bs ss ss tpwr tpwr tof tof ttof alock gain sp wp sc sc sc wc wc hzmm is rf] rf] rf] th th th th th hs exp25 std13c lcq3-169-13C DISPLAY FLAGS ph 61.04 500.00 11705.9 7743.7 -465.8 15259.6 6974 100.000 7.0 1.300 525.7 100000 1596 a garaactisti pysti 1950. лулл 44 $\begin{array}{c} \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{$ dfrq 399.95 dn H dpwr 4 dof nr dmm 670 dmf 670 dreg 90. homo PROCESSING werr wexp wbs wnt wtfile proc fn math ٦b DEC. & ¥ VT 399.951 40 0 nny 6700 65536 f 1.00 90.0 ft ちかったいとうちょう 35 are and the 0
$$\label{eq:alpha} \begin{split} & = \frac{1}{2} k^{\frac{1}{2}} D_{-} \int \frac{1}{k} \frac$$
ဂ Me ermerille 70.6 m And the second allenna - ar 1 ann -1. 1.01. 12.1 The second secon $q \hat{\mathbf{k}} = \mathbb{C} \left[\hat{\mathcal{L}}_{1}^{T} \hat{\mathbf{v}}_{1}^{T} \hat{\mathbf{v}}_{2} + \hat{\mathcal{L}}_{2}^{T} \hat{\mathbf{v}}_{2}^{T} \hat{\mathbf{v}}_{2} + \hat{\mathcal{L}}_{2}^{T} \hat{\mathbf{$

ţ

ph	ai cdc		
20	+5		
_	SC	32258	dmf
250	wc	47	dpwr
INT		- dn	
-4.6	lp	W40 5mm3Gi~	decwave
57.2	гр	nnn	dm
3629.0	rfp	0	dof
4632.4	rf1	C13	dn
3909.5	wp	UPLER	DECO
-84.3	sp	4.550	pw
PLAY	DIS	53	tpwr
not used	fn	499.9	tof
ESSING	PROC	499.859	sfrq
PI	hs	H1	tn
4	dp	MITTER	TRANS
-	in	12	ct
-	11	12	nt
AGS	FL	1.000	d1
6.600	alfa	2	sq
9.100	06md	4000	fb
0.008	hst	32768	du
not used	spin	2.049	at
not used	gain	7997.6	SW
not used	temp	SITION	ACQUI
CIAL	SPE	exp	1116
-	wet	CDC13	solvent
-	satmode	ec 14 2010	date D
URATION	PRESAT	MPLE	SA
		ROTON	exp25 P
		Ŧ	ICd3-INP

1.1	E 24	
21		
	water of the state of the state of the	
- 57	kan na stran Gilan	
. (M. 4		
16		
- 18 - I	_	
12 -		ph DIS FL DIS
4		AG SI
5		
10/43+ -		00 C C C C C C C C C C C C C C C C C C
5. Z	en en des de la companya de la comp	0 33. · · 2 52.9 3 500 0 · · 2 55 1 · · · · · · · · · · · · · · · · ·
12 T		400 704004040070014 [[76 8470040700
61		YARE BULL PARATA
40		
- 10 T		1 e DEC
1		Ê. · ·
1		S I I I I I I I I I I I I I I I I I I I
3-	ana ana ang ang ang ang ang ang ang ang	6 NG 99
0		555 1.0 555
14		12100 XX00 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10	en para constructiva e constructiva e constructiva e constructiva e constructiva e constructiva e constructiva	
4		
20		
		. N:
11		(#) (#)
0		
× -		
14 - I	an an an an an an Argan	
00		
61		, >0
至二		z
- R.J		
ö		<u>.</u>
0		
÷.		
- C2		Q
	Lane	B n
80		
		×
- K -		
:7		9
0		
Side _		
60 -	E CARLES AND	
21 -		
6:0		
3.4		
6.7		
1		
сл –		
0		
and		
a _		
1.1		
40	and the second	
1		
09		
t i		
ω.	n an	
0		
in.	ten a certa-tent an	
2.0		
0.01		
-B-		
pr	- Market in the second second second	
5		
(FR)		
4.10	Ŕ	
8.71 - j	24 C C C C C C C C C C C C C C C C C C C	

1

	ph	al		
2.000		Ins	nn	hs
ŝ		th	Y	db
2903.6		rfp		In
4502.0		rfl	п	11
770.72		st	FLAGS	
13.15	2	hzmn	not used	gain
250		WC	n	alock
		SC	10	ct
57		SA	10	nt
3287.2		wp	-6.9	tof
-128.8		ds	4.800	d1
LAY	DISP		57	tpwr
		wnt	6.7	pw
		wbs	6.7	pw
	0	wext	12	sq
		Weri	not used	fb
			7196.8	WS
+	2	math	35984	qu
65536		fn	2.500	at
0.10		Ъ	H1	tn
SSING	PROCE		399.951	sfrq
200		dmf	UISITION	ACO
•		dmm	/lcq2-253.fid	(11b
nnr		dm	/home/Zhang/c~	file,
-1425.0		dof	it cdc13	solver
TH		dn	Oct 28 2010	date
3 VT	DEC.		SAMPLE	
			s2pu1	exp25
			253	lcq2-2

13h

1cq2-266-2-H exp25 PROTON

