Supplementary information

A C₃ Symmetric Nitrate Complex with a Thiophene-Based Tripodal Receptor

Muhammet Işıklan, ¹ Musabbir A. Saeed, ¹ Avijit Pramanik, ¹ Bryan M. Wong, ² Frank R. Fronczek, ³ and Md. Alamgir Hossain*¹

¹Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217

²Materials Chemistry Department, Sandia National Laboratories, Livermore, California 94551

³Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803

Synthesis

L: To a solution of 2-thiophene aldehyde (4.60 g, 41 mmol) in diethylether (50 mL) was added tris(2-aminoethyl)-amine (2.00 g, 13.7 mmol) in ethanol (50 mL). The mixture was stirred overnight at room temperature, and the solvent was evaporated. After diluting with methanol (100 mL), NaBH₄ (2.00 g) was added. The reaction mixture was stirred for another 24 hr. After evaporating the solvent, the residue was partitioned in water/CH₂Cl₂ (50/50 mL). The organic layers were collected and dried with MgSO₄ to give an oily product. Yield = 4.38 g (74%). ¹H NMR (500 MHz, CD₃Cl, TMS): δ 7.106 (m, 3H, Ar), 6.856 (m, 3H, Ar), 6.815 (m, 3H, Ar), 3.873 (s, 6H, ArCH₂), 2.613 (t, J = 5.8 Hz, 6H, NCH₂CH₂), 2.497 (t, J = 5.8 Hz, 6H, NCH₂CH₂), ¹³C NMR (125 MHz, CD₃Cl, TMS): δ 144.1 (Ar), 126.7 (Ar), 125.0 (Ar), 124.4 (Ar), 54.3 (Ar-CH₂), 48.4 (NCH₂CH₂), 46.9 (NCH₂CH₂), MS (ESI) (m/z): [M+1]⁺ calcd for C₂₁H₃₁N₄S₃⁺, 435.2; found 435.2.

[H₃L(NO₃)](NO₃)₂: The nitrate salt was prepared from the reaction of the free amine (0.20 g, 0.47 mmol) with HNO₃ in ethanol. The white precipitate was obtained after evaporation of the solvent. Crystals suitable for X-ray analysis were grown from slow evaporation of the aqueous solution of the salt. ¹H NMR (500 MHz, CD₃Cl, TMS): δ 7.590 (m, 3H, Ar), 7.289 (m, 3H, Ar), 7.152 (m, 3H, Ar), 4.482 (s, 6H, Ar-C H_2), 3.143 (t, J = 6.5 Hz, 6H, NCH₂C H_2), 2.849 (t, J = 6.5 Hz, 6H, NCH₂CH₂), ¹³C NMR (125 MHz, CD₃Cl, TMS): δ 134.12 (Ar), 134.09 (Ar), 131.80 (Ar), 130.82 (Ar), 51.70 (Ar-CH₂), 47.87 (NCH₂CH₂), 46.04 (NCH₂CH₂).

[H₃**L**](TsO)₃: The tosyl salt was prepared from the reaction of the free amine (0.20 g, 0.47 mmol) with p-Toluenesulfonic acid (0.27 g, 1.41 mmol) in methanol. The white precipitate was obtained after evaporation of the solvent. ¹H NMR (500 MHz, CD₃Cl, TMS): δ 8.782 (bs, 6H, NH₂), 7.689 (d, J = 8 Hz, 6H, TsAr), 7.133 (d, J = 5.0 Hz, 3H, Ar), 7.089 (d, J = 8 Hz, 6H, TsAr), 6.949 (bs, 3H, Ar), 6.715 (m, 3H, Ar), 4.334 (s, 6H, Ar-CH₂), 3.493 (s, 6H, NCH₂CH₂), 3.190 (s, 6H, NCH₂CH₂), 3.303 (s, 9H, TsCH₃).

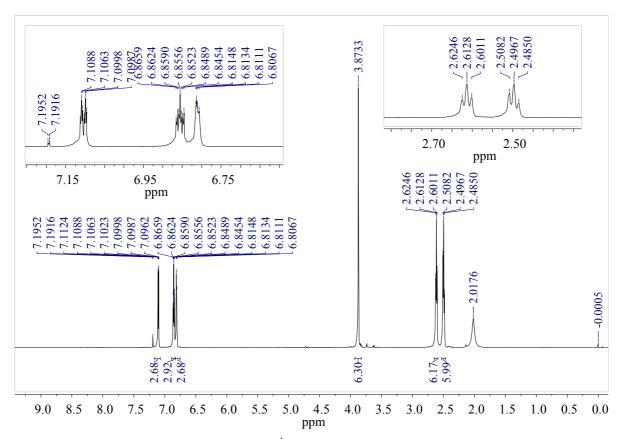


Figure S1. ¹H NMR spectra of L

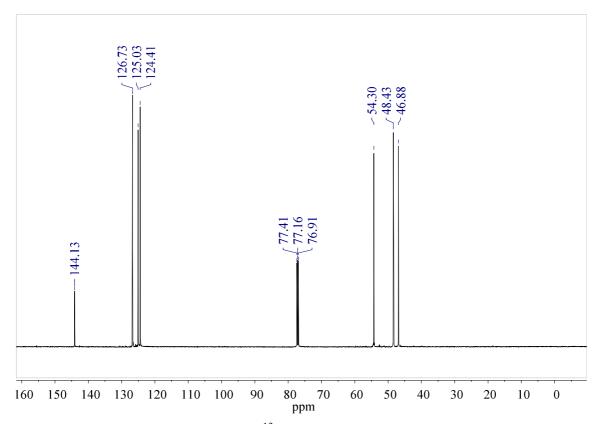


Figure S2. ¹³C NMR spectra of L.

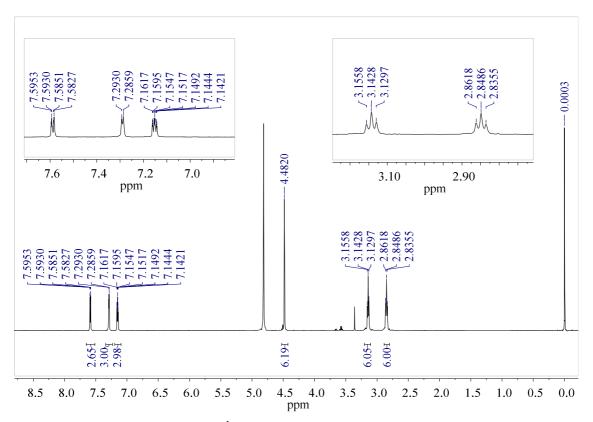


Figure S3. ¹H NMR spectra of [H₃L(NO₃)](NO₃)₂.

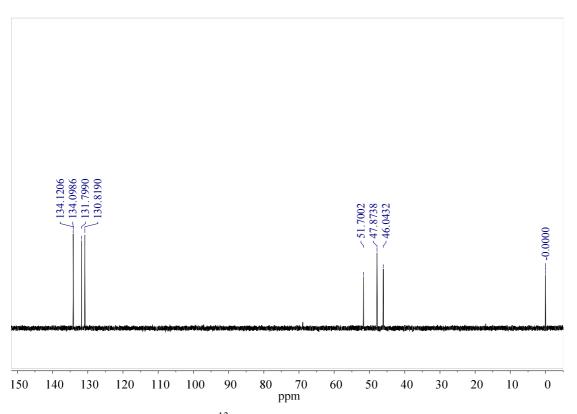


Figure S4. 13 C NMR spectra of $[H_3L(NO_3)](NO_3)_2$.

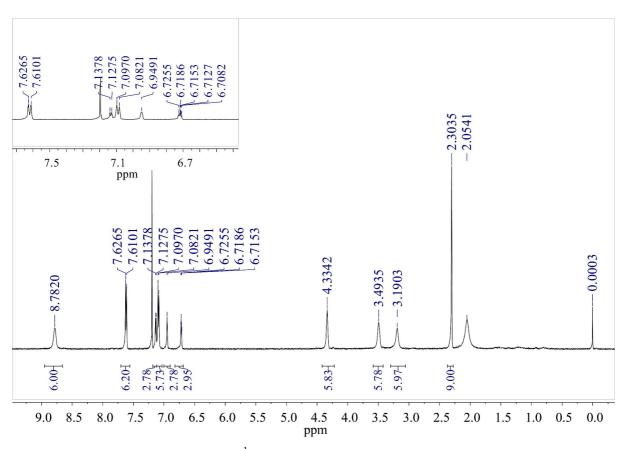
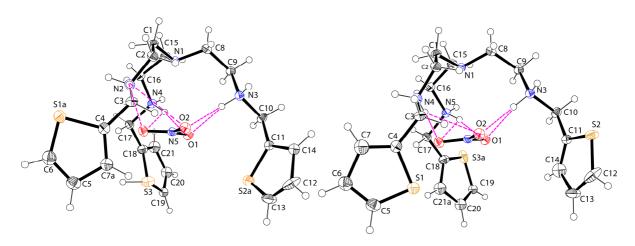
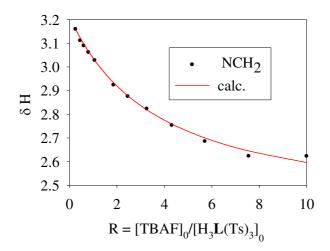




Figure S5. ¹H NMR spectra of [H₃L(TsO)₃].

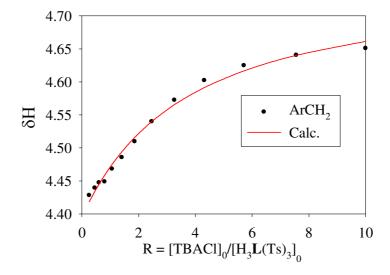
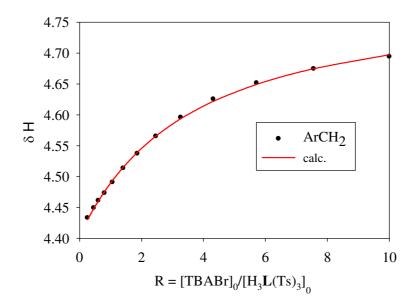


Figure S6. Ortep views of $[H_3L(NO_3)]^{2+}$ motif showing two positions of thiophene units. In the two positions, all three thiophene units exhibit disorder over two positions related by approximate twofold rotations about C-C bonds linking them to aliphatic groups. The major component (shown left) has populations in the range 0.515(4) - 0.587(5).


Binding Constant (K): Binding constants were obtained by ¹H NMR titrations of ligand L with tetrabutylammonium salts in CDCl₃. All the NMR measurements were carried out using the Varian 500 MHz at room temperature. Initial concentrations were $[\mathbf{L}]_0 = 2$ mM, and $[\text{anion}]_0 = 20$ mM. Each titration was performed by 14-16 measurements at room temperature. The association constant K was calculated using Sigma Plot software, from the equations: $\Delta\delta = ([A]_0 + [L]_0 + 1/K - \{([A]_0 + [L]_0 + 1/K)^2 - 4[L]_0[A]_0\}^{1/2}) \Delta\delta_{\text{max}}/2[L]_0$ (A = anion). The error limit in K was less than 10%.

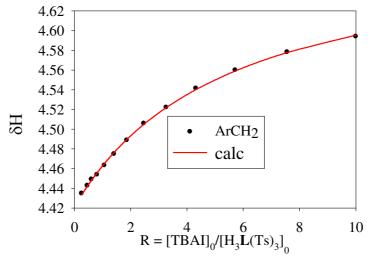

Figure S7. 1 H NMR titration curves of $[H_{3}L](TsO)_{3}$ (2mM) with TBAF (20mM) in CDCl₃ at 298 K.

Figure S8. ¹H NMR titration curves of [H₃L](TsO)₃ (2mM) with TBACl (20mM) in CDCl₃ at 298 K.

Figure S9. 1 H NMR titration curves of $[H_{3}L](TsO)_{3}$ (2mM) with TBABr (20mM) in CDCl₃ at 298 K.

Figure S10. 1 H NMR titration curves of $[H_{3}L](TsO)_{3}$ (2mM) with TBAI (20mM) in CDCl₃ at 298 K.

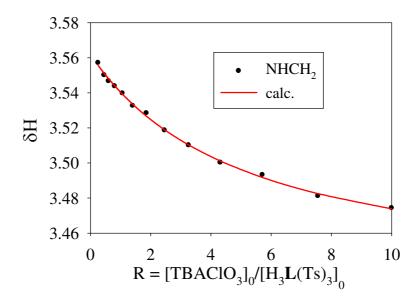


Figure S11. 1H NMR titration curves of $[H_3L](TsO)_3$ (2mM) with TBAClO₄ (20mM) in CDCl₃ at 298 K.