Supplemental Data

Separate results for the anteroventral striatum and the ventral putamen:

Raclopride binding ratios:

Anteroventral striatum (AVS): In the entire sample no effect was significant in the AVS: main effect of condition ($F_{1,23} = 0.96$, p < 0.33), main effect of lateralization ($F_{1,23} = 0.42$, p< 0.52), interaction between condition and lateralization ($F_{1,23} = 2.76$, p < 0.11). Adding gender as a between-subject factor did not yield any significant results.

Ventral putamen: The main effect of condition ($F_{1,23} = 4.11$, p< 0.05) and the lateralization factor ($F_{1,23} = 64.8$, p < 0.001) were significant, but not the interaction between condition and lateralization ($F_{1,23} = 2.58$, p = 0.12). Subsequent tests showed a significant decrease in [11 C]raclopride BP_{ND} during the reward task versus the sensorimotor task conditions on the right side (p< 0.05), but not the left side (p= 0.24), as well as significantly lower mean [11 C]raclopride BP_{ND} values on the right side versus the left during the sensorimotor (p< 0.001) and the reward (p< 0.001) conditions.

Using gender as a between-subjects factor in the ANOVA's yielded significant results in the ventral putamen for the condition x gender x laterality interaction ($F_{1,21}$ = 21, p<0.01). The ΔBP during the reward condition relative to the control condition was greater in women than in men in *left* ventral putamen (mean ΔBP = -4.3 + 5.4 % and 0.60 + 5.7%, respectively; unpaired t = 2.18; p< 0.04) but did not differ between men and women in the *right* ventral putamen (mean ΔBP women= -5 + 10.9 % and -3.3 \pm 7.3 for men; unpaired t= 0.42, p< 0.67). These ΔBP values between conditions were significant only in the left ventral putamen and only in women (p<0.02). The difference in mean ΔBP values between the right and left ventral putamen was significant in men (p<0.001) but not in women (p<0.76).