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APPENDIX 1: PARTIALLY BOUND LINEAR POLYMER 
 
 Assume a polymer of length L=l0NT where l0 is the length of the fundamental unit 
(monomer) of the polymer and NT is the number of fundamental units in the polymer. 
Further assume that there is a binding site at one end of each monomer that can attach 
within (or between) different molecules. Finally, assume a) that p is the probability that 
any particular binding site is not attached at any time and b) that the states of the binding 
sites are not correlated.  Our interest is to determine the number Nm of segments of length 
Lm=l0m that are not attached to other molecules for a polymer with NT>>1.   
 
 This problem is a specific case of studying runs in a Bernoulli process. The 
general theory of runs is quite complicated and is still in development [35]. In order to 
facilitate our work, we will derive the necessary relationship and then test it against 
numerically generated data. With the assumption that the binding of different sites is not 
correlated, an immediate observation is that the probability of k consecutive sites being 
unbound is pk. Defining N1 as the number of free segments of length l0 with the subscript 
1 representing free segments, we immediately define: Nm =N1p

m-1, so that the number of 
segments of each length appears in the same relative proportion as the probability of their 
occurrence. To determine N1 we use the observation that there are two transitions (01) 
and (10) that define the ends of each segment.  There are pNT sites unbound and (1-p)NT 
sites bound.  If we know that site m is bound, the probability that the next site (m+1) is 
unbound is p.  Similarly, if m is unbound, the probability that the previous site is bound is 
(1-p).  Hence, the total number of transitions is (1-p)NTp + pNT(1-p)=2p(1-p)NT.  To 
complete the derivation, we note that the total number of unbound segments N is the sum 
of the Nm as: 
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  Equation A1 

where the summation is resolved as a geometric series. Since the total number of 
transitions is twice the number of segments, it is immediate that N1=NTp(1-p)2/(1-p TN ) 
and, finally: 
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  Equation A2 

 We tested this prediction of the number of unbound segments of length Lm=ml0 
by comparison to Bernoulli runs data generated using the function gsl_ran_bernoulli 
from the GNU Scientific Library (Free Software Foundation, Inc., 51 Franklin Street, 
Fifth Floor, Boston, MA 02110-1301). As examples for TN =500000000, 1) for p=0.999, 
regression between the numerically simulated and the predicted numbers of unbound 
segments gave NmPREDICTED=0.9825*NmCALCULATED; r2=0.9943 2) for p=0.9 the prediction 
was NmPREDICTED=0.9998*NmCALCULATED; r2=1.  These are typical results where p is close 
to 1. Small values of TN  resulted in scatter of the numerical simulation away from the 
predicted values. 
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APPENDIX 2: STRETCHED EXPONENTIAL APPROXIMATION FOR 
RELAXATION OF PARTIALLY BOUND LINEAR POLYMER 
 
Given a length distribution (Lm=ml0, Nm=N1p

m-1), 0<p<1.  m=1,2,…,NT and a relaxation 
function ),( mLt  associated with each length Lm, an approximation for the relaxation 

function )t( of the system with this distribution of lengths is: 
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With the assumption that )/exp(),( mm LatLt   the relaxation function for the mixture 
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(Microsoft Corp, Redmond, WA) program to generate numerical data for a=1, l0=1 and 
p=(0.999,0.99,0.9,0.7,0.5,0.3) using the first 44 terms of the summation.  (Note that 
truncating the sum of the exact relaxation function to the terms less than 44 results in 
p44exp(-t/44) =(0.94, 0.63, 0.01, 1.5e-7, 5.6e-14, 9.6e-24) and =(1.3e-10 ,9e-11 , 1.3e-11 , 2e-17, 
7.6e-24, 1.3e-33) for the six levels examined at t=1 and t=1000, respectively. Forty four 
terms were sufficient to the current study.) 
 
 These data were fit using a stretched exponential function exp(-((t/KWW)by 
transforming the ordinate as ln(t) and the abscissa as ))(ln(ln( t . The transformed data 
were fit using linear regression in EXCEL and the linear regression coefficients were 
back-transformed into the original t  space (Table A1). The first 44 terms of the 
relaxation function )(t  were very well approximated (transform-space r2 of 0.998 and 
0.992 for p of 0.999 and 0.3, respectively) by the stretched exponential for 0<t<1000. 
Note that the model contains a wider distribution of unbound lengths as the unbound 
probability, p, increases toward unity and that, the effect the length distribution is 
primarily reflected in the values of KWW  (Table 2.1). The exponent  remains relatively 
stable (coefficient of variation less than 0.1) for the range of parameters examined, 
suggesting that it represents a factor other than polydispersity in the constrained motion 
model. 
 
 The results for the numerical simulation of polymer binding (Table A1) make it 
possible to consider the theoretical number of free versus bound sites in cartilage. First, 
comparing the curve fit results to the simulations in Table 1 and assuming that all 
relaxation originates from constrained motion, KWW of 7.6 ± 1.0 seconds suggests that 
there is about an 80%-90% probability of binding or 10-20% of the potential bonds are 
unconstrained. The second observation regarding Table 2 is that  is not strongly 
dependent upon the probability of a segment being unbound, p. The observed decrease in 
KWW with increasing p suggests that increasing the probability of each segment being 
bound results in a faster relaxation: because the molecules cannot move as far, relaxation 
proceeds more quickly.  The relaxation time, KWW, is shorter when bonds are more 
permanent, so the relaxation tends toward that of an elastic solid. The observation that 
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changes in p strongly affect KWW  suggests that a structural feature relating to molecular 
length dominates relaxation time. This is consistent with the results of polymer dynamics 
which relate stress relaxation to the autocorrelation of polymer bond vectors [14]. 
 
 We further examined Equation A3 where it was assumed that (t,Lm) was the 
reptation relaxation function (Equation 1).  With this assumption, the stretched 
exponential function again fit the resulting relaxation function very well for a broad range 
of parameters (data not shown) demonstrating that the assumption that the segments relax 
stress following an exponential (Debye) function was not necessary for the stretched 
exponential to fit the data accurately. 
 

p r2 KWW 
0.999 0.998 707.865 0.685 
0.990 0.998 69.418 0.612 
0.900 0.997 6.222 0.585 
0.700 0.996 2.078 0.600 
0.500 0.994 1.260 0.621 
0.300 0.992 0.927 0.655 

 
Table A1. The sticky relaxation model is well-fit by the KWW model.  Fit of stretched 
exponential (exp(-((t/KWW)))) to numerically generated data from Equation 5 with a=1, 
Lm=m.  These data in conjunction with the observation that short-term (~0.1-100 s) 
cartilage stress-relaxation is described by the stretched exponential model (Table 1, 
Figure 5) motivated us to test the sticky model on experimental data (Figure 6). 


