8. Web Supplement

A function h(-) with domain [0,1]? is said to belong to a Holder ball
H(B,C), with Holder exponent 5 > 0 and radius C' > 0, if and only if A (+)
is uniformly bounded by C, all partial derivatives of h(-) up to order ||
exist and are bounded, and all partial derivatives V%! of order | 3] satisfy

sup
z,z+6x€]0,1]¢

VU h(z + 6z) — ijh(:c)‘ < C|6]|?~18!.

We note that the uniform L,,2 < p < co and L, rates of convergence for

estimation of a marginal density or conditional expectation h (-) € H(S3,C)

5
__B -
are O <n 2ﬂ+d> and O <<107g‘n) 2ﬁ+d> respectively. We refer to an estima-

tor attaining these rates as rate optimal. Throughout the paper, we derive
the properties of our estimators conditional on the data in the training sam-
ple.

We define the following assumptions which have been used throughout
the paper.
(A.1): Each h € {b,p, f} belongs to a Holder class of smooth functions
H(0h, Cp) with known Holder exponent [, and radius Cj,.
A2.1): |b(X)] < e, p(X) < g wp 1 for some constants 0 < ¢1, ca < 00,

A.2.2): var(Y|X) = 03 (X) < ¢3 wp 1 for some constant 0 < c3 < oo.

(
(4.2.2):
(A.2.3): there exist df,c4 > 0 such that 67 < f(X) <cg4 wp 1.
(4.3.1);

A.3.1): As can be easily achieved with standard nonparametric estimators,

we suppose p(-) and 3() are rate optimal nonparametric estimates of p(-)
Bp

and b(-) with Ly convergence rate of respective order (N — n) 2+ and
— b
(N —n) 2P%*d in probability.

~

(A.3.2): f(-) converge to f(-) wrt the L, and Lo norm at the optimal rates

21



Bs By

(N —n) 2 (g 05y) 27 in probability.

o~

(A.3.3): (b(-),p(-)) are uniformly bounded in sup norm. Further, f(-) and

1/ f(-) are bounded in sup norm.

Definition 9. C), is a honest (i.e. conservative, uniform) asymptotic (1—a)

confidence set for ¥(0) if

liminfirelf {Per [ (0) € Cp] — (1 — a)} >0
Proof of Theorem 1. Recall that

1

12;2,/% =11 (§> YO Zafo,k (Xi, Xj) 3j'

Then ”
BI (&M, 9)
=Ep [{/;24 - (0)

= BI (q/;l (@\) ,0) —Ey n(nl—l)ZaKfX’k (X4, X5) ﬁj
i#]




The first term is non-zero because of the truncated at k approximation
Ky 1 (X5, Xj) to Kfy oo (X5, Xj) . The second term is non-zero because we
estimated Ky, 1 (X, X;) by Ks 4 (X4, Xj). We use T'By, (f) and EB5 () to

indicate these two terms respectively. By the definition of Ky ;. (X;, X;),

Ey [(60X0) = B(X0) K (X3, X,) (0 (X5) = B(X,))]

= By [ (b(x0) = b(X) Ty [ (b(X) = B(X) ) 16, (%)
= Ep {11y | (6(X) =5.()) & (0] 1o | (6(X) =5()) 8 (0] }

where Iy [h (X) [¢, (X)] and Ty [k (X) ¢y (X)] are, respectively, the Ly (Fx)
projection of k (X) on the k dimensional linear subspace lin { ¢, (X)} spanned
by the components of the vector ¢, (X) and the projection on the ortho-
complement of this subspace.

The proof of eq. (6) is straightforward and is omitted. O

Proof of Theorem 2. We first prove eq. (7). Under our assumptions, the
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following holds uniformly for 6 € ©.

[TBy (0))?

= {5 (1 [0 00) ~ PO 160 (0] 14 [ (600 = 50)) 16 ()] )}

< Ey [(Hé [(p (X) = 5(20)) |é <X>])2] Ey [(Hé (60 =B(X)) |6 <X>D1

)

D)

by Cauchy Shwartz. Further, for any h € {b,p}, as a result of the optimal

approximation property of {z; (X),l=1,2,...},

B {1 (100 - 00) e 0] )]
= {1} [(1 00T 00) 1 0]

2
~inf, [ (h (X)=h(X) =gz <X>) f(X)dx
2
< Ollinf, [ (h () R (%) =Y <X>) ax
= 0y (K721},

In summary, T By = supT By () = O, (k= (PoHh)/d)
0cO
Next, we prove eq. (8). Actually to simplify the proof we only prove eq.
(8) up to a log term. A true proof would repeatedly use Holder’s inequality

to allow us to replace the L, norm below by a L, norm with p finite.
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EB; (6)

Ey | (2(X) ~B(X)) 1 (X)"] x

_ [ { (50060 007]) " \

xEy [6r (X) (p(X) — P (X))]

Ey [(b (X —E(X)) Dk (X)T] (Ee [¢k (X) o (X)TD_l
U m s )
xEg [or (X) (p(X) — P (X))]

(X) =B (X)) o (X)]

(00 -500) 16 ()]} } |

where Il [|¢x (X)] and II; [-|¢% (X)] denote the projection under F (O;6)
and F (O; 5) respectively onto the subspace lin {¢y (X)} = lin{z (X)}.

By Cauchy Shwartz and projection operators having operator norm equal

25



to 1, we obtain the following.

|EBy|?

m [(b00) -0 1] | ]
< |11y [H52 (0 (x) = (X)) ] |

_ 2E§[(H9[(5(X)_B(X)> |‘5’f]>2}

o0

Further,

and




In summary;,

|EBs|?

f- f
Foll
By [(0(X) - 5(X))?] By [(b (X) —F(X)ﬂ

2Bf
d+23 (2B 28p
o, (<logn> o (d+26b+d+2ﬁp))
n

by condition (A.3). O

X

I
/

L
7

o0

o0

Proof of Theorem 3. To examine the variance of vy ), we re-write g} as

below. Note that 3() ,p(+), and f() are regarded as known functions:

1;2,]6 = ¢1 (é\) - 7’L(’I’L1—1) Zafo,k (Xla X]) zJ
i#]

:lzn: el —Gon (X )Ee[qgk( )A}
n=\ _g, {g(;gk ] ik (X;) + Ey [egbk( ) }Ee [Qbk( )ﬁ}
)T A

Gon (X)) o (X)) Aj — @i (X)) Ey |:¢k
n_lZ —Ee[6¢k( )}(ﬁk( X)) A,
. +Ey [?ng (X )T} Ep [&k (X) A]
n Z wz ' 1) o Uggfl,iz

where

s _ ) =@ ()" By [0 () A] - By [e0n (07 Bide (X)
v +Ep [em x)" Ee[ X)A}
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and

@on (X0)T 0r (X5) Ay — @ (X)T By [ () A] -

92
Ey [algk (X)T} o (X;) Aj + Ey [€¢k (X)T} Ey [ng (X) 3]

2,2/1,i2

It can be shown that Uﬁ »* and U. Y2k are uncorrelated wrt F (+;0). Thus,

2727i17i2
3 3 ?
2,k 2,k
{U2,27z’1,¢2 + U2,2,i2,z'1}

Next, we prove the two equations below hold. Then Theorem 3 holds as a

~ 1 " 1
varg |:w27k:| = ﬁvarg [Uﬂ“} + 71)E9

2n (n —

direct consequence.

varg [Ulfk] <1wpl (16)
and
varg {Ug);zw} =k wpl (17)

Eq. (16) is obvious as

- F(X)

- X) — -
- {Ha (b (X) — P(X)) j;E X; % <X>] }
=0, (IP = P|[) =0, (1),

and similarly,

Ey [, (X)T] B [A6, (X)] < By [, (X)T] [A; ()] =0, (1).



To prove eq. (17), we first show that, conditional on 6

Ey [([3% (X)TL (% (X)E]])T =k

Specifically, by conditions (A.1) — (A.3),

= Eo [0 (X)) 6, (X)) & (X)) 6 (X))
= By |61 (X0)" 8, (X3) 81 (X,)" 0 (X)) =k wp 1
Further,
o | (80 [0 007] 30 00) ﬁ}j)z
— Ey ([Eg (500 =(2)) 3, ()] 6 () ALﬂ
=0, (Ib()=B()[1?) = 0 (1)
Similarly,
o | (B0 [32. 07) 5 00)7])']
=0y (Ip () =B () ?) = 0p (1)
and
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Therefore,
vary [Ug];f]] =F

=5 | ([33 07], 8. 0)7])’]

=kwpl

Proof of Theorem 6. By definition, the conditional bias BI (@mk, 0) of @mk
equals T' By (0) + EB,, () with T' By, (0) given in Theorem 1 and

m
EB,, (0) = EBy (0) — Y _E[H
7j=3

Next, we prove eq. (13) by induction. The validity of eq. (13) at m = 2
has been proved in Theorem 1. Suppose it holds for any k < m — 1, we will

prove it also holds at k = m.

Recall
E{Hfﬁfm}

Ea ) TH (0 606" = 1))
=(=1)"Eq r=3



Then by definition and assumption,

EB,, (0)

Note that

(Ee [(ng (X) ox (X)TD_1 — Ipxr + Ep [(Z;k (X) ¢ (X)T} — Tk
=— (Ea [ﬁgk (X) éx (X)Tbi1 [Ee [ng (X) ox (X)T} - Ikxk}
X) ¢ (X)T} — Ipxk

B ([ k[(Ee (60 (X) <X>T}2‘1 —zm} )

X (Ee [ng (X) ér (X) } - Ikxk;)
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Thus,

EB,, (0)

B [(b(X)~5(X)) i (x)7] x|

The order of EB,, (f) can be derived similarly as in Theorem 2, and is
omitted here but can be found in Robins et al. (2008). The proof of eq. 15
can be found in Robins et al. (2007). O

Theorem 10. Define

.

~1
_(n (s) 2
Wik = (]) v [(Hjj,k (041,01, 01,)) }

where H'® (Oiy, Oiyy ...y O;,)) is the symmetric kernel of the mth-order U-

ik
statistic Hﬁn,m defined in eq. (12). For instance,

(s) (0:,0;) = € Oy, (Xil)Tak (X, )A +A i O (X )Tak (X.,) e,

22,k 2 )

s0 Hé;?k (0;,05) = Q(S)k (04,0;). For j > 2, define
m k= W2 Z WJJ k-
i) Conditional on the training sample, we have

£3 ] = ers ]
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it) Conditional on the training sample, if k =k (n) >> n,

(G e o)

converges uniformly for 0 € © to a normal distribution with finite variance

as n — 00. The asymptotic variance is uniformly consistently estimated by

{max{l, <> }} W2
n n ’

{Jmk -F [%Zm,k@] } S W i

Thus

converges in distribution to a standard normal distribution. iii) Define the
interval Cpy ko = @m,k + za/gwm’k. Let %(m) >> k. (m) which is defined
in Section 4.1.2. Then

SUupgeo o [{Z)\m’%(m)} = 0p (1)

\/Varg {Jm,’é(m)}

and {wm,E(m) — 1 (0)} /Wm@(m) converges uniformly in 6 € © to a N (0,1).

Moreowver, Cm,%(m),a is a conservative uniform asymptotic (1 — «) confidence

interval for 1 ().

Proof of Theorem 10. Part i) of the theorem is an easy calculation. Asymp-
totic normality in Part ii) is a corollary of Theorem 1.1 in Bhattacharya and
Ghosh (1992) on the asymptotic distribution of degenerate U-statistics with

kernels varying in n. Part iii) is immediate. O
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