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Central Shaft Elasticity: Analysis of Statistical Error. To assess the statistical significance of the agreement between our molecular
dynamics (MD)-derived and the measured values of torsional moduli, we employed a Brownian dynamics (BD)-based procedure.
First, based on MD data (Fig. 2A), we calculated time autocorrelation functions for the angle of rotation of the considered γ-segment
around the global axis for the CL1 and CL2 mutants (Fig. S2). By fitting the double exponential model to the obtained curves we
identified two contributions to the overall decay, a fast component, with the relaxation time τ of 200� 20 ps, attributed to fast struc-
tural rearrangements within the considered segment, and a slow component, with relaxation time of 6.8� 1.9 and 2.3� 0.22 × 103 ps
for the CL1 and CL2 mutants, respectively, corresponding to the rotary motion around the global axis. Accordingly, in addition to the
convergence of the torsional moduli obtained for the original MD data, Fig. 2B shows the curves with the fast component of the angular
fluctuations filtered out (in red).

From the relaxation times, we estimated the diffusion constants for the rotary motion of the γ-segment to be 4.0� 1.0 and 2� 0.3 ×
10−3 deg2 ∕ps for CL1 and CL2, respectively. These values were subsequently used to perform, for each protein, 20,000 separate
100-ns-long Brownian dynamics (Langevin dynamics in the overdamped limit) simulations of diffusive motion in a one-dimensional
harmonic potential, using experimental values of the torsional modulus as the curvature. The initial angular positions for these
simulations were randomly chosen from the corresponding equilibrium distribution. Afterwards, for each four independent 100-ns
BD simulations, the same averaging scheme for calculating the torsional moduli was employed as before for the MD data. The
distributions of the BD-derived torsional moduli are shown in orange in Fig. 2C, together with 10 exemplary curves showing the
convergence of the torsional modulus value with increasing length of the trajectory taken for analysis. As can be seen, for both
the CL1 and CL2 mutants, the MD-derived values of the torsional modulus lie within these distributions which give the statistical
uncertainties of the κ estimation from four independent 100-ns trajectories. Because both BD-derived distributions of κ are relatively
narrow and centered on the equilibrium values, we concluded that our MD reliably captures the elastic properties of F1 at the
atomistic level.

Minimal Model of the F1 Elasticity.This model (Fig. 5) serves to describe, in a quantitative manner, the spatial heterogeneity of the elastic
properties of the F1-ATPase using the minimal number of rotary degrees of freedom. In our treatment, the F1 motor is represented as a
set ofN harmonically coupled concentric segments, oriented perpendicularly to the threefold pseudosymmetry axis of the α3β3-subunit.
The harmonic coupling constants fκijg, where i and j denote the respective segments, quantify the strength of torsional interactions
between the segments and, thereby, reflect the rotational correlations between them. The partition into segments and the coupling
constant values were optimized, in a systematic approach, to best reproduce the distribution of angular fluctuations observed from the
atomistic MD simulations. Additionally, a local description was assumed in which only the segments that are in close contact to each
other in the F1 structure are directly coupled to each other via a coupling constant κij; all other coupling constants are set to zero. In
particular, each segment of the α3β3-penetrating portion of γ is coupled to a single opposite segment of the stator.

Angular deviation of the ith segment with respect to the equilibrium (average) position is denoted as θi. The elastic energy stored in
the protein structure due to the set of torsional deformations θ ¼ fθ1;…;θNg is V ¼ 1

2
θTKθ, whereK is a quasiharmonic Hessian whose

entries depend on the “network” of couplings between the segments. In this quasiharmonic approximation, the equilibrium probability
distribution of θ is thus given by a multivariate normal distribution (1), pðθÞ ∝ expð− 1

2
θTKθ∕kBTÞ ∝ expð− 1

2
θTC−1θÞ, where C is a

covariance matrix of angular fluctuations hθθTi, with kBTC−1 ¼ K.
To determine the model parameters, the C was first computed as the average over our MD trajectories for different possible

partitions of F1 into segments. To obtain these partitions in a systematic way, the rotor and stator were initially dissected into
approximately 0.5-nm segments oriented perpendicularly to the α3β3-symmetry axis. Only the innermost layer of the α3β3 located
within 0.7 nm of the γ-subunit and thus interacting directly with the rotor was divided into separate segments, paralleling the rotor
division to satisfy the locality assumption. The rest of the stator was modeled as two segments: one, labeled 8 in Fig. 5,
encompassing the torsionally stiff central domains of the α- and β-chains, and the other, labeled 9, representing the immobile
β-barrels, with respect to which the angular fluctuations were calculated. The highly flexible and weakly interacting single-helix
tip of γ for which it was difficult to obtained well-defined angular fluctuations was not included in the analysis. By systematically
joining together the increasing number of adjacent 0.5-nm segments, a set of different partitions was obtained. The α3β3-penetrating
and the protruding portions of the rotor, as the two dynamically independent entities (see Central Shaft Elasticity: Heterogeneity of
Torsional Modulus in the main text), were treated separately when joining the 0.5-nm building blocks.

By equating the respective entries of the computed kBTC−1 with nonzero entries of the assumed form of the corresponding K, a set
of overdetermined systems of linear equations was obtained. These systems were then solved for the individual quasiharmonic coupling
constants fκijg, using the standard least squares method. The model with the smallest value of the average over the estimated standard
errors of the solution fκijg was selected as the optimal one and is presented schematically in Fig. 5. The optimized coupling constants
fκijg for this model and the corresponding estimated standard errors from the least square solution are shown in Table S2.

The resulting harmonic model contains two 2.0-nm-thick segments, labeled 4 and 5 in Fig. 5, in the α3β3-penetrating part of the rotor
and three segments, the 1.5-nm-thick segments 2 and 3, and the 1.0-nm-thick segment 1, in the protruding part of the rotor. To com-
pare, however, the strength of the coupling to the individual stator subunits in the strongly interacting helix–turn–helix (HTH) region,
we additionally constructed a model in which segment 4 was coupled to six separate subsegments of segment 6, representing HTH
motifs of all six stator subunits. For this partition, we obtained the constants of 320� 181, 240� 107, 200� 129, and 100� 82 pNnm
describing the coupling of segment 4 with subunits βDP, βTP, αE, and βE, respectively. Virtually no coupling to the γ-subunit was found
for the αDP and αTP subunits. The obtained coupling strengths are consistent with the results of the rotor-stator interaction analysis
presented in Structural Determinants of the Coupling Between Rotor and Stator in the main text. These coupling values should, however,
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be treated with caution because the obtained uncertainties are large and the overall coupling strength between segment 4 and segment
6 in this model is almost two times larger than κ46 in the optimal model, suggesting a breakdown of the local harmonic approximation.

For the optimal model, derived as described (Fig. 5), the equilibrium probability distribution of angular fluctuations is given by

pðθÞ ¼ 1

ð2πkBTÞ4 detðK−1Þ expð−θ
TKθ∕2kBTÞ;

where the Hessian matrix K is as follows:

κ12 −κ12 0 0 0 0 0 0

−κ12 κ12 þ κ23 −κ23 0 0 0 0 0

0 −κ23 −κ34 0 0 0 0 0

0 0 −κ34 κ34 þ κ45 þ κ46 −κ45 −κ46 0 0

0 0 0 −κ45 κ45 þ κ57 0 −κ57 0

0 0 0 −κ46 0 κ46 þ κ67 þ κ68 −κ67 −κ68
0 0 0 0 −κ57 −κ67 κ57 þ κ67 þ κ78 −κ78
0 0 0 0 0 −κ68 −κ78 κ68 þ κ78 þ κ89

0
BBBBBBBBBB@

1
CCCCCCCCCCA

:

The obtained set of harmonically coupled segments approximates the shape of the free energy surface GðθÞ ¼ −kBT ln pðθÞ
along the rotary degrees of freedom in the vicinity of the rotor resting position observed in the vast majority of the crystal structures.
By integrating the joint probability distribution pðθÞ ∝ expð−GðθÞ∕kBTÞ over all angles except θi, one obtains the Gaussian marginal
probability distribution pðθiÞ and the corresponding one-dimensional free energy curve GðθiÞ ¼ −kBT ln pðθiÞ governing the overall
angular fluctuation of the ith segment. Taking the second derivative of GðθiÞ with respect to θi, we obtain the relation between the
curvature of this function, i.e., the overall torsional modulus κi, and the individual coupling constants fκijg quantifying the torsional
interactions between the segments. For example, if κ89 → ∞ is assumed, for segment 4 we obtain

κ4 ¼
κ46κ57½κ68κ78 þ κ67ðκ68 þ κ78Þ� þ κ45fκ57½κ67κ68 þ ðκ67 þ κ68Þκ78� þ κ46½ðκ57 þ κ67Þκ68 þ ðκ57 þ κ67 þ κ68Þκ78�g
κ57½κ67ðκ46 þ κ68Þ þ ðκ46 þ κ67 þ κ68Þκ78� þ κ45½κ67ðκ57 þ κ78Þ þ κ46ðκ57 þ κ67 þ κ78Þ þ κ68ðκ57 þ κ67 þ κ78Þ�

:

Such relations were used to decompose the overall torsional moduli, as measured in experiment or observed in the simulation, into
contributions arising from relevant structural elements and intermolecular couplings.
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Fig. S1. Interaction energies between the rotor and the stator of the F1 motor as a function of the position along the global axis. The position wasmeasured as
the distance of the segment center of mass from the average position of the β-DELSEED motifs with the positive sign toward the top of the structure and with
the negative sign in the opposite direction. (Top) Contributions to the total interaction energy from individual stator chains. (Middle) Total interaction energy
of the rotor with the stator (black) andwith thewater solution (blue). (Bottom) Total interaction energy of the rotor with the stator (black) andwith the solvent
(blue), normalized by the number of rotor residues that are exposed to the environment. The highlighted areas 4 and 5 show the position of the respective
rotor segments in the minimal harmonic model of F1 torsional elasticity presented in Fig. 5. The error bars represent the standard errors determined using a
block averaging technique.
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Fig. S2. Autocorrelation functions for the angle of rotation of the segment around the global axis calculated for the CL1- (A) and CL2-cross-linked (B) F1 motor.
hit0 denotes averaging over initial times t0; note that average hθit0 ¼ 0.

Movie S1. Angular fluctuations of the F1-ATPase central shaft, as viewed from the membrane.

Movie S1 (MPG)
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Table S1. Frequency of hydrogen bonds formation between different residues of the rotor and
stator*

Rotor (γ) res. Stator chain Stator res. Frequency†

Upper bearing
Glu-261 βDP Val-279 (bb) 0.61
Arg-252 αTP Asp-333 0.59
Leu-272 αDP Arg-286 0.37
Thr-259 βE Val-279 (bb) 0.31
Ala-1 (bb) αDP Asp-333 0.22
Lys-260 αDP Glu-292 0.21

Lower bearing
Arg-254 βE Asp-319 0.63
Gln-255 βE Thr-318 0.58
Arg-254 βE Asp-316 0.30
Lys-4 βDP Asp-316 0.30
Asn-251 βE Asp-316 0.29

C-terminal stator domains
Leu-77 (bb) βTP Glu-395 0.97
Arg-133 βDP Asp-394 0.96
Arg-75 βDP Glu-395 0.96
Arg-75 βDP Asp-394 0.87
Gly-79 (bb) βTP Glu-395 0.85
Arg-8 βDP Asp-386 0.84
Cys-78 (bb) βTP Glu-395 0.69
Arg-33 αE Asp-411 0.45
Arg-9 βTP Asp-386 0.42
Arg-118 βTP Glu-399 0.42
Lys-30 αE Asp-409 0.39
Arg-36 βE Glu-395 0.37
Tyr-31 βE Glu-395 0.33
Lys-24 βE Asp-386 0.30
Ser-114 βTP Glu-398 0.27
Asn-15 αE Ala-402 (bb) 0.24
Lys-111 βTP Glu-395 0.23
Lys-18 αE Glu-399 0.20

*Only residue pairs with frequency of hydrogen bond above 0.2 are shown. All bonds are formed via side-chain
groups unless explicitly marked with (bb), in which case the backbone peptide group participates in bond
formation. As geometrical criterion for the presence of a hydrogen bond we used D—A distance < 0.35 nm
and D–A–H angle <30°, where D, A, and H are donor, acceptor, and hydrogen, respectively.

†Calculated as the fraction of MD frames for which the bond was present.

Table S2. Summary of the F1 torsional elasticity model

Twist angle* (°) Stored energy† (kcal∕mol)

Elastic constant Value (pNnm) Error Rigid Flexible rigid flexible

κ12 950 ± 24 8.87 2.15 3.26 (29.5%) 0.190 (7.1%)
κ23 2,760 ± 26 3.05 0.74 1.12 (10.2%) 0.066 (2.5%)
κ34 2,040 ± 31 4.13 1.00 1.52 (13.7%) 0.090 (3.4%)
κ45 1,000 ± 51 4.30 1.04 0.81 (7.3%) 0.048 (1.8%)
κ46 550 ± 56 7.49 1.82 1.35 (12.2%) 0.079 (2.9%)
κ57 350 ± 72 8.94 2.17 1.22 (11.1%) 0.072 (2.7%)
κ68 820 ± 116 6.45 1.57 1.49 (13.5%) 0.088 (3.3%)
κ67 370 ± 56 3.18 1.40 0.16 (1.5%) 0.032 (1.2%)
κ78 4,450 ± 116 0.70 0.17 0.1 (0.9%) 0.005 (0.2%)
κ89 >10;000 ∼ ∼ ∼ ∼
κint 90 — 22.6 — 2.01 (75.0%)

*Caused by 30° rotation corresponding to the rotation of the 12-subunits c ring by a single-proton step. Two
values are presented depending on whether the interface with Fo is torsionally “flexible” with the
torsional stiffness κint ¼ 90 pNnm (see text) or completely “rigid” with κint ¼ ∞

†Corresponding to Twist angle. In the brackets the percentage of the total elastic energy stored in the structure
is shown.
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