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SI Text S1: Model Specification and Parameterization
Ecological Model. Consider a closed lake ecosystem and denote
crayfish and bass biomass at time τ as X and Y, respectively.
Following Drury and Lodge (1), the IGP model is specified as

dX
dτ

¼ rxX
�
1−

X
Kx

−
α yxY
Kx

�
−

δyxYX2

k2 þ X2 þ ex gXY − hX ; [S1]

dY
dτ

¼ ryY
�
1−

α xyX
Ky

−
Y
Ky

�
þ eyδ yxYX2

k2 þ X2 − gXY − hY : [S2]

In Eqs. S1 and S2, rx and ry are, respectively, crayfish and bass
intrinsic rates of increase, αij is the interspecific competitive ef-
fect of species i on species j’s population growth (i, j = x, y; i ≠ j),
Kx and Ky are, respectively, crayfish and bass carrying capacities,
δyx is the maximum bass attack rate on crayfish, and k is the
crayfish density at which bass attack rates are half-maximal. The
second term in Eqs. S1 and S2 is a type III functional response,
arising because cobble provides crayfish refuge from bass pre-
dation (2, 3). The parameters ex and ey are conversion efficien-
cies, g is the maximum attack rate of crayfish on bass eggs, and hX
and hY are harvests by humans.
Eqs. 1 and 2 are based on a nondimensionalized (rescaled)

version of the model, as presented in Drury and Lodge (1). The
nondimensionalized model is

dx
dt

¼ _x ¼ xð1− x− αyÞ− δyx2

κ2 þ x2
− hx ¼ Fðx; yÞ− hx; [S3]

dy
dt

¼ _y ¼ ryð1− βx− yÞ þ ε
δyx2

κ2 þ x2
− hy ¼ Gðx; yÞ− hy [S4]

where x = X/Kx, y = Y/Ky, hx = hX/Kx, and hy = hY/Ky are the
states and controls expressed in densities. The time index has
been scaled as t = rx τ. Other parameters have been scaled as
α = αyxKy/Kx – exg/rx, β = [αxy + g/ry]Kx/Ky, δ = [δyx/rx]Ky/Kx, κ =
k/Kx, ε= eyKx/Ky, and r = ry/rx. Model parameters are from Drury
and Lodge (1) and, along with the economic parameters, are
presented in Table S1.

Economic Model. Angler net benefits of harvesting at time τ are
specified as

BðhY ;Y Þ ¼ ðPy −wy =Y Þhy; [S5]

where Py is the fixed marginal value of harvested bass, wy/Y is the
unit cost of bass harvests, and wy is a cost parameter. The cost
relation is common (4) and assumes unit costs decline in the bass
stock, as bass are easier to catch when more abundant. Crayfish
removal costs at time τ are

CðhX ;XÞ ¼ wxhX=X : [S6]

Defining ρτ as the discount rate, the economic social welfare from
bass and crayfish harvests is represented by the present value

SW ¼
ð∞
0

��
Py −wy =Y ÞhY −w xhX=X

�
e− ρττdτ: [S7]

The economic relations in Eqs. S5–S7 depend on the nonscaled
state and control variables. To work with the scaled variables, we

rescale the model without altering B, C, or SW. Setting p = PyKy
(and leaving wy unscaled), angler net benefits at time t are

Bðhy; yÞ ¼ ðp−wy=yÞhy: [S8]

B(hy, y) is unaffected by the rescaling, nor are crayfish removal
costs or the parameter wx affected. The rescaled discount rate is
ρ = ρτ/rx (to account for the new timescale), so SW is

SW ¼
ð∞
0

��
p−wy = yÞhy −wxhx=x

�
e− ρtdt: [S9]

SW is unaffected by the rescaling. We have chosen realistic
parameters (Table S1) for illustrative purposes. Accordingly, the
bioeconomic results should be viewed as a numerical example
designed to illustrate the concept of bioeconomically derived
thresholds.

SI Text S2: The Bioeconomic Model and Solution
Bioeconomic Problem. The bioeconomic problem is

Max
hy;hxiff∈Ω

SW ¼
ð∞
0

��
p−wy=yÞhy −wxhx=x

�
e− ρtdt

s:t: ðEq: S1Þ;  ðEq: S2Þ;  xð0Þ ¼ x0; yð0Þ ¼ y0

hx ¼ 0 iff hx∉Ω; hy ¼ hOA
y ðy; xÞ iff hy∉Ω:

[S10]

Problem Eq. S10 is a linear control problem with potential in-
stitutional constraints on one or more of the controls such that hx
or hy may not be in Ω. Here, we assume hi ∈ Ω for i = x or i = y
or both. The case of Ω = {} is scenario I in the main text.
The current value Hamiltonian (henceforth, referred to as the

Hamiltonian) for problem Eq. S10, in the institutionally un-
constrained case, is

H ¼ ðp−wy=yÞhy −wxhx=xþ λ y½Gðx; yÞ− hy� þ λ x½Fðx; yÞ− hx�;
[S11]

where λi is the costate variable associated with state variable i =
x, y. The Hamiltonian is modified in the constrained cases by
substituting either hx = 0 or hy ¼ hOA

y ðyÞ directly into Eq. S11.
Regardless of these constraints, the following adjoint condition
holds along an optimal path:

_λi ¼ ρλi −∂H=∂i; i ¼ x; y: [S12]

The following subsections examine the permutations of in-
stitutional constraints on the controls.

Scenario II: Managing Crayfish but Not Bass. Suppose the agency can
choose crayfish harvests but is unable to regulate bass harvests [i.e.,
Ω = {hx}, and hy ¼ hOA

y ðyÞ]. Under open access, anglers adjust
harvest levels until economic rents dissipate; i.e., p – wy/y = 0.
When y > wy/p (i.e., positive rents), open access harvests, hOA

y ðyÞ,
are large enough to dissipate rents and move the system to y = wy/p.
When y < wy/p (i.e., negative rents), then hy

OA(y) = 0 and the stock
recovers. The outcome y = wy/p is an equilibrium for y and implies
the equilibrium condition hOA

y ¼ Gðx; yÞ ¼ Gðx;wy=pÞ.
For simplicity, suppose anglers immediately transition the

system to dissipate rents (i.e., y = wy/p; without instantaneous
adjustment, the long-run result is the same, but the approach
path may involve dampened oscillations involving intervals of
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positive and negative rents) (4). Given this equilibrium outcome
in the bass sector,

SW ¼
ð∞
0
½−wxhx = x�e−ρtdt: [S13]

Eq. S13 implies there is no incentive to harvest crayfish (hx = 0).
Doing so only generates costs with no offsetting benefits in the
bass sector (due to dissipated rents in that sector).
The phase plane is presented in Fig. 4 (main text). The

dx/dt = 0 isocline and associated phase arrows are the same as in
the decoupled model (Fig. 3, main text). The dy/dt = 0 isocline
is horizontal, given by the economic equilibrium condition y =
wy/p. The phase arrows are consistent with moving to this equi-
librium value for y. Together, the isoclines and phase arrows
indicate point A is a globally stable equilibrium.

Scenario III: Managing Bass but Not Crayfish. Suppose the agency
can choose bass harvests, but has no authority or budget to
manage crayfish harvests; i.e., hx = 0. To conserve on space in
later sections, we begin by deriving the optimality conditions for
hy for the more general case in which hx is not constrained and
then impose the condition hx = 0. The marginal effect of bass
harvests on the Hamiltonian Eq. S11 is

∂H=∂hy ¼ σy ¼ p−wy = y− λy; [S14]

where σy is defined as the linear coefficient of hy in the Ham-
iltonian and is referred to as the switching function for hy (4). If
σy < 0, no bass harvests should take place (hy = 0) as the
marginal value of bass harvests is negative. If σy > 0, then more
bass harvests always add value and so hy should be set as large
as possible. A singular path for hy is followed when σy = 0. The
optimal level of hy follows a feedback rule, denoted hy(x, y),
defined by

hyðx; yÞ ¼
8<: hmax

y
h�y ðx; yÞ

0

iff
iff
iff

σy > 0
σy ¼ 0
σy < 0;

[S15]

where the superscript * denotes the state variables are evaluated
along a singular arc.
Consider the singular solution, in which case σy vanishes:

λy ¼ p−wy=y: [S16]

Taking the time derivative of Eq. S16 yields

_λy ¼ wy

y2
_y ¼ wy

y2
½Gðx; yÞ− hy�: [S17]

Substituting Eqs. S16 and S17 into the adjoint condition Eq. S12
for bass yields

wy

y2
½Gðx; yÞ− hy� ¼ ρ

�
p−

wy

y

�
−
wyhy
y2

−
�
p−

wy

y

�
∂Gðx; yÞ

∂y
− λ x

∂Fðx; yÞ
∂y

:

[S18]

Expression Eq. S18 can be solved for the costate for crayfish:

λxðx; yÞ ¼
"�

ρ−
∂Gðx; yÞ

∂y

��
p−

wy

y

�
−
wy

y2
Gðx; yÞ

#,h
∂Fðx; yÞ=∂y

i
:

[S19]

Take the time derivative of Eq. S19,

dλ xðx; yÞ
dt

¼ ∂λ xðx; yÞ
∂x

½Fðx; yÞ− hx� þ ∂λ xðx; yÞ
∂y

½Gðx; yÞ− hy�; [S20]

where the partial derivatives in Eq. S20 are derived from Eq. S19.
Eqs. S16, S19, and S20 can be substituted into the adjoint con-
dition Eq. S12 for crayfish:

∂λ xðx; yÞ
∂x

½Fðx; yÞ− hx� þ ∂λxðx; yÞ
∂y

½Gðx; yÞ− hy�

¼ ρλ xðx; yÞ−
"
p−

wy

y

#
∂Gðx; yÞ

∂x

− λ xðx; yÞ∂Fðx; yÞ∂x
−
wx

x2
hx:

[S21]

Eq. S21 can be solved for the following singular feedback rule,
which is valid only when σy vanishes (otherwise, Eq. S15 in-
dicates hy equals either zero or hy

max):

The feedback rule Eq. S22 is conditional on hx. A singular
solution for bass, for a particular nonsingular value of hx, is
called a partial singular solution for bass conditional on hx. A
double singular solution, arising when hx is also singular, is ex-
plored in scenario IV below.
Consider the special case in which hx = 0. The system dynamics

are derived by substituting hy(x, y) and hx = 0 into Eqs. S1 and
S2. However, given the initial states of the world, x0 and y0, we
must determine whether the optimal solution involves hy(x, y) =
0, hy(x, y) = hy

max, or hy(x, y) = h�y ðx; yÞjhx¼0. We proceed by
considering each solution type in turn (following the approach of
Mesterton-Gibbons) (5), as illustrated in Fig. S1, i–iii, where
black arrows are potential trajectories for the particular solution
being considered. The dotted-dashed curve in Fig. S1, i–iii rep-
resents the dx/dt = 0 isocline, which is the same in each part
(because hx = 0 in each case). The dashed curve in Fig. S1, i–iii
represents the dy/dt = 0 isocline for the particular choice of
hy(x, y). In Fig. S1, ii, with hy(x, y) = hy

max, the dy/dt = 0 isocline
lies outside the positive orthant.
Trajectories and isoclines for Fig. S1 (and also Figs. S2 and S3)

are determined numerically using Mathematica 7.0 (6) and the
model specification and parameters from SI Text S1. The stability
properties of the interior equilibria in Fig. S1, i and ii are de-
termined by calculating the eigenvalues of the Jacobian matrix for
the system, evaluated at each equilibrium. Each (locally) stable
equilibrium has two negative eigenvalues. Each conditionally sta-
ble (saddle) equilibrium has one positive and one negative ei-
genvalue. The unstable focus equilibrium in Fig. S1, iii has
imaginary eigenvalues with positive real parts. Separatrices are
derived following Conrad and Clark (7).
Setting hy(x, y) = 0 ∀t. The first possibility is to set hy(x, y) = 0 ∀t,
so that neither species is harvested (Fig. S1, i). Two equilibria
are locally stable (A0 and B0) and one is conditionally stable

h�y ðx; yÞjhx ¼ Gðx; yÞ þ
∂λxðx; yÞ

∂x
½Fðx; yÞ− hx� þ

�
∂Fðx; yÞ

∂x
− ρ

�
λ xðx; yÞ þ

�
p−

wy

y

�
∂Gðx; yÞ

∂x
þ wx

x2
hx

∂λxðx; yÞ=∂y : [S22]
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(saddle), C0, so the system always moves to either A0 or B0

(unless the system happens to start on a separatrix, which occurs
with zero probability). The strategy of hy = hx = 0 ∀t is not
optimal for our parameterization. This strategy yields SW = 0,
regardless of the initial conditions. However, the system eventually
moves to equilibrium A0 or B0, with p > wy/y at either of those
points (which is verified numerically). Then setting hy > 0 for even
an instant yields SW > 0. Hence, there are incentives to move
away from A0 or B0, and so neither can be a long-run optimum.
This means hy(x, y) = 0 can be only a short-term component of an
optimal trajectory.
Setting hy(x, y) = hy

max ∀t. Consider setting hy(x, y) = hy
max ∀t (Fig.

S1, ii). Extinction of y is the global equilibrium in this case. This
strategy cannot be a long-run optimum. To see this, note
λy < p−wy=y is necessary for hy(x, y) = hy

max to be optimal (from
Eq. S15). This necessary condition implies λy → –∞ as y → 0.
However, because bass contribute only positively to SW, λy must
be nonnegative in an optimal solution (8). Hence, hy(x, y) = hy

max

can be only a short-term component of an optimal trajectory.
Partial singular solution for hy(x, y). Finally, the case of
hyðx; yÞ ¼ h�y ðx; yÞjhx¼0 (Fig. S1, iii) yields two conditionally stable
equilibria (Ay and By) and one unstable focus equilibrium, Cy.
The separatrices leading to Ay and By are illustrated by the bold
trajectories ay and by. Other trajectories are also illustrated. The
light gray trajectories correspond to h�y ðx; yÞjhx¼0 < 0 and thus are
infeasible. Below the separatrices, trajectories lead to bass ex-
tinction, which we have already argued does not satisfy the op-
timality conditions. Trajectories above the separatrices lead to
the infeasible region, which also cannot be optimal [also, setting
hy(x, y) = 0 within the infeasible region is not optimal, as in-
dicated above in relation to Fig. S1, i]. Hence, the separatrices
are the only trajectories satisfying the necessary conditions for
the partial singular solution when hx = 0 ∀t. The separatrices ay

and by therefore represent the switching curve for this case,
denoted σyjhx¼0;∀t ¼ 0:
Optimal solution. Fig. S1, iv is a feedback control diagram that
“splices” together the solutions that apply in different regions
of the state space. The switching curves and the equilibria Ay and
By come from the singular solution of Fig. S1, iii. Along the
switching curves, σyjhx¼0;∀t = 0. Above the switching curves, y is
increased and so σyjhx¼0;∀t = p – wy/y – λy > 0 and hyðx; yÞ ¼ hmax

y
is optimal, as indicated by the trajectories in Fig. S1, iv (which
are identical to those in Fig. S1, ii). Below the switching curves, y
is decreased and so σyjhx¼0;∀t = p – wy/y – λy < 0 and hy(x, y) = 0 is
optimal, as indicated by the trajectories in Fig. S1, iv (which are
identical to those in Fig. S1, i). This solution means that, for
initial points off the switching curve, an optimal strategy is to
move to the partial singular solution as quickly as possible along
a most rapid approach path (MRAP).
Which separatrix is optimally pursued depends on the initial

conditions, as numerical analysis (i.e., comparing the values of
SW from starting on and following each saddle path versus
moving off the saddle path to pursue to the other) indicates
that equilibria Ay and By are both locally optimal. We can
derive a threshold, which we refer to as the Skiba threshold,
dividing the state space into two basins of attraction for op-
timal management (solving for Skiba points or thresholds
generally requires numerical methods) (9). Management is
optimally undertaken to move the system as quickly as pos-
sible to path ay when the system is initially to the left of the
threshold or to path by when the system is initially to the right
of the threshold.
The Skiba threshold is an endogenous bioeconomic threshold

that reflects both human and ecological interactions given the
current institutional arrangements and economic environment.
Starting below the separatrices, the Skiba threshold is the do-
nothing path that is tangent to path b and then becomes vertical

at this tangency. The shape and location of the Skiba threshold
differ from those of the decoupled system.

Scenario IV: Management of Both Bass and Crayfish. Suppose the
agency can choose harvests for both species (i.e., Ω = {hx, hy}).
The necessary conditions for bass harvests have already been
given by Eq. S15, with the singular solution for bass defined in
Eq. S22. We therefore focus on the crayfish sector.
The marginal effects of crayfish harvests on the Hamiltonian

are given by

∂H=∂hx ¼ σx ¼ −wx=x− λx; [S23]

where σx is the switching function for hx. If σx < 0, no harvests of
crayfish should take place (hx = 0) as the marginal value of the
harvest is negative. If σx > 0, then harvests are beneficial and hx
should be set as large as possible. A singular path for hx is fol-
lowed when σx = 0. The optimal level of hx follows a feedback
rule, denoted hx(x, y), defined by

hxðx; yÞ ¼
8<: hmax

x
h�x ðx; yÞ

0

iff
iff
iff

σx > 0
σx ¼ 0
σx < 0;

[S24]

where the superscript * denotes the state variables are evaluated
along a singular path.
Consider the singular solution for crayfish harvests, in which

case σy vanishes:

λx ¼ −wx=x: [S25]

Taking the time derivative of Eq. S25 yields

_λx ¼ wx

x2
_x ¼ wx

x2
½Fðx; yÞ− hx�: [S26]

Substituting conditions Eqs. S25 and S26 into the adjoint con-
dition Eq. S12 for crayfish yields

wx

x2
½Fðx; yÞ− hx� ¼ ρ

�
−
wx

x

�
−
wxhx
x2

− λ y
∂Gðx; yÞ

∂x
þ wx

x
∂Fðx; yÞ

∂x
:

[S27]

Expression Eq. S27 can be solved for the costate for bass:

λ yðx; yÞ ¼
"�

ρ−
∂Fðx; yÞ

∂x

��
−
wx

x

�
−
wx

x2
Fðx; yÞ

#,h
∂Gðx; yÞ=∂x

i
:

[S28]

Take the time derivative of Eq. S28,

dλ yðx; yÞ
dt

¼ ∂λ yðx; yÞ
∂x

½Fðx; yÞ− hx� þ ∂λyðx; yÞ
∂y

½Gðx; yÞ− hy�; [S29]

where the partial derivatives in Eq. S29 are derived from Eq. S28.
Eqs. S25, S28, and S29 can be substituted into the adjoint con-
dition Eq. S12 for bass:

∂λyðx; yÞ
∂x

½Fðx; yÞ− hx� þ ∂λ yðx; yÞ
∂y

½Gðx; yÞ− hy�

¼
�
ρ−

∂Gðx; yÞ
∂y

�
λyðx; yÞ−wy

y2
hy þ wx

x
∂Fðx; yÞ

∂y
: [S30]

Eq. S30 can be solved for the following singular feedback rule,
which is valid only when the switching function σx vanishes
(otherwise, Eq. S24 indicates hx equals either zero or hmax

x Þ:
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As with Eq. S22, the feedback rule Eq. S31 is conditional on
bass harvests.
Double singular solution. Both switching functions simultaneously
vanish in the case of a double singular solution. As indicated in
our discussion of scenario III, the switching function associated
with one species may be conditional on how the other species is
managed.
We begin by deriving the switching function for crayfish harvests,

conditional on bass management. Suppose managers choose bass
harvests such that σy= [p – wy/y] – λy = 0 and the adjoint condition
Eq. S12 for bass is satisfied, so that λx is defined by Eq. S19. The
switching function for crayfish harvests vanishes in this case when
Eq. S25 is also satisfied:"�

ρ−
∂Gðx; yÞ

∂y

��
p−

wy

y

�
−
wy

y2
Gðx; yÞ

#,
½∂Fðx; yÞ=∂y�¼ −

wx

x
:

[S32]

Eq. S32 is depicted in Fig. S2 as curve σxjσy¼0 ¼ 0. This notation
indicates Eq. S32 defines the switching function for crayfish,
conditional on σy = 0.
As σxjσy¼0 ¼ 0 does not require adjoint condition Eq. S12 for

crayfish to be satisfied, this switching curve does not require
a partial singular solution for bass (as both adjoint conditions are
necessary in that case). However, any partial singular arc for bass
that intersects switching curve σxjσy¼0 = 0 must yield a double
singular solution at the point of intersection. Also, the switching
curve σxjσy¼0 ¼ 0 helps determine the optimal value of hx when
hy = h�y . To the left of the downward-sloping portion of
σxjσy¼0 ¼ 0; x is sufficiently small that λx(x, y) > –wx/x and hx =
0 is optimal when hy = h�y . The same is true below σxjσy¼0 ¼ 0, as
this represents a single iso-sector. The opposite is true to the
right of and above σxjσy¼0 ¼ 0: λx(x, y) < –wx/x and hx = hx

max is
optimal when hy = h�y . This result means scenario III’s equilib-
rium Ay, which lies to the right of σxjσy¼0 ¼ 0 (Fig. S2) and in-
volves hx = 0 and hy = h�y , cannot be a long-run optimum for
scenario IV.
We now derive the switching function for bass harvests, con-

ditional on crayfish management. Suppose managers choose
crayfish harvests such that σx ¼ −wx=x− λx ¼ 0 and the adjoint
condition Eq. S12 for crayfish is satisfied, so that λy is defined by
Eq. S28. The switching function for bass harvests vanishes in this
case when Eq. S16 is also satisfied:h

ρ−
∂Fðx; yÞ

∂x

��
−
wx

x

�
−
wx

x2
Fðx; yÞ

∂Gðx; yÞ=∂x ¼ p−
wy

y
: [S33]

Eq. S33 is depicted in Fig. S2 as curve σyjσx¼0 ¼ 0, and the in-
terpretation is analogous to that of curve σxjσy¼0 ¼ 0. Specifically,
Eq. S33 is based on the assumptions that both switching functions
vanish and that adjoint condition Eq. S12 for crayfish is satisfied.
If a partial singular arc for crayfish passes through the curve
σyjσx¼0 ¼ 0, then it becomes optimal for hy to take on its singular
value at the point of intersection, resulting in a double singular
solution at that point. Below σyjσx ¼ 0, we have λyðx; yÞ> p−wy=y
and hy = 0 is optimal when hx ¼ h�x . Above σyjσx¼0 ¼ 0, we have
λyðx; yÞ< p−wy=y and hy = hy

max is optimal when hx ¼ h�x .
Conditions Eqs. S32 and S33 must both hold at a double

singular solution. As these conditions are two variables in two

unknowns (x and y), there can generally be only a discrete
number of pairs of double singular values for x and y. Two po-
tential solutions emerge in Fig. S2, at points A* and B*. These
points are steady states conditional on a double-singular control
rule. Using Eq. S16 for λy(x, y), so that ∂λy(x, y)/∂y = wy/y

2, Eq.
S32 implies the numerator in the second right-hand side (RHS)
term in Eq. S31 vanishes, resulting in h�x ðx; yÞ ¼ Fðx; yÞ and hence
_x ¼ 0. Analogously, using Eq. S25 for λx(x, y), so that ∂λx(x, y)/∂x
= wx/x

2, Eq. S33 implies the numerator in the second RHS term
in Eq. S25 vanishes, resulting in h�y ðx; yÞ ¼ Gðx; yÞ and hence
_y ¼ 0.
The double singular equilibrium B* is ruled out as an opti-

mality candidate because, although it satisfies the standard
necessary conditions shown above, it does not satisfy Kelley’s
condition, an additional necessary condition for the optimality of
singular arcs (10). In our model, Kelley’s condition is the k = 1
case of the generalized Legendre–Clebsch condition, (–1)k∂[(d/
dt)2kHu]/∂u ≤0, where u is the control vector (11). This is a sec-
ond-order condition for local optimality.
The double singular point A* satisfies Kelley’s condition and is

therefore a candidate long-run optimum. However, what is the
optimal approach path(s) to A*? An optimal approach path,
from a particular starting value, must involve partially singular
and/or nonsingular choices for the controls because it is not
possible to approach A* on a double singular arc.
In the following subsections, we analyze optimal approach

paths to A* and also the possibility of alternative optimality
candidates. First, however, we use Fig. S2 to rule out all but two
categories of possible candidate paths and equilibria involving
partial singular arcs. Consider scenarios where it is optimal, for
some interval of time, to follow an arc that is singular for hj (j = x
or y) but not hi (j ≠ i). Denote this partially singular arc by
σjjhi≠h�i ¼ 0. Following a partially singular arc σjjhi≠h�i ¼ 0 for
some time interval may be optimal along an approach trajectory
to A*, and it will be optimal for attaining alternative long-run
optimality candidates. [We have already indicated the no-harvest
equilibria from Fig. S1 are not optimal, and continued applica-
tion of maximum harvest rates for one or both controls will result
in extinction of one or more species—which cannot be optimal
given our specification of costs and benefits (4). Therefore, an
optimal interior equilibrium other than A* can arise only when at
least one control is singular and the other is zero.] The only
optimality candidates for such scenarios will be those arcs that
intersect A* or that attain an equilibrium before crossing a
switching curve σijσj¼0 ¼ 0 (i ≠ j).
For instance, the partially singular arc ay (also denoted

σyjhx¼0 ¼ 0) in Fig. S2 neither intersects A* nor attains an
equilibrium prior to crossing the switching curve σxjσy¼0 ¼ 0.
Rather, arc ay crosses σxjσy¼0 ¼ 0 at the point bC≠A�. If it is op-
timal to proceed along arc ay, then there is no incentive to leave
arc ay before reaching bC, as ∂H/∂hy = 0 is maintained along this
arc. Hence, the system eventually reaches bC, which should also
be optimal if arc ay is optimal. Once at bC, both switching func-
tions vanish so that a double singular solution should result.
However, as described above, the adjoint condition for crayfish is
not satisfied at bC, implying this point and hence arc ay cannot be
optimal (at least when hx is chosen optimally; path ay was pre-
viously deemed optimal for the case in which hx was exogenously
restricted to be zero). More generally, any partial singular arc for
bass that crosses σxjσy¼0 = 0 anywhere other than the double
singular point A* cannot be optimal. The same is true for partial

h�x ðx; yÞjhy ¼ Fðx; yÞ þ
∂λyðx; yÞ

∂y
�
Gðx; yÞ− hy

�þ �
∂Gðx; yÞ

∂y
− ρ

�
λyðx; yÞ − wx

x
∂Fðx; yÞ

∂y
þ wy

y2
hy

∂λyðx; yÞ=∂x : [S31]
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singular arcs for crayfish that cross σyjσx¼0 = 0 anywhere other
than A*.
Therefore, candidate paths to A* must involve a partial singular

arc that leads directly to A* or else the use of nonsingular controls
to move directly from the initial states to A*. Following a partial
singular arc, such as the portion of arc by to the right of σxjσy¼0
(Fig. S2), to an equilibrium such as By may be locally optimal if the
path does not involve crossing another switching curve. However,
we are able to rule out such candidate paths below.
Partial singular solution for bass harvests when hx = 0. In scenario III we
analyzed optimal management of bass when crayfish harvests
never occurred (i.e., hx was exogenously 0 ∀t). In that scenario,
trajectories ay and by (Fig. S1, iv) were chosen to attain Ay and By,
respectively, because these points were the only possible long-
run equilibria. Now consider whether hx = 0 may hold tempo-
rarily along a singular arc leading to the double singular point
A*. A unique partial singular arc of this type, a* in Fig. S3, i, lies
to the left of σxjσy¼0 = 0, ensuring hx = 0 satisfies the necessary
conditions along this path. Trajectory a* is the optimal switching
curve for bass harvests conditional on hx = 0. Denote this
switching curve by σ�y j hx¼0 = 0, where the superscript * indicates
this trajectory intersects A*. Once A* is attained, hx optimally
switches from 0 to its singular value.
Partial singular solution for crayfish harvests when hy = 0.A phase plane
for the case of a partial singular solution for crayfish harvests
(Eq. S31), conditional on hy = 0, is presented in Fig. S3, ii.
Light gray trajectories involve infeasible values of hx and
therefore cannot contribute to an optimal solution. In partic-
ular, the gray curve Z is an asymptote, with h�x jhy¼0 → ∞ on the
black trajectories close to Z, whereas h�x jhy¼0 → –∞ on the gray
trajectories close to Z.
Point Ax represents the only feasible partial singular equilibrium,

although it is easily ruled out as an optimality candidate. This result
is because only costs (no benefits) are generated at this equilibrium,
and also along trajectories to it, as removing crayfish produces no
benefits in this model if the bass fishery remains closed.
The next question is whether a partially singular crayfish tra-

jectory exists that can move the system to point A*. Trajectory b*
accomplishes this task and therefore represents the singular arc
or switching curve for crayfish harvests conditional on hy = 0.
Note that trajectory b* is interrupted by Z, although we treat it as
a continuous trajectory. This is because h�x jhy¼0→∞ as b* ap-
proaches Z from the right and also as b* leaves Z from the left.
An impulse control is therefore optimally applied to bridge the
gap. We denote this switching curve by σ�x jhy¼0 = 0.
Having identified path b*, we can now show that this path

yields larger economic surplus than path by, so that path b* is
locally optimal whereas path by is not. Suppose the system were
currently at point By, which is the terminus of path by and lies
slightly above path b* (although this is difficult to see in Fig. S3,
ii). If this point were locally optimal, then SW would be maxi-
mized by staying put. However, SW is increased by moving to
path b* if b* is optimal relative to By. The optimized Hamilto-
nian is a welfare measure proportional to SW that can be used to
compare alternative strategies (12).
The optimized Hamiltonian associated with path by, denoted

Hy, involves λy = p – wy/y and hx = 0. Evaluating Hy at By = (xy,
yy), where F(xy, yy) = 0, yields

H y ¼ ð p−wy=y yÞGðx y; y yÞ: [S34]

Now consider an alternative strategy of moving from By to b*.
Starting at point By, suppose we set hy = hy

max (while retaining
hx = 0) to initiate a downward movement from point By to path
b*. The decision to set hy = hy

max results in an alternative value
of λy, denoted λyalt, such that λyalt < p – wy/y. The Hamiltonian
associated with this choice, denoted Halt, evaluated at point By, is

Halt ¼ ½ðp−wy=y yÞ− λalt
y �hmax

y þ λalt
y Gðxy; yyÞ [S35]

The difference between Eqs. S34 and S35 is

H y −Halt ¼
h	

p−wy=y yÞ− λ alt
y

ih
Gðxy; y yÞ− h max

y

i
< 0: [S36]

Hence it is optimal to move to the alternative path. Our approach
of using a discrete change in hy to compare two strategies is
analogous to Rondeau’s (12) approach of using a marginal
change in his control to compare two strategies. Our result in Eq.
S36 is also analogous to Rondeau’s result that the change in the
Hamiltonian equals the change in the costate times the change in
the corresponding stock. Note that the movement from By to the
alternative path is not necessarily optimal (as we indicate below,
a leftward jump from point By to path b* would be truly optimal).
However, as this movement improves SW, By cannot be a local
optimum.
Optimal solution. Fig. S3, iii depicts the optimal feedback control
diagram (not phase plane) derived after considering all combi-
nations of singular and nonsingular controls, assuming for sim-
plicity that impulse controls are possible (i.e., hj

max → ∞). [We
have assumed impulse controls for this case because this as-
sumption simplifies the derivation of the curves ~hx and ~hy, de-
fined below, along with the welfare comparison below in Eq. S39.
The qualitative results would not be affected, however, by as-
suming the controls are bounded from above. In that case, ad-
justment to a singular path may be more sluggish, resulting in the
curves ~hx and ~hy being positively sloped. We also note that, al-
though our earlier analysis of the partial singular solutions was
based on the assumption that the controls are bounded from
above, those results would still hold even in the absence of these
bounds (so that an impulse control for hj is optimal whenever
∂H/∂hj > 0). A feedback control diagram splices together the
various types of solutions that we have examined (i.e., fully
constrained, partial singular, and double singular) (13). The
optimal controls are specified in the form {hx, hy} as feedback
rules that depend on the current values of x and y, as indicated in
the various regions of the diagrams.
Fig. S3, iii indicates A* is a unique long-run optimum. The

optimal controls for various regions of the state space are gov-
erned by the two switching curves defined above and the
curves ~hx and ~hy. Although they also divide the state space into
different control regions, ~hx and ~hy are not switching curves.
Clark et al. (13) also found it optimal to change controls at
points not lying on a switching curve [see the vertical arrow
below the end of their switch curve σ2, at the point (x*, K*),
in their figures 1–4]. We can show that such changes in controls
are optimal.
Consider the curve ~hx, which is the vertical segment inter-

secting A* from above. Suppose the system is initially at a point
on ~hx, which we denote as (x*, by), with by > y*. As ~hx is not
a switching curve (verified numerically), an optimal harvest
strategy at this initial point must involve the application of
nonsingular controls to move to A* or to one of the partial
singular trajectories. Clearly, combinations involving hy = 0 will
fail to accomplish this goal, and so hy = hy

max is optimal (which
makes economic sense as well: relative to the optimum at A*, the
larger value of y implies p – wy/y is increased relative to λy). If we
set hx = 0 while applying hy as an impulse control, the system
moves directly to A* and SW is

SW� ¼ pðby− y�Þ−wy lnðby=y�Þ
þ ��

p−wy=y�ÞGðx�; y�Þ−wxFðx�; y�Þ=x�
�

ρ: [S37]

Alternatively, if we apply both harvests as impulse controls, then
we would move southwest to a point on a*. Define this point by
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A′ = (x′, y′), with x′ < x* and y′ < y*. Then the SW associated
with these impulse controls is

SW′ ¼ pðby− y′Þ−wy lnðby=y′Þ−wx lnðx�=x′Þ

þ
ð∞
0

��
p−wy=yÞhy −wxhx=x

�
e− ρtdt; x0 ¼ x′; y0 ¼ y′:

[S38]

The difference in net benefits between these two strategies is

SW′− SW� ¼ pðy� − y′Þ−wylnðy�=y′Þ−wxlnðx�=x′Þ

þ 

ð∞
0

��
p−wy=yÞhy −wxhx=x

�
e−ρtdt

−
��
p−wy=y�ÞGðx�; y�Þ−wxFðx�; y�Þ=x�

�

ρ

x0 ¼ x′;  y0 ¼ y′:
[S39]

This difference equals the net benefits of using impulse controls to
move from A* to A′, which is negative if A* is the long-run op-
timum. Thus, it is optimal to set hx = 0 and apply hy as an impulse
control, to move along a MRAP to A*. The same approach can be
used to show that, to the right of ~hx, it is optimal to set hx = 0 and
apply hy as an impulse control to move along a MRAP to a*.
A similar analysis yields identical results with respect to curve

~hy. Above ~hy, it is optimal to apply both controls as impulse
controls, to move along a MRAP to A*. On (below) ~hy, it is
optimal to set hy ¼ 0 and apply hx as an impulse control, to move
along a MRAP to A* (to b*).
The feedback rules in Fig. S3, iv indicate that the optimal

solution, starting from any initial value of x and y, is to move
along a MRAP to point A*, path a*, or path b*—whichever can
be attained more quickly. From there, A* is maintained or else
path a* or b* is followed until A* is attained. Note that there is
no Skiba (bioeconomic) threshold in this case, as the species are
managed to attain a unique long-run equilibrium.

Sensitivity Analysis. Table S2 reports the results of a sensitivity
analysis designed to examine the robustness of our qualitative
results that weak institutions can result in poor outcomes, in-
stitutions of intermediate strength can result in multistability,
and strong institutions can promote stable, desired outcomes.
For each management scenario, we analyzed the model by

changing the value of one parameter, while holding the others
constant at their benchmark values (Table S1).
First consider the ecological parameters. These parameters

were either halved or doubled to reduce the likelihood of mul-
tistability in the decoupled model. In particular, the change in α
increases the likelihood of outbreak, whereas changes in the
other parameters increase the likelihood of non-outbreak. The
results are most sensitive to changes in the competition and
predation parameters, α, β, and δ. The decrease in α results in
a globally stable outbreak equilibrium, whereas the indicated
changes in β and δ result in a globally stable non-outbreak
equilibrium. Regardless, for all three scenarios, management
under weak institutions (SESs I and II) still results in a globally
stable outbreak equilibrium, whereas management under strong
institutions (SES IV) still results in a non-outbreak equilibrium.
With institutions of intermediate strength (SES III), we find

multiple equilibria still arise for the case of 2δ, even though the
decoupled model results in a unique (non-outbreak) equilibrium.
This result is because the increased predation of bass on crayfish
(due to a larger δ) is offset by human harvesting of bass. When β
is decreased (crayfish exert less competition on bass), we find an
outbreak equilibrium is globally stable under SES III even
though the non-outbreak equilibrium is stable in the decoupled
model. The reason is that the benefits of leaving more bass in
situ, to keep the crayfish population under control, are reduced
in this scenario relative to the benchmark case. The result is an
outbreak equilibrium, although with more bass and fewer cray-
fish than in the outbreak equilibrium of the benchmark case.
Finally, the reduction in α results in an outbreak equilibrium for
both the decoupled model and SES III.
Changes in the economic parameters do not affect the results of

the decoupled model, but do affect the SES results. The decrease in
py has two effects that are offsetting. First, a smaller py reduces
the incentives to harvest bass, resulting in more bass and a smaller
likelihood of an outbreak. Second, a smaller py reduces the in-
centives to prevent an outbreak, as the damages associated with the
non-outbreak equilibrium (i.e., loss in bass) are reduced. The overall
result is that the number and types of equilibria are unchanged
relative to the benchmark case. Finally, the increase in wx reduces
the incentives to harvest crayfish to prevent an outbreak. This out-
come has an impact only under SES IV. The non-outbreak equi-
librium remains optimal, with slightly more bass arising in this
outcome to provide a natural substitute to human predation on
crayfish.
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Fig. S1. Deriving the solution for scenario III. (i) Phase plane dynamics when hy = 0 ∀t. The dynamics are the same as those of the decoupled system in Fig. 3 in
the main text. (ii) Phase plane dynamics when hy = hy

max ∀t. All trajectories lead to bass extinction. (iii) Phase dynamics when hy = hy*(x, y). Given no crayfish
harvests, the _xy ¼ 0 isocline is the same as in Fig. 3 in the main text. The _yy ¼ 0 isocline differs from that in Fig. 3 because it reflects feedbacks associated with
bass harvests. Equilibrium Cy is an unstable focus, whereas equilibria Ay and By are saddle points (conditionally stable). Only trajectory ay leads to equilibrium
Ay, and only trajectory by leads to equilibrium By. All other trajectories lead to bass extinction or to regions of the state space where singular bass harvests
become infeasible (infeasible harvests exist when the singular harvest rule indicates negative harvests; these are illustrated with light gray trajectories). To-
gether, ay and by represent the switching curve for bass harvests, conditional on no crayfish harvests; i.e., σyjhx¼0;∀t ¼ ay∪ by. (iv) Feedback control diagram
representing optimal bass harvest levels in different regions of the state space. The dashed “Skiba threshold” divides the state space into two basins of at-
traction. Along the curves ay and by (including the endpoint equilibria Ay and By), bass harvests are applied at their singular values. Above the switching curve,
bass harvests are applied at their maximum value. Below the switching curve, bass harvests are zero. Arrows represent sample trajectories. Trajectories for
initial points to the left of the threshold move to path ay and then to equilibrium Ay. Trajectories for initial points to the right of the threshold move to path by

and then to equilibrium By.

Fig. S2. Switching curves associated with the double singular solution, and a comparison with the partial singular solution for hy, conditional on hx = 0. The
curve σxjσy¼0 is the switching curve for crayfish harvests, conditional on singular bass harvests. The curve σyjσx¼0 is the switching curve for bass harvests, con-
ditional on singular crayfish harvests. The intersection of these curves, at equilibria A* and B*, represents the double singular solution. The switching curves
and equilibria from Fig. S1, iii and iv, are superimposed. Point bC denotes the intersection of path ay with σxjσy¼0.
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Fig. S3. Deriving the solution for scenario IV. (i) Phase dynamics when hy = hy*(x, y) and hx = 0. We show only the trajectories for this case, not the isoclines.
Gray trajectories indicate infeasible values of hy*(x, y) (when the singular harvest rule indicates negative harvests). The switching curves from Fig. S2
are depicted to indicate the point A* from Fig. S2. The trajectory a* is the unique path to A* for this scenario. (ii) Phase plane dynamics when hx = hx*(x, y) and
hy = 0. For simplicity, we show only the trajectories for this case, not the isoclines. Gray trajectories indicate infeasible values of hx*(x, y). The curve Z represents
an asymptote, with h�x jhy¼0→∞ as Z is approached from the right and also as Z is exited from the left. The only equilibrium in this scenario is Ax. Trajectory b* is
the unique trajectory that leads to point A*, as defined in Fig. S2. (iii) Feedback control diagram, reflecting optimal harvesting of both species for different
combinations of x and y. There is a globally stable non-outbreak equilibrium, A*, at which point both harvest levels are set at their singular values. Along the
curve a*, which leads to equilibrium A*, bass harvests are applied at singular values and crayfish harvests are zero. Along the curve b*, which leads to
equilibrium A*, crayfish harvests are applied at singular values and bass harvests are zero. In other regions of the graph, crayfish and bass harvests are indicated
by the notation {hx, hy}. The curves ~hx and ~hy divide the state space into regions where different values of the harvest controls are applied. Arrows represent
sample trajectories.

Table S1. Parameter values for the simulations

Parameter Value

α 0.7
δ 0.075
κ 0.1
r 1.5
β 0.9
ε 0.01
Kx 100,000
Ky 1,000
rx 1.5
Py 15
wx 10,000
wy 1,000
ρτ 0.05
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Table S2. Sensitivity analysis

Parameter change

Management scenario Basin type State variable (1/2)α (1/2)κ (1/2)β 2δ 2r 2ε (1/2)py 2wx

Decoupled model Non-outbreak Crayfish DNE −100.0 −10.0 −57.4 0.0 −0.1 0.0 0.0
Bass DNE 4.6 2.5 2.6 0.0 0.0 0.0 0.0

Outbreak Crayfish 31.3 −0.4 DNE DNE 0.1 −0.2 0.0 0.0
Bass −54.9 0.6 DNE DNE −0.3 0.6 0.0 0.0

Unstable
equilibrium

Crayfish DNE 17.3 DNE DNE −0.2 0.4 0.0 0.0
Bass DNE −4.6 DNE DNE 0.0 0.0 0.0 0.0

SES I, no management;
or SES II, crayfish only

Outbreak Crayfish 2.5 0.0 0.0 −0.6 0.0 0.0 −5.5 0.0
Bass 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0

SES III, bass only Non-outbreak Crayfish DNE −100.0 DNE −24.3 −6.1 0.1 −0.4 0.0
Bass DNE −36.8 DNE −23.1 0.6 0.0 0.0 0.0

Outbreak Crayfish 11.0 −0.1 −27.1 −9.9 −1.9 −0.1 −4.2 0.0
Bass −39.6 0.3 155.9 41.7 11.7 0.4 25.0 0.0

Unstable
equilibrium

Crayfish DNE 8.6 DNE 73.0 8.3 0.0 −0.6 0.0
Bass DNE −4.2 DNE −41.7 −3.0 0.0 0.2 0.0

SES IV, bass and crayfish Non-outbreak Crayfish 6.8 −49.8 35.9 −3.0 −29.0 0.1 13.9 13.2
Bass −11.3 14.7 1.5 10.6 −14.1 0.0 36.9 32.3

For each management scenario, table entries represent the percentage of change in equilibrium values of the indicated state variable, in response to the
indicated parameter change relative to its benchmark value in Table S1 (holding all other parameter values constant). DNE, the indicated equilibrium does
not exist.
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