Supporting Figures

Figure S1. CD spectra of duplex $dA_{22} \cdot dT_{22}$ samples. (a) Duplex $dA_{22} \cdot dT_{22}$ sample with and without added neomycin at 4 °C prior to heating. (b) Spectra of duplex $dA_{22} \cdot dT_{22}$ sample with neomycin at 45 °C. (c) Heat-cycled spectrum of $dA_{22} \cdot dT_{22}$ sample in the presence of neomycin at 4 °C. (d) CD melting profiles for 22mer duplex $dA_{22} \cdot dT_{22}$ sample at wavelengths selected and the first and second heating of duplex $dA_{22} \cdot dT_{22}$ after the addition of neomycin. DNA concentrations were 22 μ M in base pair. Neomycin concentration was 0.5 molar equivalents per base pair (11 μ M).

The CD spectrum of duplex $dA_{22} \cdot dT_{22}$ at 4 °C changes dramatically upon the addition of 0.5 molar equivalents of neomycin per DNA base pair (Figure S1a). These changes include the appearance of a substantial positive CD band (or bands) near 280 nm and 225 nm. However, typical CD bands of triplex DNA with intercalated compound at ~340 and ~440 nm are non-existed. This indicates that neomycin does not cause the formation of triplex DNA at 4 °C. Upon heating of the $dA_{22} \cdot dT_{22}$ sample with added neomycine to 45 °C dramatically reduces the magnitude of the duplex-specific neomycin CD bands at 280 and 225 nm (Figure S1b); small positive bands of triplex at ~340 and ~440 nm (Figure S1b) are also not observed. Additionally, the melting profile of the $dA_{22} \cdot dT_{22}$ sample in the presence of neomycin exhibits a transition at 46 °C (Figure S1d), which is similar with the duplex $dA_{22} \cdot dT_{22}$ itself. Thus, the 46 °C transition in the duplex sample with neomycin can be assigned

to the melting of duplex $dA_{22} \cdot dT_{22}$. So, these results clearly indicate that neomycin can not cause the strands of $dA_{22} \cdot dT_{22}$ to repartition into an equimolar amount of triplex $dT_{22} \cdot dA_{22} \cdot dT_{22}$ and dA_{22} .

Figure S2. CD spectra of duplex $dA_{22} \cdot dT_{22}$ samples that illustrate duplex disproportionation. (a) Duplex $dA_{22} \cdot dT_{22}$ sample with and without added coralyne at 4 °C prior to heating. (b) Spectra of duplex $dA_{22} \cdot dT_{22}$ sample with coralyne at 45 °C. (c) Heat-cycled spectrum of disproportioned $dA_{22} \cdot dT_{22}$ sample in the presence of coralyne at 4 °C and composite spectrum {sum of spectra acquired at 4 °C: $[0.5 \times triplex dT_{22} \cdot dA_{22} \cdot dT_{22}$ with 0.5 molar equivalents of coralyne] + $[0.50 \times single stranded dA_{22}$ with 0.5 molar equivalents of coralyne]}. (d) Spectra of triplex $dT_{22} \cdot dA_{22} \cdot dT_{22}$ at 4 °C after heat cycling with coralyne. (e) Spectra of dA_{22} sample with coralyne at 4 °C. DNA concentrations were 22 µM in nucleotide, base pair or base triplet, respectively. Coralyne concentration was 0.5 molar equivalents per nucleotide, base pair or base triplet, respectively.

Figure S3. CD melting profiles for 22mer DNA samples at wavelengths selected to show structural transitions. (a) First and second heating of duplex $dA_{22} \cdot dT_{22}$ after the addition of coralyne; the duplex disproportionation transition is observed at 39.5 °C during the first heating and triplex melting is observed at 66.1 °C in both the first and second heating of the sample. (b) First and second heating of a triplex $dT_{22} \cdot dA_{22} \cdot dT_{22}$ sample after the addition of coralyne indicates triplex melting at 66.2 °C. The first heating of this sample after the addition of coralyne also shows a transition centered at 33.6 °C, which is assigned to the reorganization of DNA strands from partial duplex and partial triplex to complete triplex. DNA concentrations were 22 μ M in base pair or base triplet, respectively.

Figure S4. Electrophoretic mobility of DNA-SWNTs conjugates in the absence or presence of coralyne. a) SWNTs-dT₂₂ alone (lane 1) and in the presence of 1 μ M coralyne (lane 3); SWNTs-dT₂₂·dA₂₂ alone (lane 2) and in the presence of 1 μ M coralyne (lane 4); b) SWNTs-dT₂₂·dA₂₂ alone (lane 1) and in the presence of 0.1 μ M (lane 2), 0.2 μ M (lane 3), 0.4 μ M (lane 4), 0.6 μ M (lane 5), 0.8 μ M (lane 6), 1 μ M (lane 7) coralyne.