Supplemental data

Structure calculation details

(a)Homology model preparation and metal binding coordinates A two-stage low temperature
simulated annealing approach (1;2) has been employed in the structure determination for Ca*-CIB1
and Mg*"-CIB1. For stage 1 of the Ca*"-CIB1 structure determination, the crystal structure of Ca*'-
CIB1 (PDB 1XO5) was used as the starting model. After protons were added onto this crystal
structure, the originally missing residues (8-11 and 137-142) were added to complete the primary
sequence (res. 8-191) by using Xplor-NIH 2.18. The Ca®"-ligand coordinate restraints used in
structure calculation were taken from the crystal structure 1XOS5 and utilized in both stage 1 and stage
2 of the structure calculation. For stage 2, the lowest energy structure of the 200 structured calculated
in stage 1 was used as the new starting model, and the dihedral angle restraints were derived from this
structure. The same protocol was implemented for the structure determination of Mg”"-CIB1, where
we used the solution structure of Ca**-CIBI as the initial starting model. The Mg**-ligand
coordination restraints for the EF-III site were essentially the same as those used for Ca*-CIB1
because the two modes of coordination are quite similar. This is consistent with simulation results for
Mg**-calmodulin (CaM) (3). However, because the Glul2 residue in a canonical EF-hand loop is
known to bind in a monodentate manner to Mg*" (whereas Ca>" binds in a bidentate manner (4)), we
only used 6 coordinates for Mg*". Mg*" only binds to site EF-III of CIB1 (5) which has an Asp
residue in position 12 of the calcium binding loop, which is often the case for an EF-hand loop that
can bind both these divalent metals. The 20 lowest energy structures obtained from 200 calculated
structures in stage 2 were selected for further analysis.

(b) Simulated annealing protocols This refinement protocol was initially developed to determine the
structure of a protein based on the known structure of a homologous protein with same secondary

structure arrangements. To avoid the RDC degeneracy problem, two stages of simulated annealing are
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utilized (1). In simulated annealing stagel, cooling was achieved by lowering the temperature from
200K to 20K with each step AT=10K and 4 ps simulated annealing at each temperature. Experimental
restraints for stage 1 include NOEs, two sets of RDCs ('Dyy and 'De-y) hydrogen bonds and metal
binding coordinates. Backbone dihedral angles (¢ and ) restraints were enforced by a strong force
constant unramped at 300 kcal mol™ rad™. Several other force constants (dipolar coupling, NOEs and
Ramachandran potential) were ramped during the simulated annealing, in which the force constant of
the dipolar coupling was ramped from 0.05 to 5 kcal mol™ Hz, the Ramanchandran force constant
was ramped from 0.2 to 2.0 and the NOE force constant was ramped from 2 to 20 kcal mol™" A,
based on the initial protocol by Chou et al. (1). 200 structures were calculated for stage 1 and the
lowest energy structure was selected as the starting model for the next stage. The structure from stage
1 still has high backbone tensions and a certain amount of dipolar energy term which needs to be
lowered in stage 2. In simulated annealing stage 2, cooling was achieved by lowering the temperature
from 20 K to 1 K with each step AT=1 K. At this stage, all the experimental restraints are the same as
stage 1 except that the dihedral angle restraints were generated based on the lowest energy structure
obtained in stage 1. The dihedral angle force constant was ramped down from 300 kcal mol™ rad™ to
50 kcal mol™ rad™; other force constants were kept at the maximum values that have been reached at
stage 1. Instead of using the energy term of radius of gyration, a new term called the volume of
gyration (6) was implemented to improve the packing of the protein and it was kept static with a force
constant of 1 kcal mol™ A~ throughout this two-stage simulated annealing. In the calculation, the

RDC values of 'Dcn were normalized based on 'Dyyy RDC values.



Supplemental Fig. 1: the assignment of the methyl groups (Ile/Leu/Val) of (A) Ca>*-CIB1 and (B)

2+
Mg*'-CIBI.
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Supplemental Fig. 2: the assignment of the methyl groups (Ile/Leu/Val) of (A) Ca*-CIB1 in complex

with the allb peptide and (B) Mg®"-CIB1 in complex with the allb peptide.
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Supplemental Fig. 3 The TEMPOL effects on the methyl groups (Ile/Leu/Val) of (A) Ca*"-CIB1 in

complex with the ollIb peptide and (B) Mg*"-CIB1 in complex with the allb peptide. Black, in
absence of TEMPOL; red, in presence of TEMPOL.
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