MS ID#: JLR/2010/013144 Revision #2

Supplemental Figures

The Intestine Maybe a Major Site of Action for the ApoA-I Mimetic Peptide 4F Whether the Peptide is Administered Subcutaneously or Orally

Mohamad Navab^{1,2}, Srinivasa T. Reddy², G.M. Anantharamaiah³, Satoshi Imaizumi², Greg Hough², Susan Hama², Alan M. Fogelman²

²Department of Medicine David Geffen School of Medicine at UCLA, Los Angeles, CA 90095

³ Department of Medicine University of Alabama at Birmingham, AL 35294

Abbreviated Title: *4F may act in the intestine regardless of route of administration*

¹ Corresponding Author:	Mohamad Navab, Ph.D.
	Room A2-237 CHS
	Division of Cardiology
	Department of Medicine
	David Geffen School of Medicine at UCLA
	10833 Le Conte Avenue
	Los Angeles, CA 90095-1679
	Telephone number: 310-206-2678
	Fax number: 310-206-9133
	E-mail: mnavab@mednet.ucla.edu

Supplementary key words: atherosclerosis ● apolipoprotein A-I ● apolipoprotein A-I mimetic peptides ● lipoproteins ● HDL

Abbreviations: CHD, coronary heart disease; Cmax, maximal concentration; HII, HDLinflammatory index; IV, intravenous; SAA, Serum amyloid A; SQ, subcutaneous; 4F (Ac-D-W-F-K-A-F-Y-D-K-V-A-E-K-F-K-E-A-F-NH₂); D-4F, 4F synthesized from all D-amino acids; L-4F, 4F synthesized from all L-amino acids; Sc-D-4F, (Ac-D-W-F-A-K-D-Y-F-K-K-A-F-V-E-E-F-A-K-NH₂) a control scrambled peptide containing the same D-amino acids as in D-4F but in a sequence that does not promote α -helical formation; LPA, lysophosphatidic acid. Navab et al. MS ID#: JLR/2010/013144 Revision #2 Supplemental Figures Page 2 of 6 **Supplemental Figure 1.**

Supplemental Figure 1. SAA levels were reduced similarly in mice administered L-4F with niclosamide orally compared to the same dose of L-4F administered by subcutaneous (SQ) injection without niclosamide. Female apoE null mice (n = 12 -14 per group) age 16 – 18 months were administered mouse chow with or without L-4F (200 µg/mouse/day; 10 mg/kg/day) with niclosamide 2,000 µg/mouse/day or were administered L-4F by SQ injection at a dose of 10 mg/kg/day without niclosamide. After one week the mice were bled and serum amyloid A (SAA) levels were determined by ELISA as described in Methods.

Navab et al. MS ID#: JLR/2010/013144 Revision #2 Supplemental Figures Page 3 of 6

Supplemental Figure 2.

Supplemental Figure 2. The plasma D-4F levels of the mice described in Figure 4 and Table 2 are shown by the symbols which represent individual values for each mouse that received D-4F; the longer horizontal line represents the Mean and the shorter horizontal lines define one SD above and below the Mean.

Navab et al. MS ID#: JLR/2010/013144 Revision #2 Supplemental Figures Page 4 of 6

Supplemental Figure 3. Time course for hepatic D-4F levels after SQ administration. Eight female apoE null mice 6 - 7 months of age were fed a Western diet for two weeks and were administered 900 µg of D-4F SQ. The liver from one mouse at each time point was purged of blood and harvested and hepatic D-4F levels were determined as described in Methods. The values shown are the Mean \pm SD of three samples from the liver of each mouse.

Supplemental Figure 4A.

Supplemental Figure 4A. Dose response for hepatic D-4F levels after oral administration. Twelve female apoE null mice 6 - 7 months of age were fed a Western diet for two weeks. The mice were administered the dose of D-4F in their drinking water shown on the X-axis. Sixteen hours after the peptide was consumed, the livers from 3 mice at each time point were purged of blood, harvested and hepatic D-4F levels were determined as described in Methods. The values shown are the individual values for each of the 3 mice at each dose. ND = not detected (i.e. the values were below the level of quantification of the assay).

Supplemental Figure 4B.

Supplemental Figure 4B. Dose response for hepatic D-4F levels after SQ or oral administration. Female apoE null mice 6 - 7 months of age were fed a Western diet for 2 weeks and were administered the dose of D-4F SQ as shown on the X-axis. Sixteen hours after the administration of the peptide, the livers from 3 mice at each SQ dose were purged of blood, harvested, and hepatic D-4F levels were determined as described in Methods. The values shown are Mean \pm SD for each mouse at each SQ dose determined in triplicate samples. The mean values for the 3 mice in each dose group in Figure 4A were also calculated and plotted (Oral). Since the hepatic D-4F levels in all of the mice in Figure 4A were less than 1 μ g/g liver, these values are not visible in the graph.