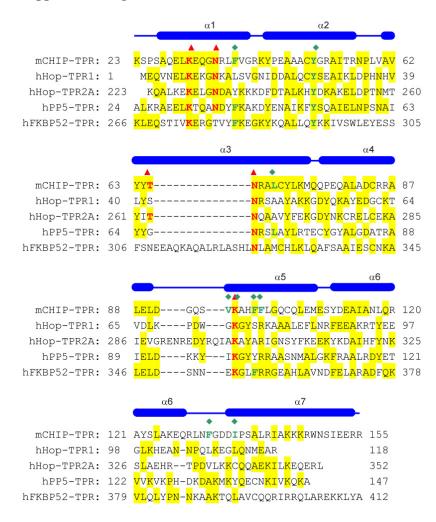
Supplemental Data

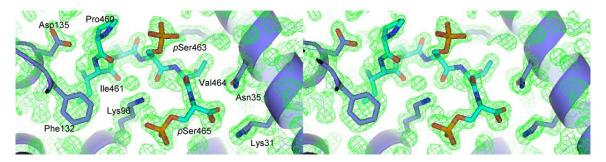
MOLECULAR MECHANISM OF THE NEGATIVE REGULATION OF SMAD1/5 BY CHIP

Le Wang¹, Yi-Tong Liu¹, Rui Hao¹, Lei Chen¹, Zhijie Chang², Hong-Rui Wang³, Zhi-Xin Wang¹, and Jia-Wei Wu^{1,*}

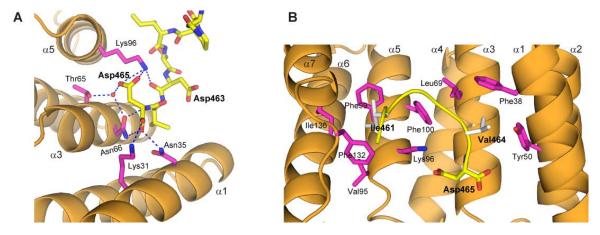
From ¹MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China, ²State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, Tsinghua University, Beijing 100084, China, and ³MOE Key Laboratory of Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China

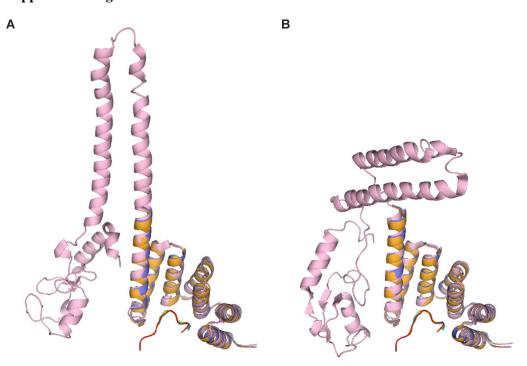

Running title: CHIP-mediated repression of Smad1/5

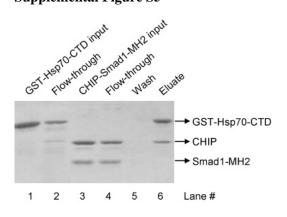
*Address correspondence to: Jia-Wei Wu, School of Life Sciences, Tsinghua University, Beijing 100084, China; Phone: 86-10-62789387; Fax: 86-10-62792826; E-mail: jiaweiwu@mail.tsinghua.edu.cn.

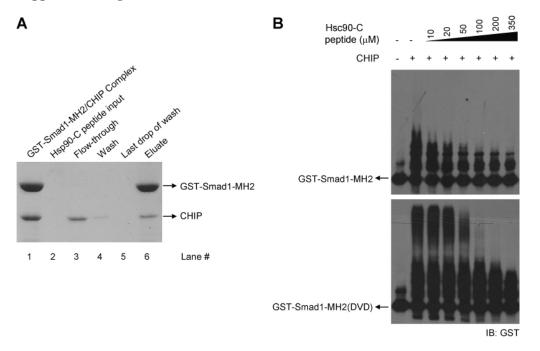

Protein	Vector	Affinity column	Ion exchange	Gel filtration
CHIP	pGEX-4T-2	GST	Source-15Q Source-15S	
CHIP-TPR	pET-Duet-1	Ni-NTA	Source-15S	
CHIP-CC	pGEX-4T-2	GST	Source-15Q	
CHIP-Ubox	pGEX-4T-2	GST		Superdex-200
CHIP-∆TPR	pGEX-4T-2	GST		Superdex-200
Smad1	pGEX-4T-2	GST	Source-15Q	Superdex-200
Smad1-MH1	pGEX-4T-2	GST		
Smad1-MH1-L	pGEX-4T-2	GST		
Smad1-L-MH2	pGEX-4T-2	GST	Source-15Q	Superdex-200
Smad1-MH2	pGEX-4T-2	GST	Source-15Q	Superdex-200
Smad2-MH1	pGEX-4T-2	GST		
Smad2-L-MH2	pGEX-4T-2	GST	Source-15Q	Superdex-200
Smad2-MH2(DMD)	pET-21b		Sp sepharose Q sepharose	
Smad3-MH1	pGEX-4T-1	GST		
Smad3-L-MH2	pGEX-4T-2	GST	Source-15Q	Superdex-200
Smad4-MH1	pGEX-4T-2	GST		
Smad4-L-MH2	pGEX-4T-2	GST	Source-15Q	Superdex-200
Smad5-MH1	pGEX-4T-2	GST		
Smad5-L-MH2	pGEX-4T-2	GST	Source-15Q	Superdex-200
Hsp70-CTD	pGEX-2T	GST	Source-15Q	
E1	pET-Duet-1	Ni-NTA		
E2(UbcH5a)	pET-Duet-1	Ni-NTA		
Ubiquitin	pET-Duet-1	Ni-NTA	Source-15Q	Superdex-200

Supplemental Table S1. Detailed purification procedures for proteins used


GST- or His_6 -tag was proteolytically removed from the fusion proteins to prepare nontag proteins. All point mutants used were similarly purified to their corresponding wild-type proteins.


Supplemental Fig. S1 Structure-based sequence alignment of TPR domains that bind to heat shock proteins. The secondary structural elements of CHIP-TPR are shown above the sequences. Residues on CHIP-TPR that are involved in hydrophilic and hydrophobic interactions with Smad1 and Hsp70/90 are indicated by red triangle and green diamond, respectively.


Supplemental Fig. S2 Stereo image of the $2F_o$ - F_c map (green mesh) around the phosphor-Smad1 peptide (cyan sticks). CHIP-TPR is colored in slate, and residues surrounding Smad1 peptide are shown in sticks.


Supplemental Fig. S3 Hydrophilic and hydrophobic contacts between CHIP-TPR and the pseudophosphorylated Smad1(DVD) peptide. The two views were oriented same as the ones in Fig. **3C** and **3D**, respectively. (**A**) Hydrogen bond networks at the interface of CHIP-TPR and Smad1(DVD) peptide. CHIP-TPR is colored in orange and the critical residues are highlighted in magentas sticks. The Smad1 peptide is shown as yellow sticks. (**B**) van der Waals contacts between CHIP-TPR and pseudophosphorylated Smad1 peptide. The Smad1 peptide is shown as yellow ribbon and the hydrophobic residues are highlighted in grey sticks.

Supplemental Fig. S4 Superposition of the CHIP-Smad1 structures with the counterparts in the dimeric structure of full-length CHIP in complex with Hsp90-C peptide (PDB ID: 2C2L). The two asymmetric full-length CHIP molecules are colored in pink and the bound Hsp90-C peptides in red. The CHIP-Smad1 peptide structures are colored the same as Fig. **3A** and **3B**.

Supplemental Fig. S5 Disruption of CHIP-Smad1 complex by Hsp70-CTD. Recombinant GST-Hsp70-CTD was first bound to 0.2 ml Glutathione Sepharose 4B resin. The resin was washed five times with 1.0 ml buffer to remove excess unbound Hsp70 or other contaminants. Then, non-tagged CHIP-Smad1 complex was allowed to flow through the resin. After extensive washing, the bound proteins were eluted with 5 mM reduced glutathione, and all fractions were visualized by SDS-PAGE with Coomassie Blue staining.

Supplemental Fig. S6 Hsp90-C peptide disrupts CHIP-Smad1 interaction and inhibits CHIP-mediated Smad1 ubiquitination. (**A**) Hsp90-C peptide competing with Smad1 for CHIP binding. The complex of GST-Smad1 and CHIP was loaded to the resin, followed by the addition of the Hsp90-C peptide. The column was then washed extensively and eluated with reduced glutathione. Samples were visualized by SDS-PAGE with Coomassie Blue staining. (**B**) Hsp90-C peptide antagonizing CHIP-mediated Smad1 ubiquitination. *In vitro* ubiquitination assays were performed in the absence or presence of increasing amount of Hsp90-C peptide.