
Nucleic Acids Research, 1993, Vol. 21, No. 3 607-613

Identification of coding regions in genomic DNA
sequences: an application of dynamic programming and
neural networks

Eric E.Snyder and Gary D.Stormo
Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder,
CO 80309-0347, USA

Received October 7, 1992; Revised and Accepted December 28, 1992

ABSTRACT

Dynamic programming (DP) is applied to the problem
of precisely identifying internal exons and introns in
genomic DNA sequences. The program GeneParser
first scores the sequence of interest for splice sites and
for these intron- and exon-specific content measures:
codon usage, local compositional complexity, 6-tuple
frequency, length distribution and periodic asymmetry.
This information is then organized for interpretation by
DP. GeneParser employs the DP algorithm to enforce
the constraints that introns and exons must be adjacent
and non-overlapping and finds the highest scoring
combination of introns and exons subject to these
constraints. Weights for the various classification
procedures are determined by training a simple feed-
forward neural network to maximize the number of
correct predictions. In a pilot study, the system has
been trained on a set of 56 human gene fragments
containing 150 internal exons in a total of 158,691 bps
of genomic sequence. When tested against the training
data, GeneParser precisely identifies 75% of the exons
and correctly predicts 86% of coding nucleotides as
coding while only 13% of non-exon bps were predicted
to be coding. This corresponds to a correlation
coefficient for exon prediction of 0.85. Because of the
simplicity of the network weighting scheme,
generalization performance is nearly as good as with
the training set.

INTRODUCTION
Until recently, the cloning and sequencing of a gene was one
of the most difficult steps in the characterization of a protein.
Often years of research into the physical and biochemical
properties of a protein were amassed before determination of the
genomic DNA sequence. Recent advances in DNA sequencing
technology have changed this pattern. Current techniques in
molecular biology allow the cloning of a gene with only the most
basic knowledge of the protein in question. Often only an
antibody, a few amino acids of protein sequence, or even a mutant
phenotype in an experimental organism is sufficient to obtain a
cDNA clone of a gene of interest. Obtaining the genomic

sequence given a cDNA clone is straightforward. As a
consequence,DNA sequence repositories such as GenBank have
been growing at an astonishing rate.

Perhaps the most important advance in DNA sequencing
technology is a conceptual one. With the initiation of projects
to sequence the human genome and the genomes of the major
experimental organisms, the determination of sequence data will
no longer be dictated by the progress of biochemistry or genetics.
Instead, the sequencing of genomic DNA will be done en masse,
creating a huge database of unannotated sequence data for each
organism. It is likely that by the turn of the century or shortly
thereafter the sequence of the entire genomes of many organisms
will be known. This will result in a fundamental change in the
way we tiink of biology.

Current methods
Many useful sequence classification algorithms have been
developed over the past ten years. Only recently have methods
been developed which combine multiple pieces of evidence to
predict coding regions in genomic DNA. To date, these
approaches fall into two categories: methods using a rule-based
approach for gene structure prediction and methods which use
connectionist AI techniques to predict coding regions. In the
former class, typified by the programs GeneID [1] and
GeneModeler [2], sequence motifs such as start and stop codons
and splice sites are evaluated and these features used to define
candidate exons and introns. The sequences are then scored for
properties such as codon usage and assembled by the application
of rules to produce likely coding regions. The program GRAIL
[3] is representative of the latter class. GRAIL identifies exons
by combining information from numerous content statistics and
weighting these scores using a neural network. GRAIL performs
this task well, however its output shows only the positions of
candidate exons on a linear sequence and does not attempt to
produce assembled genes.

Advantages of current approach
To date, GeneModeler and GeneID are the only integrated
packages that predict gene structure from genomic DNA
sequence. While these programs are useful, they fall short of
the accuracy required for interpretation of data from the genome



608 Nucleic Acids Research, 1993, Vol. 21, No. 3

sequencing projects. Furthermore, there may be fundamental
limitations to the rule-based approach to gene identification. With
this in mind, we propose a new approach to solving this problem.
Dynamic programming (DP) is a recursive optimization

procedure first used in sequence analysis by Needleman and
Wunsch in 1970 [4]. This method was originally applied to
sequence alignment and later to RNA folding [5] and can be
readily adapted to 'RNA splicing', the joining together of exons
to form a complete coding sequence. In DNA sequence
alignment, an alignment score is maximized by finding the path
through an alignment matrix which maximizes the number of
matches and minimizes the number of gaps and mismatches. In
analogy, a sequence is divided into introns and exons by finding
the best internally consistent set of high-scoring intron and exon
subsequences. In contrast to the heuristic, rule-based approaches
of GeneModeler and GeneID, DP accomplishes an exhaustive
and mathematically rigorous search for the globally optimum
solution. Furthermore, since DP deals with numerical scores
rather than just lists of sequences which satisfy a given criterion,
DP can produce ranked solutions with a more meaningful
dependence on the scores of component introns and exons than
GeneModeler or GeneID.

This ability to deal with numerical scores gives another critical
edge to the current approach: machine learning algorithms can
be used to fine-tune the sequence classification parameters. A
priori there is no way to weight the individual tests used to classify
sequences. For example, coding sequences are known to show
codon preference and possess high local compositional
complexity, but it is unclear how these parameters scale with
respect to one another. If the contribution of each bit of evidence
is additive and independent of the other parameters, it may be
possible to use simple regression techniques to weight these
parameters. In the more likely case that this is not true,
connectionist learning algorithms such as the back-propagation
neural network may be the best way to find a function that maps
the various classification parameters to a score that DP can use.
This process works by repeatedly presenting correct solutions
to the neural network along with the raw input scores. The
network calculates a solution based on the raw input scores and
the current weight values. If the solution is incorrect, the network
determines the error and makes a small change in the weights
to decrease the error. This process is repeated until the weights
accomplish the mapping to the desired degree of accuracy. In
principle at least, it is possible to train a network to correctly
find all known genes in GenBank. One then hopes the learned
weights are sufficiently realistic to find and predict the structure
of genes in unknown sequences.

METHODS
Dynamic programming is the pivotal element of this new
approach to coding sequence identification. This application of
this technique will be discussed first. Next, the intron and exon
classification statistics will be introduced. Finally, the methods
used to weight these statistics will be outlined.

Dynamic programming
Imagine that given an N-long sequence of genomic DNA, one
could produce two half-matrices, LE and Is, in which for every
subsequence starting at position i and ending at position j, there
were corresponding matrix elements, LE(ij) and L1(ij), which
represent the log-likelihood that the subsequence is an exon or

an intron, respectively. Given such a matrix, it is possible to apply
dynamic programming [7] to find the optimum splicing pattern
based on the evidence presented in the matrices. DP is used to
enforce the constraints that introns and exons alternate in pre-
mRNA and that these sequences are contiguous. DP is used to
produce two vectors, DE and DI, in which each element contains
the score for the best combination of introns and exons ending
at position j. Element DE() contains the score for a solution
ending in an exon; DIU) contains the score for a solution ending
in an intron. The elements of can be calculated by the recursion:

LE0,I)
DE() = max max [LE(kj) + DXk- 1)]

k:2-j-m

where m is the arbitrary minimum sequence length considered
(usually 20 nucleotides). DI is obtained in an analogous way.
Taking the equation for DE as an example, DE() is the
maximum of three possibilities:

* DE(j) = LE(I j)
The segment from 1 to j exactly defines an exon.

* DE() = n?aXk:2-j_m[LE(kd) + DR- 1)]
The segment from 1 toj ends in an exon. The 5'-end of the
exon is at position k. DE() is then the score for the best
combination of the exon LE(kj) plus the best combination
ending in an intron at position k-i. The score of this
sequence is found in D1(k- 1) (as determined earlier in the
recursion). The value of DI(k- 1) may be zero if there are
no apparent introns preceding the exon at position k.

* DE() = 0
The scores for the two previous cases are both negative and
are not considered further (i.e. there is no legitimate
combination of sequences with an exon ending at position
j).

Thus, DE() represents the score for the best internally consistent
set of introns and exons with an exon ending at positionj.
Sequence characterization statistics
DP is a rigorous method for interpreting the data presented in
the L matrices. One must now devise a way to obtain such data.
Unfortunately, there is no single statistic which exactly captures
what it means to be an intron or an exon. However, there exist
a multitude of tests which can quantify the various properties
characteristic of these sequences. These tests will be discussed
in this section. It is hoped that by weighting these parameters
appropriately, these statistics can be combined into a single
number which is a close approximation of the log likelihood
information required for interpretation by DP.

Codon usage. The 64 triplets of the genetic code are used with
unequal frequency in protein coding regions due to the amino
acid composition of proteins and the unequal usage of
synonymous codons [8]. In addition, there exists a strong
correlation between adjacent codons in coding regions [9]. To
capitalize on both of these effects, a table of in-frame 6-tuples
was generated from the database of human genes used by
Hutchinson and Hayden [10] to generate the codon usage table
used in the program SORFIND. An unknown sequence can be
compared to this standard and a likelihood estimate can be
calculated [11]. This statistic allows one to determine whether
a sample of in-frame 6-tuples is better modeled by random
selection or one whose frequencies are that of the 6-tuples usage
of the organism. In this statistic each reading frame is



Nucleic Acids Research, 1993, Vol. 21, No. 3 609

independent. Furthermore, the statistic is equally valid in coding
and non-coding regions as well as regions of mixed coding and
non-coding character.

Local compositional complexity. Eukaryotic genomes contain
large amounts of repetitive DNA sequences referred to as simple
sequence DNA. These sequences are typically found in noncoding
regions of the genome. In contrast, coding regions tend to be
informationally rich. This property is quantified by the Shannon
information [12]. Konopka and Owens [13] have defined local
compositional complexity as the Shannon information content of
short subsequences (in our case, 8 nucleotides) averaged over
the length of the sequence and have used this property to
distinguish between coding and non-coding sequences.

Length distribution. Exons and introns have characteristic length
distributions which can be used as evidence for their classification.
Frequency histograms of exons and introns from the SORFIND
database were prepared using bin sizes of 25 and 100 nucleotides,
respectively. These values were normalized such that the most
frequent sequence length of each type received a score of 1.0.
In addition, putative intron sequences of length less than 70
nucleotides receive a score of zero to enforce the apparently hard
constraint on the lower limit for intron length [14][15].

k-Tuple frequencies. A nucleotide sequence can be interpreted
as a series of overlapping k-long words called k-tuples. The
frequencies of these k-tuples can differ greatly between
functionally different classes of sequences [16][17] [18] and can
be used to discriminate between these classes. A table of 6-tuple
frequencies for introns and exons was complied from the
sequences in the SORFIND database. As in the codon usage
statistic, the log-likelihood ratio for a given subsequence being
either an exon or intron can be calculated from their respective
6-tuple frequency tables.

Splice signals. Using the collection of splice junction sequences
of Senapathy and Shapiro [19], weight matrices were calculated
for the donor and acceptor sequences [20]. An intron must be
bounded at the 5'-end by a donor site and at the 3'-end by an
acceptor site. Similarly, internal exons must be bounded by a
5' acceptor site and a 3' donor site. These constraints on the
sequence surrounding intron-exon junctions are very useful in
precisely defining the ends of these sequences when used in
conjunction with search-by-content measures.

Integration of dynamic programming and machine learning
Using a set of arbitrary initial weights for the classification
parameters, dynamic programming will fail to parse sequences
correctly. The power of this method is that it is exactly these
errors that are fed back to the learning algorithm to fine-tune
the network weights to give better predictions. Let T"i(a,b)
represent the raw score for statistic i (e.g. codon usage) of the
exon starting at position a and ending at position b. This number
is stored in layer i of the matrix TE and need be calculated only
once in the training session. Similarly, T,J1(a,b) represents the
score for statistic i given an intron and is stored in layer i of
TI. We define the LE matrix value for exon starting at position
a and ending at position b as the weighted sum of all contributing
statistics, calculated as follows:

LE(a,b) =1 + e-Elxi(Ti(a,b)+cxj)

Correct

b c d
N

c' d' eI

Incorrect

Figure 1. An example sequence. The figure above the line shows the correct
partitioning of the sequence, the figure below the line an incorrect partitioning.
The solid boxes correspond to exons, the open boxes to introns. Internal positions
are labeled corresponding to the ends of the corresponding exon.

Input

ATXl .

Cxi

ATx2 I j

Hidden

Wxi

Output = 1 + ex

A # of Exons I

AT,2 *-

AT I *-

AT ,

A # of ]

Figure 2. Training by inequality is accomplished with this network design. The
input values are the differences between the correct and incorrect solutions for
each statistical test (ATXj for exons and AT for introns) and the difference in
the number of predicted exons and introns. 1.e nodes in the hidden layer calculate
the sum of the score-difference inputs and the number-difference inputs times
the biases (the cx, and ci,, values). These sums are multiplied by the weights w,i
and w i to give the input to the output node. The output node calculates the
logistic function on its input. The inequality is satisfied when 0.5 < output c 1,
so we train to a target value of 1.0.

a, b'

ATxn I -

C[w



610 Nucleic Acids Research, 1993, Vol. 21, No. 3

where w,i is the weight and cXi is the bias for statistic i. The
elements of LI are calculated in an analogous way.
Given the information in LE and LI, DP finds the highest

scoring combination of adjacent and non-overlapping introns and
exons in the sequence. Take for example the correct and incorrect
solutions shown in Figure 1. The DP score for each solution,
X, is given by:
D(X=actual) = LEAa,b)+L/(b+ 1,c-1)+LE(c,d)
D(X=incorrect) = LE(a',b)+LXb'+1,c'-1)+LEr(c',d')

+L/d'+J ,e'- 1)

One wishes to find a set of weights and biases that satisfy the
following expression:
D(X=actual) > D(X' E (incorrect))

Tlhus, the actual structure of the gene must have a higher score
than any possible incorrect solution. A neural network [21] has
been designed to find weights that satisfy this inequality (see
Figure 2). The input to this network consists of the difference
between the sum of the scores of each statistic for the correct
solution and a given incorrect solution. Using the example, the
input value for statistic i for exons and introns would be calculated
as follows:

ATxi = Txi(a,b)+ Txib,c)-Txi(a ',b ')-Txi(b ',c)
ATwi = T,w,b+ 1,c- 1)-T,i (b'+ 1,c'-1)-T,4(d'+ 1,e'-1)
The inputs from which the constant terms are derived are simply
the difference between the number of actual exons or introns and
the number in the incorrect solution. In the example, this input
would be zero for exons and -J for introns.
Training is accomplished using the following procedure:

1. Initialize random weights
2. Construct T matrices for each sequence

(contain raw sequence classification statistics for all
subregions)

3. Construct L matrices for each sequence
(contains weighted composite score from corresponding
elements in T)

4. Run dynamic programming on each set of L matrices
5. Test: Is desired accuracy obtained?

Yes: STOP
No: CONTINUE

6. Train neural network: Iterate training procedure to
convergence

7. Update weights to reflect training
8. GOTO 3.

Training and test data
A training set was assembled from the human genes used in the
training of the program GeneID. Three loci (HUMP45C17,
HUMPAIA and HUMPRPH1) were omitted from the training
set to avoid duplication in the independent test set used to evaluate
GRAIL. These sequences were cropped for the purposes of
taining to encompass the first and last introns plus approximately
50 nucleotides 5' and 3', respectively. This was done to avoid
down-weighting the splice site parameters if the program were
forced to find splice sites for the distal boundaries of the terminal
exons when in fact these boundaries are defined by start and stop
codons.
Three test sets were used to evaluate the perfonnance of

GeneParser. The first set was based on the genes used to evaluate
the program SORFIND. All genes except HUMFCREB (CDS

not indicated) and HUMFIBRA (CDS listed as 'putative') that
were not found in the training set or in the GeneID and GRAIL
test sets (see below) were used. The sequences were cropped
to embrace all but the terminal exons, as in the training set. In
order to facilitate the comparison of this program with previous
methods, the test sets of both GeneID and GRAIL were used.
Locus HAMRPS14A was omitted from the GeneID set because
it was not present in GenBank release 71; HUMTPA was omitted
from the GRAIL set because it exceeded the upper limit for the
length of sequences which GeneID could analyze. When
evaluating the performance on these sequences, the entire locus
was used, including terminal exons and intergenic DNA. The
data on the performance of the current email server versions of
GRAIL and GeneID were generously provided by Steen Knudsen
and Roderic Guigo (personal communication).

RESULTS AND DISCUSSION
Comparison with GenelD and GRAI,
The results on the training and test sets at the levels of complete
intron and exon sequences and nucleotide prediction are
summarized in Tables 1 and 2. Two scoring schemes were used
to evaluate the performance of GeneParser. In scheme 1, only
sequences between the first and last exons were considered;exons
and introns outside this region were not included in the totals.
This scheme was chosen because it mirrors the type of data that
was used for mtaining the neural network. Scheme 2 analyzes the
entire GenBank locus, including terminal exons and intergenic
DNA. This scheme was chosen to allow direct comparison with
the performance figures for GRAIL and GeneID.
Of the 56 training sequences, GeneParser learned to exactly

predict the intron-exon structure of 19 of these examples (34%).
At the level of complete exon sequences, 113 of 150 exons were
precisely identified (75%) and an additional 11 exons were
predicted by overlap, bringing the total number of exons ideified
to 124 (85%). The remaining 36 predictions did not overlap actual
exons. When the performance on the training set is analyzed at
the nucleotide level, 86% of the coding bases are predicted to
be in exons and 86% of the predicted coding bases are actually
coding. Over all, the correlation coefficient [22] for exon
prediction (CE) is 0.85.
The generalization performance ofGeneParser was tested under

scoring scheme 1 using the SORFIND test set. Of the 58
sequences, the structure of only 10 were exactly predicted (17%).
However, the overall performance on this data was actualy
slightly better than on the training set. 211 of 279 exons were
precisely identified (76%), with another 42 predicted by overlap.
In all, 253 exons (91 %) were at least partially predicted. This
increased performance probably reflects the use of this large pool
of sequences to compile the 6-tuple and in-frame 6-tuple tables.
GeneParser was tested on the GeneID and GRAIL test sets

using scoring scheme 1. Considering the combined results at the
level of complete sequences, the performance was not
significanty reduced relative to the training set. Small reductions
in sensitivity for both exon and intron prediction were offset by
small increases in specificity. At the level of nucleotides, CE
went from 0.85 in the training set to 0.82 in the combined test
set, CI showing a larger decrease from 0.80 to 0.71.
Using scoring scheme 2, a direct comparison between our

program and GeneID and GRAIL can be made. One should keep
in mind the following when comparing these results: GRAIL and
GeneParser were specifically trained on human genes. GeneID



Nucleic Acids Research, 1993, Vol. 21, No. 3 611

was developed for use on vertebrate genes in general. The
GeneID training set also contains sequences from non-human
vertebrates. Furthermore, GeneID and GeneParser were

developed to analyze more restricted classes ofDNA sequences.

GeneID was intended for the analysis ofpre-mRNA. GeneParser
was developed to parse internal exons and introns.
With this in mind, the perfonnance of GeneParser under these

conditions was not surprisingly reduced. Considering the GRAIL
and GeneID test sets together, the ability to precisely predict

exons fell to 46%. However, 73% of these exons were still
predicted by overlap. At the nucleotide level, 72% of the coding
region was predicted to be coding while 73% of the predicted
coding region was in fact coding, corresponding to a correlation
coefficient of 0.68. It should be noted that the sensitivity of
GeneParser exceeds that of GeneID and GRAIL on both data
sets. This number is partially offset by reduced specificity,
however CE for GeneParser on this data exceeds that of the
other methods by a small margin.

Table 1. Results by sequence.

Data Set Seq Total True False False GeneParser
t Type Pos Pos Neg Sn Sp

Training Exon 150 111 67 39 74% 62%
Intron 202 111 114 91 55% 49%

Test Exon 279 211 102 68 76% 67%
SORFIND Intron 335 213 151 122 64% 59%
Test Exon 61 41 36 20 67% 53%
GRAIL Intron 78 41 53 37 53% 44%
Test Exon 113 79 33 34 70% 71%
GENEID Intron 140 74 62 66 53% 54%
Test Exon 174 120 69 54 69% 64%
COMBINED Intron 218 115 115 103 53% 50%

Data Set Seq Total True False False GeneParser
t Type Pos Pos Neg Sn Sp

Test Exon 98 41 77 57 42% 35%
GRAIL
Test Exon 167 82 85 85 49% 49%
GENEID
Test Exon 265 123 162 142 46% 43%
COMBINED

Results in terms of complete exons and introns precisely predicted. Sn, Sensitivity = tpl(tp+ffi), Sp, Specificity
= p(tp +fpf). t Performance is scored over internal exons and introns. t Performance is score over the entire
GenBank entry, including terminal exons and intergenic sequences.

Table 2. Results by nucleotide.

Data Set Seq Total True False False GeneParser GeneID GRAIL
t Type Pos Pos Neg Sn Sp CC Sn Sp CC Sn Sp CC

Training Exon 22302 19317 2950 2985 86% 87% 0.85
Intron 136389 130414 2317 5975 95% 98% 0.80

Test Exon 43124 40445 5141 2679 93% 89% 0.89
SORFIND Intron 209490 198509 2538 10981 94% 99% 0.83
Test Exon 8024 7380 2473 644 91% 75% 0.81
GRAIL Intron 77263 73380 451 3883 94% 99% 0.77
Test Exon 16720 13535 1536 3185 80% 90% 0.83
GENEID Intron 82988 75828 3116 7160 91% 96% 0.67
Test Exon 24744 20915 4009 3829 84% 84% 0.82
COMBINED Intron 160251 149208 3567 11043 93% 98% 0.71

Data Set Seq Total True False False GeneParser GeneID GRAIL
t Type Pos Pos Neg Sn Sp CC Sn Sp CC Sn Sp CC

Test Exon 17239 12944 6617 4295 75% 66% 0.66 67% 74% 0.66 65% 86% 0.72
GRAIL
Test Exon 25358 17299 4795 8059 68% 78% 0.69 65% 78% 0.67 48% 87% 0.61
GENEID
Test Exon 42597 30444 11211 12153 72% 73% 0.68 66% 77% 0.67 55% 87% 0.66
COMBINED

Results analyzed at the level of individual nucleotides. Sn, Sensitivity = tp/(tp+ffi), Sp, Specificity = tp/(tp+ft). Correlation Coefficients (CC) were calculated
as in [22]. t Performance is scored over intemal exons and introns. : Performance is score over the entire GenBank entry, including tminal exons and intergenic sequences.
The data for GeneID and GRAIL was generously provided by and Roderic Guigo and Steen Knudsen.



612 Nucleic Acids Research, 1993, Vol. 21, No. 3

Strengths and weakness of GeneParser
The performance of the current implementation of GeneParser
is quite promising. Given a region known to contain internal
exons, the program does an excellent job at predicting the intron-
exon structure of the gene. GeneParser does particularly well
on short exons, a problem that most programs find especially
difficult. Of the 18 exons in the training set of 60 nucleotides
or less, 12 (67%) were correctly predicted. Similarly, 6 of 10
of these short exons were predicted in the SORFIND test set,
indicating that this property is capable of generalizing to novel
data. On the other hand, GeneParser has difficulty accurately
predicting long introns. Ofthe 13 introns in the training set greater
than 2000 nucleotides in length, only 5 (38%) were accurately
predicted. When these introns are missed, a short exon is often
included within the intron. This is a property of the DP model--
given a choice of a single high-scoring long intron and two shorter
introns and an exon with intermediate scores covering the same
interval, DP will choose the later if the sum of their scores
exceeds the former. However, these long introns comprise only
6% of the introns in the training set. This clearly represents a
tendency of the network to learn the weights which optimize
performance on the majority of the data at the expense of
performance on outliers in the population.

Computational aspects
There is no fundamental limit to the length of sequences which
GeneParser can analyze. The current version has been tested on
sequences as long as 73,000 nucleotides. The memory
requirement of the program grows linearly with sequence length
and the run time increases with the square of the sequence length.
However, if the user wishes to limit the maximum intron or exon
length considered (thereby limiting the number of matrix elements
calculated and searched), the program will run in linear time once
the length of the input sequence exceeds this limit. Run time is
not dependent on the number of predicted introns or exons in
the solution.

Conclusions
We do not claim that the training or test sets are free from
homologous sequences nor do we claim that these sequences used
in this study are necessarily representative of GenBank. However,
the ability of GeneParser to perform as well on novel data
indicates that generalizability of the method or network weights
learned in training is not a major problem. This criticism is often
leveled at neural network approaches to problem solving. In our
case, the reason that this is not a problem is undoubtedly due
to the small number (24) of adjustable parameters in the network.
Since thousands of examples are accumulated in the training stage,
it is not possible to over fit or 'memorize' the training set. This
ensures the good generalization properties we see with
GeneParser.

In its current implementation, GeneParser is a two-state
classifier: iInternal exon and intron. For both classes, boundaries
are determined by splice site weight matrices. The program
knows nothing about the signals that determine the ends of coding
sequences. Not surprisingly, GeneParser performed less well on
the GRAIL and GeneID test sets which contain not only terminal
exons but intergenic sequences as well. However, it is remarkable
that GeneParser still does slightly better than GeneID, which uses
specific weight matrices to find the boundaries of terminal exons.

We are confident that when the DP algorithm is expanded to a
four-state classifier, the performance can be significantly
improved.

FUTURE WORK
The development of GeneParser is still underway. We plan a
number of additions which should increase performance on the
biologically important task of precisely identifying coding in
uncharacterized genomic DNA sequences. First, procedures can
be added to allow a more precise determination of the ends of
terminal exons. This also requires a modification of the DP
algorithm to search two additional L matrices, one for 5' terminal
exons and one for 3' exons. However, since these exons may
well differ in the character of their content statistics, the improved
performance will certainly be worth the additional complexity.

In its current form, GeneParser does not use reading frame
compatibility as a constraint when linking predicted exons.
However, this is an important constraint which can be
incorporated into the DP algorithm with a modest computation
expense. This will help the program avoid placing small, low
scoring exons within long introns which can sometimes cause
frame shifts when translating the predicted gene product.

Finally, there are additional statistics which can be used to
better classify sequences. The Fickett TESTCODE statistic [23]
and Konopka's distance analysis method [24] measure
characteristic periodicities in intron and exon sequences. GeneID
makes use of the first derivative of the codon usage function to
help reduce the number of false-positive splice sites.In addition,
the use of a branchpoint weight matrix could also help identify
genuine acceptor sites. Finally, searching protein databases for
similarity with short translated segments from putative exons
could also be used as evidence that a segment is actually coding.

In addition, we are not limited to the simple linear weighting
model used in the current work. It is possible to add additional
hidden layers to the neural network. This can allow us to model
non-additive interactions between the various classification
statistics. For example, there is evidence in at least some species
that the 5' splice sites of longer introns more closely resemble
the consensus than those of shorter introns [25]. Thus, it might
be desirable to give the Is value for a short intron with a poorer
acceptor site a slightly higher score than either of the two statistics
alone might indicate. If such non-linear relationships exist
between scoring parameters, a network with hidden layers should
be able to exploit them to model the data more closely.

Sub-optimal solutions
Extending this method to give suboptimal solutions is
straightforward. Unlike sequence alignment procedures in which
great pains are taken to avoid 'trivial' variations on the optimum
alignment [26], this is often what is desired in gene structure
determination. In many examples of alternative splicing, there
may be small changes in the use of particular splice sites or choice
of possible exons. These suboptimal solutions can be found by
systematically eliminating specific introns and exons from
consideration by setting their corresponding L matrix score to
- oo and re-running the DP procedure. Doing this for each intron
and exon in the optimal solution would generate a set of
suboptimal solutions, each with a DP-derived score which can
be used to rank these solutions.



Nucleic Acids Research, 1993, Vol. 21, No. 3 613

Application to non-human organisms
While GeneParser was developed and tested for use on human
DNA sequences, the program is easily adapted for use on
sequences from other organisms. Having prepared splice site
weight matrices, k-tuple and length distribution tables appropriate
for that species, the network weights can be learned as before.
In future versions of GeneParser, we plan to include tables and
network weights optimized for performance on a variety of
experimental organisms including Drosophila and C.elegans.

Error tolerance
In the development of GeneParser, we have consciously chosen
statistics which use predominantly local information. With the
exception of the codon usage statistic, all sequence classification
parameters are quite tolerant of frameshift errors in the input
sequence. Since uncharacterized genomic sequences are very
likely to contain such errors, this should greatly enhance the utility
of this program. Furthermore, the ability to train GeneParser on
sequences with different levels of simulated sequencing errors
allows the development of network weight profiles specifically
adapted to the anticipated error rate in the sequences one plans
to analyze. For example, if frameshift errors were known to be
common, this might be reflected in a down-weighted codon usage
statistic and an increased weight for the 6-tuple frequency statistic.

12. Shannon, C. E., Weaver, W. (1964) The Mathematical Theory of
Communication. The University of Illinois Press, Urbana, Illinois.

13. Konopka, A. K., Owens, J. (1990) Gene Anal. Techn. Appl. 37: 35-38.
14. Wieringa, B., Hofer, E., Weissmann, C. (1984) Cell 337: 915-925.
15. Ulfendahl, P. J., Pettersson, U., Akusjarvi, G. (1985) Nucl. Acids. Res.

313: 6299-6315.
16. Bougueleret, L., Tekaia, F., Sauvaget, I., Claverie,J.-M. (1988) Nucl. Acids.

Res. 316: 1729-1738.
17. Claverie, J.-M., Bougueleret, L. (1986) Nucl. Acids. Res. 314: 179-196.
18. Claverie, J.-M. Sauvaget, I., Bougueleret, L. (1990) Meth. Enzymol. 3183:

237-252.
19. Shapiro, M. B., Senapathy, P. (1987) Nucl. Acids. Res. 315: 7155-7174.
20. Stormo, G. D. (1987) Identifying Coding Sequences. In: Nucleic Acid and

Protein Sequence Analysis: A Practical Approach. Eds. M. J. Bishop, C.
J. Rawlings, IRL Press.

21. Rumelhart, D. E., Hinton, G. E., Williams, R. J. (1988) Learning internal
representations by error propagation, In: Parllel Distributed Processing,
Explorations in the Microstructure of Cognition, Volume 1: Foundations,
pp. 318-362, eds.: Rumelhart, D. E., McClelland, J. L. and the PDP
Research Group, Cambridge, MA, MIT Press.

22. Brunak, S., Engelbrecht, J., Knudsen, S. (1991) J. Mol. Biol. 3220: 49-65.
23. Fickett, J. W. (1982) Nucl. Acids. Res. 310: 5303-5318.
24. Konopka, A. K., Smythers, G. W., Owens, J., Maizel, J. V. (1987) Gene

Anal. Techn. Appl. 34: 63-74.
25. Fields, C. (1990) Nucl. Acids. Res. 318: 1509-1512.
26. Waterman, M. S., Eggert, M. (1987) J. Mol. Biol. 3197: 723-728.

AVAILABILITY

GeneParser was developed on a Silicon Graphics Indigo
workstation and provides graphic plots of T- and L-matrix data
to aid in analysis and interpretation. Versions without graphics
output can be ported to a variety of Unix platforms. Contact the
authors at the above address or by electronic mail to
eesnyder@boulder.colorado.edu.

ACKNOWLEDGEMENTS
We would like to thank Roderic Guigo and Steen Knudsen for
helpful discussion regarding performance analysis and test data
selection as well as generously providing their data on the
performance of GeneID and GRAIL on the test data. This work
benefitted from discussions at the 'Recognizing Genes' workshop
at the Aspen Center for Physics. This work was supported by
NIH grant HG00249.

REFERENCES
1. Guigo, R., Knudsen,S., Drake, N., and Smith, (1992) J. Mol. Biol. 141-157.
2. Fields, C. A., Soderlund, C. A. (1990) Computer Appl. Biol. Sci. 36:

263-270.
3. Uberbacher, E. C., Mural, R. J. (1991) Proc. Natl. Acad. Sci. USA 388:

11261-11265.
4. Needleman, S. B., Wunsch, C. D. (1970) J. Mol. Biol. 348: 443-453.
5. Nussinov, R., Jascobson, A. B. (1980) Proc. Natl. Acad. Sci. USA 377:

6309-6313.
6. Zucker, M., Stiegler, P. (1981) J Nucl. Acids. Res. 39: 133-148.
7. Nemhauser, G. L. (1966) Introduction to Dynamic Programming. John Wiley

and Sons, Inc., New York.
8. Staden, R., McLachlan, A. D. (1982) Nucl. Acids. Res. 310: 141-156.
9. Farber, R., Lapedes, A., Sirotkin, K. (1992) J. Mol. Biol. 3226: 471-479.

10. Hutchinson, G. B., Hayden, M. R. (1992) Nucl. Acids.
11. Gribskov, M. Devereux, J., Burgess, R. R. (1984) Nucl. Acids. Res. 312:

529-549.


