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ABSTRACT
Models have been developed that allow the biological
activity of a DNA segment to be altered in a desired
direction. Partial least squares projections to latent
structures (PLS) was used to establish a quantitative
model between a numerical description of 68 bp
fragments of 25 E.coli promoters and their
corresponding quantitative measure of in vivo strength.
This quantitative sequence-activity model (QSAM) was
used to generate two 68 bp fragments predicted to be
more potent promoters than any of those on which the
model originally was based. The optimized structures
were experimentally verified to be strong promoters in
vivo.

INTRODUCTION
We are here concerned with the relation between the composition
of a DNA sequence and its associated biological activity. The
analysis of sequence data has traditionally been concentrated on
qualitative pattern recognition (i.e. classification). This involves,
for example, models that are based on the observed similarity
(i.e. homology) between sequences (1-5). Homology based
models have also been used in attempts to model the magnitude
of functional properties of sequences (6). Such models have,
however, been criticized for being of limited predictive value
(7, 8). Here we aim to demonstrate that sequence data may carry
two complementary pieces of information. The first part is the
homology, i.e. information related to absence of variation. The
second, less well recognized information is that conveyed by
systematic variation. For quantitative correlations in a class of
related sequences, the information based on systematic variance
must also be extracted and utilized.
The reason that potential co-variance structures are usually not

considered is that the potential of multivariate methods like e.g
principal components analysis (PCA), partial least squares
projections to latent structures (PLS) and neural networks (NN),
for sequence modelling purposes has not been recognized until
recently (9-11). NN have successfully been used to classify
digitized DNA sequences, see e.g. (12 -14). The applicability
of PLS to quantitative sequence-activity modelling (QSAM) has
been addressed by us in earlier papers (10, 14-16). It is thus
important to distinguish between QSAM and classical sequence
pattern recognition modelling (see refs. above). In the present

context the QSAM is developed within a class of functionally
related sequences. The objective is to delineate the relationship
between the sequences and the magnitude of their corresponding
biological activity.
The aim of this paper is, however, not primarily to design a

strong bacterial promoter. The objective is rather to outline a
general strategy whereby the relationship between the composition
of a bio-polymer and its biological activity may be quantitatively
described and subsequently utilized. It should be noted that
models of the category presented here are local linearizations of
the more complex functions underlying the biological phenomena
observed. Consequently, QSAMs are of local validity, i.e.
interpretations and predictions relate to the experimental
conditions used to characterize the set of sequences upon which
the models are based.

Parametrization of DNA sequence
A numerical representation of the sequence is a prerequisite for
quantitative modelling. One possibility is to use a qualitative
(discrete) parametrization of the monomers. This corresponds
to the use of indicator variables that unequivocally and
symmetrically state the identities of the relevant monomers. This
implies that a minimum of three descriptor variables/base must
be used in order to obtain an informationally efficient
representation for DNA (see refs. 10 and 12). Another alternative
is given by quantitative monomer parameters, i.e. continuous
variables, such as principal properties (PPs) derived from
measured physico-chemical data collected for monomers of
interest (15, 16). These two kinds of descriptors have different
advantages. The qualitative indicator variables are conceptually
simpler, easier to derive and more readily interpreted. Properly
derived quantitative descriptors may, however, enable an
interpretation in terms of which physico-chemical factors that are
important for the biological response and how they combine etc.
In this example we have utilized four discrete indicator variables
to represent the bases of DNA (A= 1000, C=0100, G=0010
and T=0001). The reason for this selection is that the resulting
model parameters are the least complicated to interpret.

Promoter sequence data
Prokaryotic transcriptional promoters are specific DNA sequences
that are recognized by the a-unit of the RNA polymerase
holoenzyme (RNAP). The assembled enzyme complex
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subsequently initiates and carries out the transcription ofmRNA
from the DNA template. There are many examples of sequences
known to be functional E. coli promoters. Some originate from
the bacterium itself, others from infecting phages. Few of these
promoters have been consistently characterized with regard to
their in vivo promoter strength. However, a system that allows
this efficiency parameter to be determined relative to an internal
standard has been developed and used to characterize promoters
by Bujard and coworkers (5, 6, 15-17). In this assay the strength
of the test promoter (in front of the hydrofolate reductase gene,

dzfr) is expressed relative to that of the promoter for ,B-lactamase
(Pbla) which is present on the same plasmid. Monitoring of the

mRNA expressed from the promoter under study in relation to
the standard, permits the relative promoter efficiency to be
determined unbiased by translational effects or gene dosage.
These data were considered to be comparatively well suited for
QSAM development for two reasons; a) this material comprises
a relatively large set of structures that are multipositionally
altered, and thereby informationally better suited than similar sets
generated using saturation mutagenesis, and b) the better
comparability for additional structures resulting from an

experimental protocol comprising both an internal standard and
external references.

Analysis of sequence data is normally based on the assumption
that certain positions in the sequence in some way interact with
a target molecule. This, in turn, corresponds to the requirement
that the sequences to be analyzed are of similar length and that
they are properly aligned. Modifications of these requirements
may, for example, be made by dividing the sequence into
subsequences around given points of reference. However,
structural descriptions that are alignment independent may also
be accomplished, e.g. according to the principles outdined by van

Heel (9). In this paper the principles of multivariate DNA QSAM
are illustrated using the traditional alignment dependent
representation of sequence data. The present models are hence
based on promoters having similar distances between the positions
-35, -10 and +1 this, consequently, makes each position of
the 68 mer to be more directly comparable. From references (5,
6, 15-17), the 68 bp fragment (-49 to +19) relative to the

start of transcription was compiled. All promoters having a 17
bp spacer between -35 and -10 region and a 7 bp spacer
between -10 and +1 region were considered. This subset
comprising 25 promoters was found to comprise three major
categories; 1) PD/E20, PG25, PJ5 and PN25 from phage T5, 2) PL
from phage lambda and, 3) P. an ardficial construct originally
synthesized by Dobrynin et al. (18). The structures of promoters

Table 1.

Strength
Promoter (log Pw.-units) Promoter sequences

-49 -40 -30 -20 -10 +1 +10 +19

I PD 1.748 1 ACTGCAAAAATAGTTTGACACCCTAGCCGATAGGCTTTAAGATGTACCCAGTTCGATGAGAGCGATAA
2 P02 1.278 2 GAAAAATAAAATTCTTGATAAAATTTTCCAATACTATTATAATATTGTTATTAAAGAGGAGAAATTAA
3 PJS 0.954 3 TATAAAAACCGTTATTGACACAGGTGGAAATTTAGAATATACTGTTAGTAAACCTAATGGATCGACCT
4 PN25 1.477 4 CATAAAAAATTTATTTGCTTTCAGGAAAATTTTTCTGTATAATAGATTCATAAATTTGAGAGAGGAGT
5 PN2503 0.895 5 CATAAAAAATTTATTTGCTTTCAGGAAAATTTTTCTGTATAATAGATTCAATTGTGAGCGGATAACAA
6 PN2 504 1.246 6 CATAAAAAATTTATTTGCTTTGTGAGCGGATAACAATTATAATAGATTCATAAATTTGAGAGAGGAGT
7 PN2505 1.173 7 GGATAACAATTTAGTTGCTTTCAGGAAAATTTTTCTGTATAATAGATTCATAAATTTGAGAGAGGAGT
8 PN5px 1.176 8 CATAAAAAATTTATTTGCTTTCAGGAAAATTTTTCTGTATAATAGATTCATAAAGGGTCGAGAAGAGT
9 PN253/DSR 0.431 9 CATAAAAAATTTATTTGCTTTCAGGAAAATTTTTCTGTATAATAGATTCATCCGGAATCCTCTTCCCG
10 PN25A" 0.903 10 CATAAAAAATTTATTTGCTTTCAGGAAAATTTTTCTGTATAATAGATTCAAATTGTGAGCGGATAACA
1 1P<N25/USR 1.301 11 GGCTGTGCGGCACGTTGCTTTCAGGAAAATTTTTCTGTATAATAGATTCATAAATTTGAGAGAGGAGT
12 PNssR 1.491 12 GGCTAAAAAACACGTTGCTTTCAGGAAAATTTTTCTGTATAATAGATTCATAAATTTGAGAGAGGAGT
1 3 PCZ 0.602 13 ATTCACCGTCGTTGTTGACATTTTTAAGCTTGGCGGTTATAATGGTACCATAAGGAGGTGGATCCGGC
14 P03 1.072 14 ATTCACCGTCGTTGTTGACATTTTTAAGCTTGGCGGTTATAATGGATTCAATTGTGAGCGGATAACAA
15 P,£S 1.173 15 GGATAACAATTTAGTTGACATTTTTAAGCTTGGCGGTTATAATGTTACCATAAGGAGGTGGGAATTCC
16 P0,S 1.398 16 ATTCACCGTCGTTGTTGACATTTTTAAGCTTGGCGGTTATAATGGATTCATAAATTTGAGAGAGGAGT
17 1.204 17 ATTCACCGTCGTTGTTGACATTTTTAAGCTTGGCGGTTATAATGGATTCATAAAGGGTCGAGAGGAGT
18 P,.ij 0.255 18 ATTCACCGTCGTTGTTGACATTTTTAAGCTTGGCGGTTATAATGGATTCATCCGGAATCCTCTTCCCG
19 PL 1.724 19 TATCTCTGGCGGTGTTGACATAAATACCACTGGCGGTGATACTGAGCACATCAGCAGGACGCACTGAC
20 PL-IA 1.672 20 TATCTCTGGCGGTGTTGACATAAATACCACTGGCGGTGATAATGAGCACATCAGCAGGACGCACTGAC.
21 PL.12T 1.398 21 TATCTCTGGCGGTGTTGACATAAATACCACTGGCGGTTATACTGAGCACATCAGCAGGACGCACTGAC
22 PU 1.146 22 TATCTCTGGCGGTGTTGACATAAATACCACTGGCGGTTATAATGAGCACATCAGCAGGACGCACTGAC
23 PLJ25DSR 1.813 23 TATCTCTGGCGGTGTTGACATAAATACCACTGGCGGTGATACTGAGCACATAAATTTGAGAGAGGAGT
24 PL/eomR 1.778 24 TATCTCTGGCGGTGTTGACATAAATACCACTGGCGGTTATAATGAGCACATAAATTTGAGAGAGGAGT
25 Pu5us 1763 25 CATAAAAAATTTATTTGACATAAATACCACTGGCGGTGATACTGAGCACATCAGCAGGACGCACTGAC

26 PLSI 1.974' 26 TCCGTCTCGACGGGTTGACACAAAAGCCACAAGGGGTTATAATGAGCACATAAACTTGAGAGAGGAAT
27 PLS2 1.968' 27 TGCGTATAGACAGTTTGACACAAAAGCCACAAGGTGTTATAATGAGCACATAAATTTGAGAGAGGAAT

a Predicted from the two dimensional PLS model.
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PN25, P, and PL were, furthenmore, present also as 19 different
site specifically altered or mixed variants. The sequences of these
25 promoters are presented together with the respective log in
vivo promoter strength in Table 1. The logarithm of the promoter
strength in Pbla-units is used in the modelling because of the
large variation in strength.

DATA ANALYTICAL METHODS

The 25 promoters in Table 1 are parametrized in each position
by the four descriptor variables earlier defined, giving a 25 x272
matrix (X). The data matrix is not presented here, but can be
regenerated from Table 1 using the descriptors from above. The
parametrization enables the 25 sequences to be represented as
a cluster of points in a 272 dimensional hyperspace. We are here
aiming at identifying the structures in this space that are correlated
with the promoter efficiency. Two multivariate data analytical
methods that have been used successfully to solve analogous
problems are principal components analysis (PCA) for graphical
visualization of data structures, and partial least squares
projections to latent structures (PLS) to establish quantitative
relationships. Both of these methods are well explained in the
literature, see e.g. (19-22). PCA decomposes a matrix X into
means (Xk), scores (tia), loadings (pa) and residuals (eik),
according to;

A
Xik = Xk + tia Pak + eik

a=1

Here the elements xik are the sequence descriptor variables with
index i denoting promoters and k the sequence descriptors. The
first principal component explains the largest part of the
systematic variance of X, the next one the second largest part,
and so on. One component (or dimension) of a PC-model thus
consists of a score (column) vector t reflecting the systematics
among the objects (here: sequences) times a row vector p
characterizing the systematic behaviour (co-variance structures)
of the sequence descriptor variables. Projection methods such
as PCA and PLS summarizes most of the variation in a data
matrix by a small number of derived variables, this regardless
of the nature of the original variables i.e. whether they are
continuous, discrete or a combination thereof (20). Moreover,
as pointed out by Gower (23), the variables are combined in a
way consistent with a similarity measure between objects (here:
sequences) proportional to how many variables having the same
values for any two objects. The number of statistically significant
principal components (A) of a particular matrix is determined
using cross-validation (24). This ensures that the model is not
overfitted to the data, since this would severely hamper the
predictive capability. The objective of cross-validation is thus
to identify the number of components that provide an optimal
balance between fit and predictive capabilities, in the present
example A comes out to be two both for the PCA and the PLS
models. Bivariate plots of the score values (ta) from different
components provide projections of the data space, wherein
systematic variance based patterns may be examined. Here, PC-
A is used to obtain a graphical representation of the structural
features of the synthetic sequences in relation to the original set
of 25 promoters.

In the present application there are 272 variables (K)
characterizing the structural features of 25 sequences (N).

therefore, not be applied since they require both that N > Kand
that all the variables (K) are independent (i.e. orthogonal). PLS
(21, 25) is used to correlate a single dependent variable y (or
a matrix Y), to the variation in a predictor matrix X. PLS is a
generalization of PCA where the components of X (ta) are
calculated so that they well approximate X and correlate well
with y. Since PLS is a projection method, it can handle collinear
data having many more variables (sequence descriptors, K) than
objects (sequences, N), as long as the resulting components (A)
are few compared to N. The result is a stable approximation of
the correlation between X and y. The statistical significance of
PLS models is also determined by cross-validation. In this paper
PLS is used to relate the promoter efficiency variable (y) to the
systematic variation in the promoter sequence matrix (X, the 25
parametrized 68 mers). The interpreted model is subsequently
used to generate suggestions of sequences containing the essence
of the structural features characteristic of strong promoters.

Choice of model
This QSAM was attempted using both PLS and a hetero-
associative back-propagation NN, the results obtained were
similar. However, we only present the results from the PLS
QSAM since this method was found to be advantageous for a
number of reasons, namely; 1) PLS is more robust, since it does
not require the proper initial setting of numerous variables (e.g.
the number and size of hidden layer(s), choice of weight
function(s), epoch length, etc.) which is required for the NN,
2) PLS converges to the stable solution in a matter of seconds
rather than hours, 3) PLS proceeds in a fashion that allows the
statistical significance of the model to be simultaneously
evaluated. The risk of overfitting the model to the data is therefore
minimized while the predictive capabilities are optimized, and
4) the PLS weights are more readily interpreted both in terms
of which is the optimal monomer in each position, but also if
quantitative descriptors are used, the physico-chemical reason(s)
why a certain monomer is preferred. The interpretation of the
NN QSAM was not equally straightforward irrespective of the
sequence descriptors used.

Results of the PLS QSAM
Two PLS dimensions, significant according to cross-validation,
accounted for 27.5% of the systematic variance of X and
explained 85% of the variance in the promoter efficiency variable
(y). The first PLS dimension alone used 11.5% of X to explain
73% of y, the second added an additional 16% of X and 12%
of y. These results refer to autoscaled data (i.e. each variable
is scaled inversely proportional to its variance), the use of
unscaled data, however, gives similar results. The PLS weights
were subsequently transformed into PLS regression coefficients.
The relative size of these coefficients over different positions
indicate their relative importance to the promoter strength. To
display the influence of each position we have in Fig. 1 summed
the absolute values for each group of four coefficients and
corrected this number for the degrees of freedom (DOF) for each
position.
From figure 1 it can be seen that positions -135 to -33, -11

and +1 are constant for all 25 promoters in this example. These
positions are probably important to the promoter strength,
although the magnitude of their influence cannot be assessed from
the present data. Among the varying positions we see that position
-12 is the most important followed by positions 4 to 14 in the
downstream region, positions around -8 to -10 and positionMethods like e.g. multiple and generalized regression can,
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Figure 1. The influence on in vivo promoter strength of each position in the
considered 68 bp fragment displayed as;

4
Position influence = L (( Icn )/DOF) x104

n=1

Where c are the PLS regression coefficients and DOF the degrees of freedom
for each position, (the number of bases actually occurring in a particular position
minus one). The correction for DOF results in that a relatively larger importance
is given to the more conserved positions.

-38. The relatively large influence of the downstream region
seems to corroborate the observation that in vivo promoter
strength is dependent on more than one functional parameter (15).
The importance of this region may reflect the contributions to
promoter strength from ease of initiation and/or the speed of
RNAP promoter clearance.
The 272 PLS regression coefficients were then examined in

detail, in groups of four corresponding to the descriptors for each
of the 68 positions. For each of these groups the largest positive
value indicates the 'preferred' base of that particular position.
An entirely synthetic sequence was thus generated by selecting
the most favourable base, with respect to the model. This was
made both for the one and the two dimensional PLS models. The
result was two strength-optimized 68 bp sequences denoted PLS1
and PLS2. For the homologous and close to homologous
positions in the -35, -10 and +1 regions the PLS sequences
are determined by the bases having descriptors matching the
corresponding column averages (x). The PLS1 and PLS2 from the
one and two dimensional QSAM were subsequently parametrized
and reinserted into the model and their in vivo promoter strength
was predicted, see Table 1 and Fig. 2. Promoter strength
predictions from the NN QSAM were similar, (data not shown).
To visualise the sequence characteristics of these theoretical

promoters in relation to those of the training set, all sequences
were analyzed by PCA. The result was a significant two
component model describing a total of 30% (19 and 11%
respectively) of the systematic variance in the composition of the
sequences. The scores from the two components are plotted in
Fig. 3. The promoters of the training set are seen to be clustered
according to their origin, (phage T5, phage lambda and
constructs). The strength optimized constructs from the QSAM
are positioned separately at the lower part of the projection. The
four most potent training set sequences PL/N25DSR, PLcon/N25DSR
PL/N25USR and PD/E20 are all seen to be situated in this region.
The QSAM has thus pointed us further into the direction of strong
promoters, outside the region defmed by the original 25
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Figure 2. PLS correlation plot for the two dimensional model, showing the
promoter strength calculated from the QSAM for the 25 training set objects plotted
versus the corresponding literature data. The two structures suggested, PLSI and
PLS2 are included in the plot, using the predicted values on both axis. These are
predicted to be the most potent promoters. Promoter strengths are given in
logarithmic bla-units, numbers correspond to those in Table 1.
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Figure 3. Score plot from the PCA on all 27 structures. The first component
(tI) describes 19% and the second (t2) 11% of the systematics in the composition
of the sequences. Numbers refers to those in Table 1.

sequences. Also in this analysis, the PC loadings show that the
region downstream + 1 is the main determinant of the patterns
observed, (data not shown).
To validate the predictive capabilities of this QSAM it was

subsequently decided to synthesize the promoters suggested by
the model and determine their relative in vivo promoter strengths.
An external reference set of six promoters ranging from weak
to strong was kindly provided to us by H.Bujard and co-workers.
However, since the reference promoters were found to be of
different lengths, it was decided to include three versions of the
reference promoters (PA,, PD/E0 and PL<On) having the same
length and restriction sites at the positions corresponding to those
of the test promoters, in order to obtain a better comparability.

EXPERIMENTAL
Vector construction
The PLon insert was removed from pDS2 using XhoI/BamHI
and replaced by the XhoIIBamHI cloning cassette fragment
(containing an EcoRI site) from pGEM 7Zf+ (Promega), this

(26U 027r

.
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vector was designated pJJKI. A more thorough description of
the test vector system pDS2 is given in (5).

Oligomer synthesis
The reference promoter PD/E20 and the QSAM constructs PLs1
and PLS2 were synthesised as complementary 93 mer single
stranded oligo-nucleotides, containing a BamHI and a EcoRI site
at the 5' and 3' ends respectively using a Beckman SM DNA
synthesizer. The oligomers were collected and deprotected using
the procedure recommended by the manufacturer, and thereafter
purified according to (26). The 93 mers were purified on a non-
denaturing 7% poly-acrylamide gel, annealed and trimmed to 75
mers by BamHIlEcoRI treatment. The double stranded promoter
fragments were further gel-purified as described above.
Fragments were electro-eluted from the gel and cloned into the
test vector pJJKl. Oligonucleotides complementary (40 bases into
the transcript) to bla (27 mer) and dhfr (25 mer) were synthesised
and radioactively labelled using terminal transferase (TdT) and
(x32p dATP (Amersham). Labelled oligonucleotides were
purified on NENSORB columns (Du Pont NEN products), and
used as probes in the dot-hybridization.

PCR amplification of reference promoters
Two reference promoters PLcon and PA1, were obtained through
PCR amplification generating 93 base pair fragments containing
BamHI and EcoRI sites at positions corresponding to the synthetic
promoters. The double stranded fragments were enzymatically
digested, gel-purified and cloned into pJJKl as described above.

In vivo promoter strength determination
All test and reference promoter constructs were transformed into
E. coli C600. Reference promoter constructs were the PLc. PA1,
Pbla, P.on and PN25 in plasmid pDS2 and pLA1S in plasmid pDS3.
The DNA sequences of the positive transformants were confirmed
by dideoxy sequencing (Pharmacia T7 sequencing kit). Bacterial
cultures (50 ml) were grown as described in (5), 35 ml of the
cell cultures were quickly chilled to 0°C, and the cells collected
by centrifugation (1.5 min, 10krpm.). The remaining 15 ml was
used to confirm sequence integrity. Cell pellets were quickly
resuspended in RNA preparation buffer containing 7M urea, 3M
LiCl, 0.2% SDS and 0.1% Antifoam A (Sigma), using a
polytron, (10 sec, 24krpm), and RNA precipitated for 15h at 0°C.
Total RNA was recovered by centrifugation (20 min, 15krpm),
rapidly dissolved in 1 xTE buffer containing 0.5% SDS and
phenol extracted x 3 followed by CHISAM (chloroform:iso-
amylalcohol 24:1 v/v) extraction x 1. The RNA was precipitated
using two volumes ethanol and 0.3M KAc (pH 4.5). The quality
of the RNA preparations were verified by northern analysis, and
were found to be free from contaminating plasmid DNA.

Dot blot hybridization
Each RNA preparation was divided into 10 fractions (5 aliquots
for repeated determinations of test and internal standard
respectively). A dot hybridization analysis using Hybond N
membranes (Amersham), was performed according to principles
outlined in (27). The membranes were prehybridized for l5h at
650C in 20 ml 6xSSC, Sx Denhardt solution, lmM EDTA,
10mM Na2HPO4 (pH 7.0) and 250 x 10-6 g/ml of calf thymus
DNA. The filters were hybridized (lSh) in prehybridization
solution containing 5 x 106 cpm/ml of radioactively labelled
oligomer complementary to the bla and drhf transcripts
respectively. Dot blots were washed in 2 x SSC, 0.1 % SDS (15

Table 2.

Promoter Measured strength Literature / Predictedt
(log bla-units) strength (log bla-units)

PLS1 (68 bp) 2.143 1.974"
PLS2 (68 bp) 2.127 1.968"

PDMO (68 bp) 1.939 1.748

PAI (68 bp) 1.556 1.643
PLO (68 bp) 1.544 1.146

PAI 1.707 1.643
PL4OE, 1.740 1.143

PbIa 1.041 -0.523

PcOX, 1.897 0.602

PN25 1.799 1.477

PLAIsp 1.107 1.929

Strength values for each promoter are averages based on five replicated
measurements from a minimum of three different bacterial cultures. The
experimental variability was generally between 4 10-17% of the Pbla-strength
(linear scale). The main source of this variation was, however, due to systematic
differences in the dot-blot intensity of the internal standards.

min, 65°C). The amounts of mRNA expressed by test and
reference promoters relative to the internal standard were
subsequently determined by liquid scintillation of a defined
minimum area of the dots.

RESULTS

When the relative promoter strengths of all 11 constructs were
compared, the promoters generated from the QSAM were
consistently found to be the strongest, see Table 2. On a linear
scale the PLS1 was found to be 60% and the PLS2 54% more
efficient than the strongest reference. This is in good agreement
with the predicted difference which is 68% and 66% respectively.
However, some discrepancies between the promoter

efficiencies determined by us and those published earlier were
found. The largest of these was displayed by the PLA1,
supposedly the strongest of the eight references, which in our
system was found to be among the weaker. The reason for this
is largely because the signal from the internal standard Pbla was
substantially increased probably by the tendency of this promoter
to initiate a backwards transcription into the bla region. This fact
unfortunately, makes all comparisons with this reference
promoter impossible. The second relevant difference is that the
Pcon was identified as being a relatively strong promoter in our
system, the reason for this difference is not apparent. However,
it may be noted that this promoter originally was tested in a
different bacterial strain (E. coli M15). It was also observed that
the strength of the longer versions of the PA, and the P0on are
higher than those observed for the 68 bp versions, indicating
either context effects from the sequence elements outside the 68
bp fragment, or an effect from the modification of the cloning
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Figure 4. Plot of literature promoter strength (Pbla-units) for references and
predicted values for PLS1 and PLS2 versus those experimentally determined.
Promoters with a deviating behaviour are marked using open triangles. Promoter
strength and names refer to Table 2. Asterisks refer to PCR versions Of PAI and

PLcon

cassette. The response in our system is also seen to be relatively
higher than that earlier used. These trends were consistent
although experiments were repeated. The sequence integrity of
all constructs was also confirmed.
Some of the observed differences are probably due to the fact

that for practical reasons, we used experimental conditions
somewhat different from those earlier published. For example,
we use labelled oligonucleotides (25 and 27 mers) as probes to
detect the mRNA transcripts. The earlier determinations were
made by in vivo incorporation of radioactive nucleotides into
mRNA, detecting the bla and dhfr transcripts using larger M13
ssDNA probes (bla 752 and dhfr 672 bp respectively) (6). This
difference in integrating the response from the Pbla internal
standard (i.e. using a 25 mer or a 752 mer) may account for
the fact that all promoter strength values for both reference and
test promoters reported here are systematically higher compared
to the earlier measurements. Apart from these inconsistencies
it was noted that the Pbla also in our system is the weakest of
the nine reference promoters and that PD/E20 was judged to be
the strongest. The strengths of the promoters PN25, PLco. and PA1
are also found to fall between the strongest and the weakest of
the reference set. The order for PLcon and PA1 is, however,
reversed for the longer versions. The literature data for the
reference promoters are plotted versus those experimentally
determined in Fig. 4, together with the predicted activities for
PLs1 and PLS2 and the corresponding experimentally determined
values.

Considering that a relatively complicated experimental scheme
has been transferred from one laboratory to another, the hierarchy
of in vivo strength among the reference promoters was regarded
to agree acceptably. It was therefore, concluded that the sequences
generated from the present QSAM are strong promoters in vivo.
They seem, in fact, to be stronger than any of the 25 promoters
originally present in the training set, as predicted.

DISCUSSION

We demonstrate here the development of a nucleic acid QSAM
for which the predictive capabilities have been experimentally
verified. It is most encouraging that the principles of multivariate

QSAM apply also here. The information that may be extracted
from Table 1 is to some extent variance based; the fact that these
25 promoters differ considerably in strength cannot be explained
in terms of homology. The differences between weak and potent
promoters are, however, shown to be well modelled in terms
of the systematic structural variation between the sequences. This
variation is multi-positionally encoded and is hence analyzed
accordingly. Three data analytical methods that have shown to
be useful for this purpose are PCA, PLS and, to some extent,
NN. The approach has general applicability for modelling the
relationship between sequences (i.e. DNA, RNA and proteins)
and their biological activity. The QSAMs can be interpreted in
terms of important positions and regions. They can also be used
to propose sequences for which the biological activity has been
specifically altered.
The fact that promoter efficiency is affected by variable

sequences, flanking more constant regions has earlier been
demonstrated (5, 28). However, the identification and
quantification of the systematic variations is usually not made.
On the contrary, the homology approach aims to model variations
in biological activity, in terms of a description of a local minimum
of variance (the consensus regions). It has, however, been shown
that consensus sequences mainly reflect the structures essential
for efficient promoter recognition, but that the features
determining the in vivo efficiency are less well described by
homology (6). An additional drawback is that such models cannot
be used to predict structures having a higher activity than those
containing the 'optimal' consensus sequence. The term consensus
thus is a statistical term that may not always be equated with
strong or optimal (29). It is therefore suggested that homology
based models are better suited for pattern recognition (i.e.
classification) purposes. Knowledge about the homologous
regions is, however, crucial in order to establish QSAMs.

Context (i.e. interaction) effects have also been shown to be
important within consensus regions of bacterial promoters (30).
The present models are linear. Interaction effects between bases
are thus confounded (mixed) with the main effects from each
position. The magnitudes of interaction effects may only be
estimated if the alterations in a sequence are carried out according
to an experimental design (i.e. D-optimal design) (31). The use
of such designed sets of sequences in combination with
multivariate data analysis will enable the magnitudes of both main
and interaction effects for different positions to be estimated.

It was recently concluded that many subcellular processes will
probably remain unintelligible unless properly quantified (32).
The use of internal standards as well as external references in
studies of functional parameters is therefore encouraged. This
enables a better comparability of data from different sources and
thereby greatly facilitate future QSAM development.
The present approach requires that the modelled sequences are

of similar length. Moderate differences may be accommodated,
but in the case of larger length deviations it is expected that
QSAMs must be developed on a class by class basis or that
sequence data is pre-treated by alignment independent sequence
transformations. In the present example it was decided to include
promoters of the same length since homogenous training sets are
known to provide a more stable basis for predictions. We are
currently developing quantitative monomer descriptors for bases
occurring in DNA and mRNA, and also investigating the
applicability of alignment independent transformations for
sequence data. We hope to be able to report on these subjects
in the near future.
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