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Introduction

In the �rst section, we describe in more detail the general framework from which the diverse models were
derived. In the second section, we explain the goalkeeper-model more carefully; further statements are
derived and all proofs are given. In the third section, we explain the lock-key-model in more detail; further
statements are derived, all proofs are given, and we show a summary comparison of the two models.
According to the available data, both models could be correct. In the third section, we present the
mistiming-model using our framework; we argue that even with modi�cations, this model is problematic
with regard to certain data. In the �fth section, we describe in more detail how the predictions with
regard to CI levels were derived and the data used to test the predictions.

1 Formalism of the models of CI occurrence

We develop a formalism for models of CI occurrence and introduce a number of terms and de�nitions:

• FCI(i; ii; iii; iv) is a model of CI mechanism. It has four distinct attributes (see below).

• Lowercase letters a, b, c, . . . (except h, x, y, z) are Wolbachia strains with a, b, c, . . . ∈W representing
a subset of Wolbachia strains of the pool of all possible Wolbachia strains W.

• Lowercase h are speci�c host species with h1, h2, . . . ∈ H representing a set of hosts from the pool
of all possible hosts H.

• x, y, z . . . are di�erent mod and resc factors with xa, ya, . . . ,∈ R+ representing quantities of possible
factors of the pool of all possible factors. Subscripts indicate which Wolbachia strain or host
produces this factor. Factors can be possessed by several strains and hosts, and any strain or host
can possess several factors.

• xmod
a , ymod

a , . . . and xresc
a , yresca , . . . are the factors a Wolbachia strain a contributes to modi�cation

and rescue, respectively. All such contributions by Wolbachia are de�ned as non-negative.

• xmod
h , xresc

h , ymod
h , yresch , . . . are the factors that hosts contribute to their own modi�cation and rescue.

• Wolbachia strains a, b, . . . and the host h rescue Wolbachia strains a′, b′, . . . if and only if (assuming
additivity of factors):
∀h∀x, y, z, . . . : (xresc

a +xresc
b + . . .+xresc

h ≥ xmod
a′ +xmod

b′ + . . .+xmod
h ) ∧(yresca +yrescb + . . .+yresch ≥

ymod
a′ + ymod

b′ + . . . ymod
h ) ∧ . . .

• xh, yh, . . . represents the �net host contribution� of factors x, y, . . . such that:
∀h∀x, y, z, . . . : xh = xresc

h − xmod
h ; yh = yresch − ymod

h , . . ..
Net host contributions are only de�ned if mated male and female belong to the same host strain
since host contributions then are not expected to di�er signi�cantly among individuals of the tested
population. Given that every host rescues itself in the control cross, i.e. withoutWolbachia infection,
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∀h∀x, y, z, . . . : xh ≥ 0; yh ≥ 0; . . . holds. Hence, if net host contributions are de�ned, Wolbachia

strains a, b, c, . . . and host h rescue Wolbachia strains a′, b′, c′, . . . if and only if: ∀h∀x, y, z, . . . :
(xresc

a + xresc
b + . . .+ xh ≥ xmod

a′ + xmod
b′ + . . .)∧(yresca + yrescb + . . .+ yh ≥ ymod

a′ + ymod
b′ + . . .) ∧ . . ..

A model of CI mechanisms FCI(i; ii; iii; iv) can have the following attributes:

• i: Shows the number of mod/resc factors included in the model; i ∈ N.

• ii: Shows whether mod and resc are quantitatively identical for their corresponding factor: ∀a∀x, y, z, . . . :
xmod
a = xresc

a , ymod
a = yresca , . . ., then ii = 0, or else ii = 1.

If mod and resc are identical, then they may be expressed by the same genes or controlled by the
same promoter. Otherwise, they probably are not.

• iii: Shows whether mod and resc factors are distributed on all R+, then iii = 1, or are quasi binary:
∀a∀x, y, z, . . . : xmod

a = {0; 1}, xresc
a = {0;∞}, ymod

a = {0; 1}, yresca = {0;∞}, . . ., then iii = 0.
This attribute examines the importance of quantitative di�erences. If factors are quasi binary, then
presence or absence of the corresponding resc factor determines CI, irrespective of quantities. This
may be the case when resc factor quantities are always much greater than mod factor quantities.
Of course, factor quantities could also take neither of the proposed forms. If they were positive
integers, for example, then iii would be between 0 and 1.

• iv: Shows whether net host contribution is present, then iv = 1, or absent (i.e. ∀h∀x, y, z, . . . : xh =
0; yh = 0; . . .), then iv = 0.
The latter case may be due to Wolbachia contributions exceeding those of the host, so that net host
contributions, even if present, are negligible.

A model F
(1)
CI (i; ii; iii; iv) is strictly more parsimonious than a model F

(2)
CI (i

′; ii′; iii′; iv′) if and only if

condition (A) is met: i ≤ i′, ii ≤ ii′, iii ≤ iii′, iv ≤ iv′. If (A) is true, F
(1)
CI has a higher falsi�ability

than F
(2)
CI ; it is a special case of F

(2)
CI . Simply put, if a statement can be derived with i = n factors, it

can also be derived with i = n + 1 factors; identical mod and resc in females and males are a special
case of them not necessarily being identical; quasi-binary factor quantities are a special case of factors
being positive real numbers; and zero not host contribution is a special case of any non-negative net host
contribution. Of two unfalsi�ed models, the one with higher falsi�ability should be preferred. However,
no statement on falsi�ability can be made if condition (A) is not met. For example, one cannot say
whether the goalkeeper-model or the lock-key-model has a higher falsi�ability than the other.

2 Goalkeeper-model

2.1 Presentation of the goalkeeper-model

The goalkeeper-model is a FCI(2; 0; 1; 1) model of CI: it takes into account two factors x, y ∈ R+; mod
and resc function are quantitatively identical (xmod = xresc, ymod = yresc), and there is a net host
contribution xh, yh ≥ 0.

Here is how the model treats the four basic crosses that are possible:

• In the control cross (both parents uninfected), incompatibility does not occur if xresc
h −xmod

h ≥ 0⇔
xh ≥ 0 and yresch − ymod

h ≥ 0 ⇔ yh ≥ 0. Since these conditions are necessary for uninfected hosts
to rescue themselves, we suppose them to always be true.

• In the reverse cross (only the female infected), CI does not occur if xh + xa ≥ 0 and yh + ya ≥ 0.
Since the left hand quantities are always positive or zero, their sums are also positive or zero.
Therefore, these conditions hold irrespective of the Wolbachia strain.
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• In the compatible cross (both parents infected by the same strain), the female produces xresc
h + xa

and yresch + ya and the male produces xmod
h + xa and ymod

h + ya. Thus, CI does not occur if
xresc
h + xa ≥ xmod

h + xa ⇔ xh ≥ 0 and yresch + ya ≥ ymod
h + ya ⇔ yh ≥ 0. This is the same condition

as in the control cross and thus always true. Therefore, if both parents are infected by the same
Wolbachia strain, CI never occurs.

• In the incompatible cross with only the male infected, the male produces xmod
h + xa and ymod

h + ya
and the female produces xresc

h and yresch . CI does not occur if xresc
h ≥ xmod

h + xa ⇔ xh ≥ xa and
yresch ≥ ymod

h + ya ⇔ yh ≥ ya.

Since this analysis shows that xresc
h , xmod

h , yresch , and ymod
h are not explicitly required, we use the more

convenient notion of net host contribution, xh and yh, instead.
The goalkeeper-model predicts CI never to occur in the control cross, compatible cross, and reverse

cross. This complies with empirical observations. Conversely, while intuition suggests that incompatible
crosses should always lead to CI, the model expects CI only to occur if the last condition is not met�
i.e. if xa > xh, ya > yh, or both. However, what may be perceived as erroneous in the model can
explain observations of "occasional" CI, i.e. when [mod-] Wolbachia strains that usually do not lead to
CI unexpectedly induce CI in transfection experiments [1]. If we assume that host 1 produces xh1 and
yh1, and host 2 produces xh2 and yh2, and further that quantities produced by host 1 are greater than
those produced by host 2, then the last condition is met more easily in host 1 than in host 2. Therefore,
the Wolbachia strain may induce CI in host 2 but not in host 1 (see also the proof in Table 16 on page
9).

The goalkeeper-model can be visualized by interpreting the two mod and resc factors as vectors in
two-dimensional space (see �gure 2 of the main text). CI does not occur if the sum of the mod vectors
lies inside the area delimited by the resc vectors or if, vice versa, the sum of the resc vectors encloses the
area delimited by the mod vectors. This graphic approach rea�rms that CI never occurs in the control,
compatible, and reverse cross.

A goalkeeper-model without host contribution is possible (a FCI(2; 0; 1; 0) model) and would be more
parsimonious than the model presented so far. However, such a model would not allow for intransitivity
(table 12) as well as for the additional statements M, N, and O (tables 16, 17, and 18). We therefore
believe that host contribution as conceptualized here not only necessary but provides a useful framework
to understand CI-related parasite-host interactions (as e.g. studied by [2]).

If a host is infected by several di�erent Wolbachia strains simultaneously, we assume total factor
quantity to be the sum of each individual strain's factors, i.e. without synergistic or antagonistic e�ects.
This could be an oversimpli�cation since theoretical considerations show that Wolbachia strains should
reduce their replication rate when other strains are present [3]. However, empirical work showed that
Wolbachia density is not strongly a�ected by the presence of additional Wolbachia strains [4,5], although
a notable exception has been found [6]. Therefore, before relying too strictly on additivity, it should
be tested whether Wolbachia density is a�ected in multiple infections and if it is, CI levels should be
corrected for density e�ects. Still, as few exceptions to additivity have been observed, our model assumes
for reasons of simplicity that factors act additively in multiple infections.

2.2 Formalism

We symbolize non-infection with the zero element, 0. Further, we use the function R (�rescue�) to write
�Wolbachia strain a rescues Wolbachia strain b� as simply aRb. For two hosts hi and hj , a rescues b in
host hi is written as aRib, whereas a rescues b in host hj is written as aRjb.
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2.3 Derivations: goalkeeper-model I

Table 1. De�nitions

Reference De�nition

X ∀a, b, . . . : a = (xa, ya), b = (xb, yb), . . .x, y ∈ R+, 0 =
(0, 0)

Y ∀a, b∀h : aRb⇔ ((xa + xh ≥ xb) ∧ (ya + yh ≥ yb))
Z ∀a, b : ab = (xa + xb, ya + yb)

Table 2. Derivation of A

Statement: ∀a∀h : aR0

Statement Reason

1 ∀a∀h : (xh ≥ 0) ∧ (yh ≥ 0) (X)
2 (xa ≥ 0) ∧ (ya ≥ 0) (X)
3 (xa + xh ≥ 0) ∧ (ya + yh ≥ 0) (1),(2), R is an ordered

�eld
4 aR0 (3), (Y)

Table 3. Derivation of B

Statement: ∃a, b∃h : ¬ (aRb) ∧ ¬ (bRa)

Statement Reason

1 xa = 2, ya = 4, xb = 4, yb = 2, xh =
yh = 1

hypothesis

2 ∃a, b∃h : ¬((xa + xh ≥ xb) ∧ (ya + yh ≥
yb))∧¬((xb+xh ≥ xa)∧ (yb+yh ≥ ya))

(1)

3 ¬ (aRb) ∧ ¬ (bRa) (2), (Y)

Table 4. Derivation of C

Statement: ∃a, b∃h : aRb ∧ ¬ (bRa)

Statement Reason

1 xa = ya = 4, xb = yb = 2, xh = yh = 1 hypothesis
2 ∃a, b∃h : ((xa + xh ≥ xb) ∧ (ya + yh ≥

yb))∧¬((xb+xh ≥ xa)∧ (yb+yh ≥ ya))
(1)

3 aRb ∧ ¬ (bRa) (2), (Y)
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Table 5. Derivation of D

Statement: ∀a, b, c∀h : ¬(aRb)⇒ ¬(aRbc)

Statement Reason

1 ∀a, b, c∀h : aRbc hypothesis
2 (xa+xh ≥ xb+xc)∧(ya+ yh ≥ yb+ yc) (1), (Y)
3 ∀a, b, c : (xb ≥ 0) ∧ (yb ≥ 0)∧(xc ≥

0) ∧ (yc ≥ 0)
(X)

4 (xb + xc ≥ xc) ∧ (yb + yc ≥
yc)∧(xb + xc ≥ xb) ∧ (yb + yc ≥ yb)

(3), R is an ordered �eld

5 (xa + xh ≥ xb) ∧ (ya + yh ≥
yb)∧(xa + xh ≥ xc) ∧ (ya + yh ≥ yc)

(2), (4), transitivity of
real numbers

6 aRb ∧ aRc (5), (Y)
7 ∀a, b, c∀h : aRbc⇒ (aRb ∧ aRc) (1), (6)
8 ∀a, b, c∀h : aRbc⇒ aRb (7)
9 ∀a, b, c∀h : ¬(aRb)⇒ ¬(aRbc) logical equivalence

Table 6. Derivation of D'

Statement: ∀a, b∀h : aRab⇒ 0Rb

Statement Reason

1 ∀a, b∀h : aRab hypothesis
2 0Rb (1), [K]
3 aRab⇒ 0Rb (1), (2)

Table 7. D� is not true in this model

Statement: ∀a, b∀h : aRb⇒ aRab

Statement Reason

1 ∀a, b∀h : aRb⇒ aRab indirect proof hypothesis
2 xa = ya = 3, xb = yb = 2, xh = yh = 1 hypothesis
3 ∃a, b∃h : (xa + xh ≥ xb) ∧ (ya + yh ≥

yb) ∧ ¬((xa + xh ≥
xa + xb) ∧ (ya + yh ≥ ya + yb))

(2)

4 aRb ∧ ¬aRab (3), (Y)
5 ¬(¬(aRb ∧ ¬ (aRab))) logical equivalence
6 ∃a, b∃h : ¬(aRb⇒ aRab) logical equivalence
7 contradiction (1) and (6) ∀X : ¬(X ∧ ¬X)
8 ∃a, b∃h : ¬(aRb⇒ aRab) (1) is false, its negation is

true
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Table 8. Derivation of E

Statement:∀a, b, c∀h : aRb⇒ acRb

Statement Reason

1 ∃a, b, c∃h : ¬(aRb⇒ acRb) indirect proof hypothesis
2 ¬(¬(aRb ∧ ¬acRb)) logical equivalence
3 aRb ∧ ¬acRb logical equivalence
4 (xa+xh ≥ xb)∧(ya+yh ≥ yb)∧¬((xa+

xc + xh ≥ xb) ∧ (ya + yc + yh ≥ yb))
(3), (Y)

5 (xa + xh ≥ xb)∧ (ya + yh ≥ yb)∧((xa +
xc + xh < xb) ∨ (ya + yc + yh < yb))

logical equivalence

6 ((xa + xh ≥ xb) ∧ (ya + yh ≥
yb)∧(xa + xc + xh < xb))∨ ((xa + xh ≥
xb)∧(ya+yh ≥ yb)∧(ya+yc+yh < yb))

logical equivalence

7 (xa+xh ≥ xb > xa+xc+xh)∨(ya+yh ≥
yb > ya + yc + yh)

(6), R is an ordered �eld

8 (0 > xc) ∨ (0 > yc) (7), R is an ordered �eld
9 (xc ≥ 0) ∧ (yc ≥ 0) (X)
10 8 is false contradiction (8) and (9)
11 ∀a, b, c∀h : aRb⇒ acRb (1) is false, its negation is

true

Table 9. Derivation of E'

Statement: ∀a, b∀h : abRa

Statement Reason

1 ∀a, b∀h : aRa [L]
2 abRa [E]

Table 10. Derivation of F

Statement: ∃a, b∃h : 0Ra ∧ ¬ (0Rb) ∧ aRb

Statement Reason

1 xa = ya = 3, xb = yb = 6, xh = yh = 4 hypothesis
2 ∃a, b∃h : ((xh ≥ xa) ∧ (yh ≥ ya))∧

¬((xh ≥ xb) ∧ (yh ≥ yb))∧
((xa + xh ≥ xb) ∧ (ya + yh ≥ yb))

(1)

3 0Ra ∧ ¬ (0Rb) ∧ aRb (2), (Y)
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2.4 Derivations: goalkeeper-model II

Table 11. Derivation of H

Statement: ∃a, b, c∃h : ¬ (bRa) ∧ ¬ (cRa) ∧ bcRa

Statement Reason

1 xa = ya = 5, xb = yb = xc = yc =
xh = yh = 2

hypothesis

2 ∃a, b, c∃h : ¬((xb + xh ≥
xa) ∧ (yb + yh ≥ yh))

∧¬((xc + xh ≥ xa) ∧ (yc + yh ≥ ya))∧
((xb+xc+xh ≥ xa)∧(yb+yc+yh ≥ ya))

(1)

3 ¬ (bRa) ∧ ¬ (cRa) ∧ bcRa (2), (Y)

Table 12. Derivation of I

Statement: ∃a, b, c∃h : aRb ∧ bRc ∧ ¬ (aRc)

Statement Reason

1 xa = 1, ya = 5, xb = yb = 3,
xc = 5, yc = 1, xh = 3, yh = 1

hypothesis

2 ∃a, b, c∃h : ((xa + xh ≥
xb) ∧ (ya + yh ≥ yc))

∧((xb + xh ≥ xc) ∧ (yb + yh ≥ yc))∧
¬((xa + xh ≥ xc) ∧ (ya + yh ≥ yc))

(1)

3 aRb ∧ bRc ∧ ¬ (aRc) (2), (Y)
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Table 13. J is not true in this model

Statement: ∀a, b, c∀h : aRbc⇒ acRabc

Statement Reason

1 ∀a, b, c∀h : aRbc⇒ acRabc indirect proof hypothesis
2 xa = ya = 3, xb = 2, yb = 1, xc =

1, yc = 2, xh = yh = 1
hypothesis

3 ∃a, b, c∃h : ((xa + xh ≥ xb + xc)∧
(ya + yh ≥ yb + yc))

∧¬((xh ≥ xb) ∧ (yh ≥ yb))

(2)

4 aRbc ∧ ¬ (0Rb) (3), (Y)
5 aRbc ∧ ¬ (acRabc) (4), [K]
6 ¬(¬(aRbc ∧ ¬ (acRabc))) logical equivalence
7 ¬(aRbc⇒ acRabc) logical equivalence
8 contradiction (1) and (7) ∀X : ¬(X ∧ ¬X)
9 ∃a, b, c∃h : ¬(aRbc⇒ acRabc) (1) is false, its negation is

true

Table 14. Derivation of K

Statement:∀a, b, c∀h : aRb⇔ acRbc

Statement Reason

1 ∀a, b, c∀h : aRb Hypothesis
2 (xa + xh ≥ xb) ∧ (ya + yh ≥ yb) (1), (Y)
3 (xa + xh + xc ≥ xb + xc)

∧(ya + yh + yc ≥ yb + yc)
R is an ordered �eld

4 acRbc (3), (Y), (Z)
5 aRb⇒ acRbc (1), (4)
6 ∀a, b, c∀h : acRbc hypothesis
7 (xa + xh + xc ≥ xb + xc)

∧(ya + yh + yc ≥ yb + yc)
(Y), (Z)

8 (xa + xh ≥ xb) ∧ (ya + yh ≥ yb) R is an ordered �eld
9 aRb (8), (Y)
10 acRbc⇒ aRb (6), (9)
11 ∀a, b, c∀h : (aRb⇒ acRbc) ∧ (acRbc⇒

aRb)
(5), (10)

12 aRb⇔ acRbc logical equivalence

K' and K� are implied by K, and because K is true, K' and K� are also true.
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Table 15. Derivation of L

Statement: ∀a∀h : aRa

P Statement Reason

1 ∀a∀h : (xh ≥ 0) ∧ (yh ≥ 0) (X)
2 (xh + xa ≥ xa) ∧ (yh + ya ≥ ya) R is an ordered �eld
3 aRa (Y)

Table 16. Derivation of M

Statement: ∃a∃h1, h2 : 0R1a ∧ ¬ (0R2a)

Statement Reason

1 xa = ya = 2, xh1 = yh1 = 3,
xh2 = yh2 = 1

hypothesis

2 ∃a∃h1, h2 : (xh1
≥ xa) ∧ (yh1

≥ ya)∧
¬((xh2

≥ xa) ∧ (yh2
≥ ya))

(1)

3 0R1a ∧ ¬ (0R2a) (2), (Y)

Table 17. Derivation of N

∃a, b∃h1, h2 : 0R1a ∧ ¬ (0R1b) ∧ ¬ (0R2a) ∧ 0R2b

Statement Reason

1 xa = 3, ya = 1, xb = 1, yb = 3,
xh1

= 4, yh1
= 2, xh2

= 2, yh2
= 4

hypothesis

2 ∃a, b∃h1, h2 : (xh1 ≥ xa) ∧ (yh1 ≥ ya)∧
¬((xh1 ≥ xb) ∧ (yh1 ≥ yb))∧
¬((xh2

≥ xa) ∧ (yh2
≥ ya))∧

(xh2
≥ xb) ∧ (yh2

≥ yb)

(1)

3 0R1a ∧ ¬ (0R1b) ∧ ¬ (0R2a) ∧ 0R2b (2), (Y)

Table 18. Derivation of O

Statement: ∃a, b∃h1, h2 : aR1b ∧ ¬ (aR2b)

Statement Reason

1 xa = ya = 2, xb = yb = 4,
xh1 = yh1 = 3, xh2 = yh2 = 1

hypothesis

2 ∃a∃h1, h2 : (xa + xh1 ≥
xb) ∧ (ya + yh2

≥ yb)
∧¬((xa + xh2

≥ xb) ∧ (ya + yh2
≥ yb))

(1)

3 aR1b ∧ ¬ (aR2b) (2), (Y)
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Table 19. P is not true in this model

Statement: ∀a, b, c∀h : ((aRb) ∧ (aRc))⇒ aRbc

Statement Reason

1 ∀a, b, c : ((aRb) ∧ (aRc))⇒ aRbc indirect proof hypothesis
2 xa = ya = 4, xb = yb = 3,

xc = yc = 3, xh = yh = 1
hypothesis

3 ∃a, b, c∃h : (xa + xh ≥ xb) ∧ (ya + yh ≥
yb) ∧(xa + xh ≥ xc) ∧ (ya + yh ≥ yc)
∧(xa+xh < xb+xc)∧(ya+yh < yb+yc)

(1)

4 aRb ∧ aRc ∧ ¬ (aRbc) (2), (Y)
5 contradiction (1) and (4) ∀X : ¬(X ∧ ¬X)
6 ∃a, b, c∃h : ¬ (((aRb) ∧ (aRc))⇒ aRbc) (1) is false, its negation is

true

3 Lock-key-model

3.1 Presentation of the lock-key-model

The lock-key-model is a FCI(∞; 1; 0; 0) model: It allows for an in�nite number of mod and resc factors;
mod and resc factors need not be identical and are called �locks� and �keys�, respectively; quantitative
di�erences within factors are ignored and only presence or absence is considered; host contributions are
not assumed.

The lock-key-model explains bidirectional incompatibility by assuming everyWolbachia strain to have
its own locks and keys. Explaining asymmetrical incompatibility is harder�either master keys exist that
open several locks, or some Wolbachia strains have more keys than needed to open their own locks. Both
assumptions produce similar results, but the latter is easier to handle and thus chosen here.

3.2 Formalism

Since CI is determined by whether the set of all locks can be matched by the set of all keys and not by
quantitative questions, we use a di�erent language than in the goalkeeper-model. We de�ne the set of all
locks of a Wolbachia strain a as La and the set of all keys as Ka. The locks and keys are called x1, x2, . . ..
Then, �a rescues b� (aRb) if and only if the set of all locks is a subset of the set of all keys. In multiple
infections, the total factors provided are the union of the factors provided by each strain. All de�nitions
and axioms necessary for deriving statements in the lock-key-model are given in Table 20 on page 11.
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3.3 Derivations: lock-key-model I

Table 20. De�nitions

Reference De�nition
T ∀a 6= 0 : La = {xi, xj , . . .},Ka = {xk, xl, . . .}

Reference Axioms
U ∀a, b, i : (Sa ⊇ Sb)⇔ ((xi ∈ Sb)⇒ (xi ∈ Sa)),Sa =

Ka ∨ La, Sb = Kb ∨ Lb

V ∃0 : ∀i, j : (¬(xi ∈ L0)) ∧ (¬(xj ∈ K0)), or
∃0 : (L0 = ∅) ∧ (K0 = ∅)

W ∀a, b : (La ⊆ (La ∪ Sb)) ∧ (Ka ⊆ (Ka ∪ Sb))
X ∀a, b : aRb⇔ (Ka ⊇ Lb)
Y ∀a : aRa
Z ∀a, b : (Lab = La ∪ Lb), (Kab = Ka ∪Kb)

Table 21. Derivation of A

Statement: ∀a : aR0

Statement Reason

1 ∀a : L0 = ∅ (V)
2 Ka ⊇ L0 (1), (T)
3 aR0 (X)

Table 22. Derivation of B

Statement: ∃a, b : ¬(aRb) ∧ ¬(bRa)

Statement Reason

1 La = Ka = {x1}, Lb = Kb = {x2} hypothesis
2 ∃a, b : ¬(Ka ⊇ Lb) ∧ ¬(Kb ⊇ La) (1), (U)
3 ¬ (aRb) ∧ ¬ (bRa) (X)

Table 23. Derivation of C

Statement: ∃a, b : aRb ∧ ¬ (bRa)

Statement Reason

1 La = Ka = {x1, x2}, Lb = Kb = {x2} hypothesis
2 ∃a, b : (Ka ⊇ Lb) ∧ ¬(Kb ⊇ La) (1), (U)
3 aRb ∧ ¬ (bRa) (X)
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Table 24. Derivation of D

Statement: ∀a, b, c : ¬(aRb)⇒ ¬(aRbc)

Statement Reason

1 ∀a, b, c : aRbc hypothesis
2 Ka ⊇ Lbc (1), (X)
3 Ka ⊇ (Lb ∪ Lc) (2), (Z)
4 (Ka ⊇ Lb) ∧ (Ka ⊇ Lc) logical equivalence
5 aRb ∧ aRc (4), (X)
6 aRbc⇒ (aRb ∧ aRc) (1), (5)
7 ∀a, b, c : aRbc⇒ aRb (6)
8 ∀a, b, c : ¬(aRb)⇒ ¬(aRbc) logical equivalence

Table 25. D' is not true in this model

Statement: ∀a, b : aRab⇒ 0Rb

Statement Reason

1 ∀a, b : aRab⇒ 0Rb indirect proof hypothesis
2 La = Ka = {x1, x2}, Lb = Kb = {x1} hypothesis
3 ∃a, b : (Ka ⊇ Lb) ∧ (Ka ⊇ La) ∧ ¬(∅ ⊇

Lb)
(3), (U)

4 (Ka ⊇ (La ∪ Lb)) ∧ ¬(∅ ⊇ Lb) (U), (Z)
5 (Ka ⊇ Lab) ∧ ¬(∅ ⊇ Lb) (4), (Z)
6 aRab ∧ ¬(0Rb) (V), (X)
7 ¬(¬(aRab ∧ ¬ (0Rb))) logical equivalence
8 ¬(aRab⇒ 0Rb) logical equivalence
9 contradiction (1) and (8) ∀X : ¬(X ∧ ¬X)
10 ∃a, b, h : ¬(aRab⇒ 0Rb) (1) is false, its negation is

true

Table 26. Derivation of D�

Statement: ∀a, b : aRb⇒ aRab

Statement Reason

1 ∀a, b : aRb hypothesis
2 Ka ⊇ Lb (1), (X)
3 aRa (Y)
4 Ka ⊇ La (3), (X)
5 (Ka ⊇ La) ∧ (Ka ⊇ Lb) (4), (2)
6 Ka ⊇ (La ∪ Lb) logical equivalence
7 Ka ⊇ Lab (6), (Z)
8 aRab (7), (X)
9 ∀a, b : aRb⇒ aRab (1), (8)

12



Table 27. Derivation of E

Statement: ∀a, b, c : aRb⇒ acRb

Statement Reason

1 ∃a, b, c : ¬(aRb⇒ acRb) indirect proof hypothesis
2 ¬((Ka ⊇ Lb)⇒ (Kac ⊇ Lb)) (1), (X)
3 ¬(¬((Ka ⊇ Lb) ∧ ¬(Kac ⊇ Lb))) logical equivalence
4 (Ka ⊇ Lb) ∧ ¬(Kac ⊇ Lb) logical equivalence
5 (Ka ∪Kc) ⊇ Ka (W)
6 Kac ⊇ Ka (5), (Z)
7 Kac ⊇ Lb (4), (6), (U)
8 (Ka ⊇ Lb) ∧ ¬(Ka ⊇ Lb) (4), (7)
9 contradiction (8) ∀X : ¬(X ∧ ¬X)
10 ∀a, b : aRb⇒ acRb (1) is false, its negation is

true

Table 28. Derivation of E'

Statement: ∀a, b : abRa

Statement Reason

1 ∀a, b : aRa (Y)
2 abRa (1), [E]

Table 29. Derivation of F

Statement: ∃a, b : 0Ra ∧ ¬ (0Rb) ∧ aRb

Statement Reason

1 La = ∅,Ka = {x1}, Lb = Kb = {x1} hypothesis
2 (K0 ⊇ La) ∧ ¬(K0 ⊇ Lb) ∧ (Ka ⊇ Lb) (U), (V), (W)
3 0Ra ∧ ¬ (0Rb) ∧ aRb (2), (X)
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3.4 Derivations: lock-key-model II

Table 30. Derivation of H

Statement: ∃a, b, c : ¬ (bRa) ∧ ¬ (cRa) ∧ bcRa

Statement Reason

1 La = Ka = {x1, x2}, Lb = Kb =
{x1},Lc = Kc = {x2}

hypothesis

2 ∃a, b, c : ¬(Kb ⊇ La) ∧ ¬(Kc ⊇
La)∧(La ⊇ (Kb ∪Kc))

(1), (U)

3 ¬(La ⊇ Kb)∧¬(La ⊇ Kc)∧(La ⊇ Kbc) (2), (Z)
4 ¬ (bRa) ∧ ¬ (cRa) ∧ bcRa (X)

Table 31. Derivation of I

Statement: ∃a, b, c : aRb ∧ bRc ∧ ¬ (aRc)

Statement Reason

1 La = {x1},Ka = {x1, x2}, Lb =
{x2},Kb = {x1, x2, x3},Kc = Lc =

{x3}

hypothesis

2 ∃a, b, c : (Ka ⊇ Lb) ∧ (Kb ⊇
Lc) ∧ ¬(Ka ⊇ Lc)

(2), (U)

3 aRb ∧ bRc ∧ ¬ (aRc) (X)

Table 32. Derivation of J

Statement: ∀a, b, c : aRbc⇒ acRabc

Statement Reason

1 ∀a, b, c : aRbc hypothesis
2 acRbcc (1), [K]
3 acRbc (2), (U)
4 aacRabc (3), [K]
5 acRabc (4), (U)
6 ∀a, b, c : aRbc⇒ acRabc (1), (5)
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Table 33. Derivation of K'

Statement: ∀a, b, c : aRb⇒ acRbc

Statement Reason

1 ∀a, b, c : cRc (Y)
2 Kc ⊇ Lc (2), (X)
3 (Ka ∪Kc) ⊇ Lc (3), (W)
4 Kac ⊇ Lc (4), (Z)
5 ∀a, b, c : aRb hypothesis
6 Ka ⊇ Lb (X)
7 (Ka ∪Kc) ⊇ Lb (6), (W)
8 Kac ⊇ Lb (7), (Z)
9 ∀a, b, c : aRb⇒ ((Kac ⊇ Lb) ∧ (Kac ⊇

Lc))
(8), (4)

10 aRb⇒ (Kac ⊇ (Lb ∪ Lc)) (9), (U)
11 aRb⇒ (Kac ⊇ Lbc) logical equivalence
12 aRb⇒ acRbc (11), (X)

Table 34. K�, the converse of K', is not true in this model

Statement: ∀a, b, c : acRbc⇒ aRb

Statement Reason

1 acRbc⇒ aRb indirect proof hypothesis
2 La = Ka = {x1}, Lb = Kb = {x1, x2},

Lc = Kc = {x2}
hypothesis

3 ∃a, b, c : (((Ka ∪Kc) ⊇ Lb)∧
((Ka ∪Kc) ⊇ Lc) ∧ ¬(Ka ⊇ Lb)

(2), (U)

4 ((Ka ∪Kc) ⊇ (Lb ∪ Lc)) ∧ ¬(Ka ⊇ Lb) logical equivalence
5 (Kac ⊇ Lbc) ∧ ¬(Ka ⊇ Lb) (4), (Z)
6 acRbc ∧ ¬ (aRb) (5), (X)
7 ¬(acRbc⇒ aRb) logical equivalence
8 contradiction (1) and (7) ∀X : ¬(X ∧ ¬X)
9 ∃a, b, c : ¬(acRbc⇒ aRb) (1) is false, its negation is

true
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Table 35. K is not true in this model

Statement: ∀a, b, c : aRb⇔ acRbc

Statement Reason

1 ∀a, b, c : aRb⇔ acRbc indirect proof hypothesis
2 (aRb⇒ acRbc) ∧ (acRbc⇒ aRb) logical equivalence
3 ∃a, b, c : ¬(acRbc⇒ aRb) [K�]
4 contradiction (2) and (3) ∀X : ¬(X ∧ ¬X)
5 ∃a, b, c : ¬(aRb⇔ acRbc) (1) is false, its negation is

true

Table 36. Derivation of P

Statement: ∀a, b, c : ((aRb) ∧ (aRc))⇒ aRbc

Statement Reason

1 ∀a, b, c : (aRb) ∧ (aRc) hypothesis
2 (Ka ⊇ Lb) ∧ (Ka ⊇ Lc) (1), (X)
3 Ka ⊇ (Lb ∪ LC) logical equivalence
4 Ka ⊇ Lbc (3), (Z)
5 aRbc (4), (X)
6 ∀a, b, c : ((aRb) ∧ (aRc))⇒ aRbc (1), (5)
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3.5 Synopsis

Table 37. Summary of derived statements

Table goalkeeper lock-key test
A: ∀a(∀h) : aR0 2,21 true true evidence
B: ∃a, b(∃h) : ¬ (aRb) ∧ ¬ (bRa) 3,22 true true proved
C: ∃a, b(∃h) : aRb ∧ ¬ (bRa) 4,23 true true proved
D: ∀a, b, c(∀h) : ¬(aRb)⇒ ¬(aRbc) 5,24 true true evidence
D': ∀a, b(∀h) : aRab⇒ 0Rb 6,25 true false not tested
D�: ∀a, b(∀h) : aRb⇒ aRab 7,26 false true not tested
E: ∀a, b, c(∀h) : aRb⇒ acRb 8,27 true true evidence
E': ∀a, b(∀h) : abRa 9,28 true true evidence
F: ∃a, b(∃h) : 0Ra ∧ ¬ (0Rb) ∧ aRb 10,29 true true proved
H: ∃a, b, c(∃h) : ¬ (bRa) ∧ ¬ (cRa) ∧ bcRa 11,30 true true not tested
I: ∃a, b, c(∃h) : aRb ∧ bRc ∧ ¬ (aRc) 12,31 true true proved
J: ∀a, b, c(∀h) : aRbc⇒ acRabc 13,32 false true not tested
K: ∀a, b, c(∀h) : aRb⇔ acRbc 14,34 true false not tested
K': ∀a, b, c(∀h) : aRb⇒ acRbc 14,33 true true not tested
K�: ∀a, b, c(∀h) : acRbc⇒ aRb 14,34 true false not tested
L: ∀a∀h : aRa 15,20 true axiom evidence
M: ∃a∃h1, h2 : 0R1a ∧ ¬ (0R2a) 16 true - proved
N:
∃a, b∃h1, h2 : 0R1a ∧ ¬ (0R1b)∧¬ (0R2a) ∧ 0R2b 17 true - not found
O: ∃a, b∃h1, h2 : aR1b ∧ ¬ (aR2b) 18 true - not found
P: ∀a, b, c (∀h) : ((aRb) ∧ (aRc))⇒ aRbc 19,36 false true not tested

4 Why the mistiming-model is most likely invalid

The mistiming-model assumes Wolbachia to manipulate sperm content to delay the male pronucleus
during the �rst cell cycle after fertilization. Rescue restores synchrony by applying the same manipulation
to the rest of the ovum, thus delaying it by the same degree [7,8]. The mistiming-model is a FCI(1; 0; 1; 1)
model, similar to the goalkeeper-model but with only one factor (we assume a net host contribution to
make the model harder to falsify). De�nitions are given in table 39.

The mistiming-model is a special case of the goalkeeper-model and has thus more predictive power.
However, the mistiming-model cannot account for bidirectional incompatibility (proof see Table 40 on
page 21).

Modifying the mistiming-model by assuming di�erent resc factors in the ovum to bind to paternal
chromosomes and further slow down their progression allows bidirectional incompatibility to occur [9].
However, this enlarged model can no longer explain unidirectional incompatibility between di�erent
Wolbachia strains because sperm would always be further delayed upon entering an ovum containing
another strain. Assuming di�erent binding sites for di�erent factors can solve this new problem ( [9]; see
�gure 1) but the model loses predictive power as a consequence.

The modi�ed mistiming-model relies on the assumption that the sperm DNA can be further modi�ed
after fertilization. This implies that it is also modi�ed by the factors contributed naturally by the mother,
the host contribution to mod. As a consequence, we will momentarily drop the assumption that there is
a net host contribution. The mistiming-model is thus altered to be an FCI(∞; 0; 1; 0) model of CI. The
new de�nitions of the model can be found in Table 41 on page 20. In this model, a Wolbachia strain a
can only rescue strain b if b does not produce factors binding to a site that the factors produced by a
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Table 38. Verbal interpretation of all statements

Statement Interpretation

A If only in the ovum but not in the sperm, Wolbachia does not cause CI
B Bidirectional incompatibility is possible
C Unidirectional incompatibility is possible
D Additional strains in males cannot decrease mod strength
D' Even if a rescues b, it cannot rescue the double-infection ab (except if b is

[mod-])
D� If a rescues b, it also rescues the double-infection ab
E Additional strains in females cannot decrease resc strength
E' The double-infection ab rescues the mono-infection a
F The existence of [mod- resc+] strains is possible
H There are strains b and c that cannot rescue a by themselves but can do so

together
I Intransitivity � there is a strain a that rescues a strain b which can rescue c,

but a cannot rescue c
J If a rescues the double-infection bc, then the double infection ac rescues the

triple-infection abc
K Only if a rescues b does the double-infection ac rescue the double-infection bc
K' If a rescues b, the double-infection ac rescues the double-infection bc
K� If the double-infection ac rescues the double-infection bc, a rescues b
L Each strain possesses the factors required to rescue itself
M It is possible that a strain is [mod-] in one host and [mod+] in another
N It is possible that in one host, a is [mod-] and b is [mod+], while the reverse is

true in another host
O It is possible that a strain a can rescue b in one host but not in another
P If a rescues b and if a rescues c, it also rescues the double-infection bc
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♀ ♂ ♂∗ Rescue Compatibility

no unidirectional

yes unidirectional

no bidirectional

Figure 1. Di�erent crosses of two Wolbachia strains in the modi�ed mistiming-model. Red
and blue bars represent quantities of two factors binding to two di�erent sites. The �rst row depicts
factor quantities in the the ovum, the second in the sperm. Upon fertilization, factors deposited in the
ovum bind to the sperm DNA if the corresponding site is not already fully occupied (third row, white
arrow). Rescue occurs if, after fertilization, none of the binding sites of the paternal DNA binds more
factors than the binding sites of the maternal DNA.
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do not bind to. In addition, b must not produce a higher quantity than a of any factor at a common
binding site, leading to de�nition Y'. This modi�ed mistiming-model can account for both bidirectional
incompatibility and unidirectional incompatibility (�gure 1, formal proof not shown).

Table 41. De�nitions modi�ed mistiming-model

Reference De�nition

X' ∀a, b, . . . : a = (xa, ya, ...) , b =
(xb, yb, ...) , . . .x, y, . . . ∈ R+, 0 = (0, 0, . . .)

Y' ∀a, b∀h : aRb⇔ ((xa ≥ xb) ∧ (ya ≥ yb) ∧ ...)
Z' ∀a, b : ab = (max {xa;xb} ; max {ya; yb} ; ...)

However, in contrast to both goalkeeper-model and lock-key-model, the modi�ed mistiming-model
predicts transitivity (i.e. when strain a rescues strain b, and strain b rescues strain c, then strain a must
also rescue strain c; statement I in table 42). However, such transitivity is contradicted by empirical
�ndings [1]. Again, we could add further ad hoc hypotheses, for example by making the mistiming-
model an FCI(∞, 0, 1, 1) model (the same as the previous but with net host contributions). However,
this model would be strictly less parsimonious than the goalkeeper-model. We thus prefer to use the
goalkeeper-model or the lock-key-model instead to explain CI.

5 Predictions from the norm approach to CI levels in the goalkeeper-

model

5.1 Introduction

The goalkeeper-model does not contain a speci�c mechanism to explain CI levels. Still, some simple
predictions can be derived from the intuitive reasoning that CI levels are proportional to the norm of the
di�erences between mod and resc vector:

1. More Wolbachia strains in females should decrease CI levels due to the increased amount of resc
factors.

2. More Wolbachia strains in males should increase CI levels due to the increased amount of mod
factors.

3. Equivalent crosses, i.e. crosses in which the number of excess Wolbachia strains in the female or
male are equal, should lead to similar CI levels because the di�erence in mod and resc factors should
be equal.

Table 39. De�nitions mistiming-model

Reference De�nition

X ∀a, b, . . . 6= 0 : a = xa, b = xb, . . .x ∈ R+, 0 = 0
Y ∀a, b∀h : aRb⇔ (xa + xh ≥ xb)
Z ∀a, b : ab = (xa + xb)
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Table 40. B is not true in the mistiming-model

Statement: ∃a, b∃h : ¬ (aRb) ∧ ¬ (bRa)

Statement Reason

1 ∃a, b∃h : ¬ (aRb) ∧ ¬ (bRa) indirect proof hypothesis
2 ¬(xa + xh ≥ xb) ∧ ¬(xb + xh ≥ xa) (1), (Y)
3 (xa + xh < xb) ∧ (xb + xh < xa) logical equivalence
4 (xh < xb − xa) ∧ (xh < xa − xb) (3), R is an ordered �eld
5 (xa−xb < xb−xa)∧(xb−xa < xa−xb) Transitivity of real numbers
6 (2 · xa < 2 · xb) ∧ (2 · xb < 2 · xa) (5), R is an ordered �eld
7 ¬∃a, b¬∃h : ¬ (aRb) ∧ ¬ (bRa) (6) is a contradiction, thus (1) is false

(To form an intuition of the reason for the three predictions, have a look at �gure 2 of the main text and
think of the CI level as proportional to the norm of the di�erences in the mod and the resc vector.)

To study these predictions, we only compared crosses of equal type, that is, compatible with compatible
crosses, incompatible with incompatible crosses, etc. We excluded comparisons of di�erent crossing types,
like compatible vs incompatible cross or compatible vs control cross. For example, we tested whether
females infected by wRi are better at rescuing crosses with males infected with wNo than uninfected
females are (prediction 1). However, we do not consider that females infected with wNo are better
at rescuing crosses with males infected by wNo than uninfected females are, because in this case, the
additional Wolbachia strain in the female renders the cross compatible, whereas in the former case, both
crosses are incompatible. Similarly, we tested for example whether males double-infected with wHa and
wNo cause higher levels of CI when mated with uninfected females than males mono-infected with wHa
or wNo do (prediction 2). Our predictions were agnostic as to whether, for example, the double-infection
of wHa and wNo or whether the mono-infection of wRi should lead to higher CI levels when females are
uninfected.

We de�ne equivalent crosses as those crosses in which the number of excess Wolbachia strains in the
female or male are equal. For example in the cross of uninfected females with wHa infected males, the
wHa strain is in excess in males (it is not present in the females). Likewise, in the cross of wNo infected
females with wHa and wNo double-infected males, the wHa strain is in excess in males (the wNo strain
is present in both sexes, but only the wHa strain is present in males). That these crosses should be
equivalent can be derived from statement K (table 14). As more precise statistical analyses were not
possible from the given data, we treated CI levels as similar if the di�erence between the CI levels of all
equivalent crosses was less than 10%.

Table 42. The negation of I is true in this model

Statement: ∀a, b, c : (aRb ∧ bRc)⇒ aRc

Statement Reason

1 ∀a, b, c : (aRb ∧ bRc) hypothesis
2 (xa > xb) ∧ (ya > yb) ∧ ... (1), (Y')
3 (xb > xc) ∧ (yb > yc) ∧ ... (1), (Y')
4 (xa > xc) ∧ (ya > yc) ∧ ... (2), (3), transitivity of real numbers
5 ∀a, b, c : aRc (4), (Y')
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Table 43. CI levels (uncorrected) from crossing experiments from [10]. Rows: females, columns: males.

♂
uninf. wRi wHa wNo wHa+wNo

uninf. 0.270 0.990 0.973 0.812 0.992
wRi 0.040 0.157 0.892 0.785 0.973

♀ wHa 0.037 0.983 0.107 0.786 0.651
wNo 0.264 0.924 0.940 0.333 0.938

wHa+wNo 0.058 0.992 0.130 0.093 0.194

Table 44. CI levels (uncorrected) from crossing experiments from [11]. Rows: females, columns: males.

♂
wRi wHa wHa+wRi

wRi 0.216 1.000 0.975
♀ wHa 0.992 0.190 0.991

wHa+wRi 0.088 0.130 0.208

5.2 Method

Data were taken from [10] (their table 4), [11] (only controlled data, top of their table 1), and [12] their
tables 2 and 3). If more than one data set for a cross was available within an article, we took the arithmetic
mean of the data sets and weighted with number of observations, if indicated. Our accumulated data can
be found in table 43, 44, and 45.

For example, prediction 1 could be tested as follows: Given males triple-infected with wHa, wRi,
wNo, compare the CI levels of uninfected females (should be highest) with the CI level of females mono-
infected by only one of those three strains (should be high but lower), and with the CI level of females
double-infected by two of the three strains (should still be high but even lower). Thus, given the data
of [12] (1999; table 45), we can test eight predictions of type 1 by analyzing the last column. Each
possible comparison is counted as an individual test, draws were excluded. Because the data presented in
the articles do not allow to perform statistical tests of signi�cance, such tests were omitted. We merely
tested whether the predictions we made were qualitatively correct.

5.3 Results

Of the predictions of type 1, 21 were correct and 4 were false (highly signi�cant; p<0.001, one-tailed
binomial test). Of the predictions of type 2, 14 were correct and 8 were false (1 draw excluded, di�erence

Table 45. CI levels (uncorrected) from crossing experiments from [12]. Rows: females, columns: males.

♂
uninf. wRi wHa wNo wHa+wRi wHa+wNo wHa+wRi+wNo

uninf. 0.089 0.852 0.766 0.996 - 0.852 0.996
wRi - - - - - - -
wHa - - - - - - 0.991

♀ wNo - - - - - - 0.994
wHa+wRi - - - - 0.317 0.604 0.800
wHa+wNo - - - - 0.989 0.361 0.981

wHa+wRi+wNo 0.070 - - 0.185 0.275 0.230 0.393
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insigni�cant). Of the predictions of type 3, 10 were correct and 3 were false (di�erence insigni�cant).
Data can also be pooled by publication � [10]: 18 predictions were correct and 11 predictions were false
(not signi�cant); [11]: 5 predictions were correct and 2 predictions were false (not signi�cant); [12]: 22
predictions were correct and 2 predictions were false (p<0.001, one-tailed binomial test, 1 draw excluded).
Overall, 45 predictions were correct and 15 were false (1 draw excluded; highly signi�cant; p<0.001, one-
tailed binomial test).

5.4 Discussion

We analyzed three predictions made by the norm approach to CI levels within the framework of the
goalkeeper-model: (1) more Wolbachia strains in females should decrease CI levels, (2) more Wolbachia

strains in males should increase CI levels, and (3) equivalent crosses should yield similar CI levels.
Data from three publications generated 60 predictions of which 45 were correct and 14 false (1 draw).
Predictions of type 1 were correct signi�cantly more often than expected by chance; predictions of types
2 and 3 were correct more often than not, but the di�erences were not signi�cant, maybe owing to small
sample sizes.

The norm approach can further be corroborated by looking at the results from [13]. By using predic-
tions of type 3, one would not expect signi�cant di�erences in CI levels within the incompatible crosses
of

• type [a]: (♀+ wLhet1)×(♂+ wLhet1 + wLhet3) and (♀+ wLhet1 + wLhet2)×(♂+ wLhet1 +
wLhet2 + wLhet3)

on the one hand and

• type [b]: (♀+ wLhet1)×(♂+ wLhet1 + wLhet2) and (♀+ wLhet1 + wLhet3)×(♂+ wLhet1 +
wLhet2 + wLhet3)

on the other hand (the Wolbachia strain that is exclusively harbored by males is underscored because it
is this strain that tips the scale). In contrast, di�erences in CI level between any combination of crosses
of type [a] and type [b] are not forbidden. ANOVA tests showed indeed that there is no signi�cant
di�erence in CI levels within the equivalent crosses of type [a] or within the equivalent crosses of type
[b]. Nevertheless, CI levels di�ered in any combination of crosses [a] and [b]. This is exactly what the
goalkeeper-model would predict if in incompatible crosses, CI levels are determined by the norm approach
to CI levels.

E�ects of multiple infections have also been studied in the �ower bug Orius strigicollis [6]. The
authors' results showed that, for the two cases that were statistically signi�cant, CI levels in males
infected with two Wolbachia strains were not higher than in single infections. While this result stands in
contrast to our predictions of type 2, the authors provide a likely explanation for this unexpected �nding.
When they tested for Wolbachia density in the host, they found reduced densities in hosts with multiple
infections. Decreased density probably leads to decreased production of mod factors and thus to lower CI
levels. As a result, even though other empirical studies did not �nd a similar e�ect of multiple infections
on Wolbachia density [4, 5], one may have to correct for possible density reductions when making tests
like those presented in this section. Conversely, other aspects of the work on Orius [6] are in support
of our predictions. Speci�cally, two statistically signi�cant examples where more Wolbachia strains in
females decrease CI levels are in accord with our predictions of type 1. Moreover, the fact that eight
of ten possible comparisons of equivalent crosses did not show signi�cant di�erences is in line with our
predictions of type 3. We caution, however, that trying not to �nd signi�cant di�erences may lead to
false positive results.
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