Supporting Information

Structure and biosynthesis of the marine streptomycete ansamycin ansalactam A and its distinctive branched chain polyketide extender unit

Micheal C. Wilson,[†] Sang-Jip Nam,[†] Tobias A. M. Gulder,[†] Christopher A. Kauffman,[†] Paul R. Jensen,[†] William Fenical,^{*,†} and Bradley S. Moore^{*,†,‡}

[†]Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093-0204 [‡]Skaggs School of Pharmacy, University of California at San Diego, La Jolla, CA 92093-0204

Table of contents

Figure S1. Two possible stereoisomers and ROESY correlations of 4S2
Figure S2. Identification of a naphthoquinone-type AHBA synthase from CNH-189S3
Figure S3. ¹ H NMR spectrum of 4S4
Figure S4. ¹³ C NMR spectrum of 4
Figure S5. gCOSY spectra of 4
Figure S6. gHSQC spectra of 4S7
Figure S7. gHMBC spectra of 4S8
Figure S8. ROESY spectra of 4
Figure S9. ¹ H NMR spectrum of polyol product 5 of ansalactam A (4)S10
Figure S10. ¹³ C NMR spectrum of polyol product 5 of ansalactam A (4)S11
Figure S11. ¹ H NMR spectrum of <i>bis-S-</i> MTPA ester (6a) of compound 5
Figure S12. ¹ H NMR spectrum of <i>bis-R</i> -MTPA ester (6b) of compound 5S13
Figure S13 ¹ H NMR spectrum of diol 7 from ansalactam A (1)S14
Figure S14. ¹ H NMR spectrum of <i>bis-S-</i> MTPA ester (8a) of compound 7S15
Figure S15. ¹ H NMR spectrum of <i>bis-R</i> -MTPA ester (8b) of compound 7S16
Figure S16. ¹³ C NMR spectrum of 5 from [1- ¹³ C]leucine feeding studyS17
Figure S17. ¹³ C NMR spectrum of 5 from [1- ¹³ C]propionate feeding studyS18

Figure S18. ¹³ C NMR spectrum of 5 from $[1,2-^{13}C_2]$ acetate feeding study	S19
Figure S19. ¹³ C NMR spectrum of 5 from [1- ¹³ C]isobutyrate feeding study	S20
Figure S20. Expanded ¹³ C NMR spectrum of 5 from [1- ¹³ C]isobutyrate feeding study	S21
Figure S21. ¹³ C NMR <i>spectrum</i> of 5 from [2- ¹³ C]4-Me-2-pentenoate feeding study	S22
Figure S22. Expanded ¹³ C NMR spectrum of 5 from [2- ¹³ C]4-Me-2-pentenoate feeding study	S23
References	S24

Figure S1. The two possible stereoisomers (a, b), and selected key ROESY correlations for determination of the configurations at C-21 and C-22 for the reduced ansalactam A alcohol (5).

Figure S2. Indentification of a naphthoquinone-type AHBA synthase from *S*. sp. CNH-189. PCR amplification of AHBA synthase genes from *Streptomyces* sp. strain CNH-189 (lane 2), *Salinispora arenicola* strain CNS-205 (lane 3, positive control), *S. tropica* strain CNB-440 (lane 4, negative control), and no template control (lane 5) using degenerate primers designed by Huitu et al. (see ref. 1). The 755 bp amplicon from CNH-189 was aligned in a neighbor-joining tree with AHBA synthases from characterized biosynthetic gene clusters of benzoquinone and naphthoquinone ansamycins as well as uncharacterized AHBA synthases from genome sequencing projects and the AHBA synthase involved in the biosynthesis of mitomycin, a nonansamycin compound derived from AHBA.

Figure S3. ¹H NMR spectrum (500 MHz) of ansalactam A (4) in methanol- d_4

Figure S4. ¹³C NMR spectrum (75 MHz) of ansalactam A (4) in methanol- d_4

Figure S5. gCOSY spectra (500 MHz) of ansalactam A (4) in methanol- d_4

Figure S6. gHSQC spectra (500 MHz) of ansalactam A (4) in methanol- d_4

Figure S7. gHMBC spectra (500 MHz) of ansalactam A (4) in methanol- d_4

Figure S8. ROESY spectra (600 MHz) of ansalactam A (4) in methanol- d_4

Figure S9. ¹H NMR spectrum (600 MHz) of polyol product 5 from ansalactam A (4) in methanol- d_4

Figure S10. ¹³C NMR spectrum (75 MHz) of polyol product 5 from ansalactam A (4) in methanol- d_4

Figure S11. ¹H NMR spectrum (600 MHz) of *bis-S*-MTPA ester (6a) of compound 5 in methanol-*d*₄

Figure S13. ¹H NMR spectrum (600 MHz) of vicinal diol **7** from ansalactam A (**4**) in methanol- d_4

Figure S15. ¹H NMR spectrum (600 MHz) of *bis-R*-MTPA ester (8b) from compound 7 in DMSO-*d*₆

Figure S16. ¹³C NMR spectrum (125 MHz) of 5 <u>not</u> enriched from $[1^{-13}C]$ leucine feeding study in methanol- d_4

Figure S17. ¹³C NMR spectrum (125 MHz) of **5** from $[1^{-13}C]$ propionate feeding study in methanol- d_4

Figure S18. ¹³C NMR spectrum (125 MHz) of **5** from $[1,2^{-13}C_2]$ acetate feeding study in methanol- d_4

Figure S19. ¹³C NMR spectrum (125 MHz) of **5** from $[1^{-13}C]$ isobutyrate feeding study in methanol- d_4

Figure S21. ¹³C NMR spectrum (125 MHz) of 5 from $[2^{-13}C]4$ -Me-2-pentenoic acid feeding study in methanol- d_4

S22

References

(1) Huitu, Z.; Linzhuan, W.; Aiming, L.; Guizhi, S.; Feng, H.; Qiuping, L.; Yuzhen, W.; Huanzhang, X.; Qunjie, G.; Yiguang, W. *J. Appl. Microbiol.* **2009**, *106*, 755.

Complete Reference 17

Mo, S.; Kim, D. H.; Lee, J. H.; Park, J. W.; Basnet, D. B.; Ban, Y. H.; Yoo, Y. J.; Chen, S.-w.; Park, S. R.; Choi, E. A.; Kim, E.; Jin, Y.-Y.; Lee, S.-K.; Park, J. Y.; Liu, Y.; Lee, M. O.; Lee, K. S.; Kim, S. J.; Kim, D.; Park, B. C.; Lee, S.-g.; Kwon, H. J.; Suh, J.-W.; Moore, B. S.; Lim, S.-K.; Yoon, Y. J. *J. Am. Chem. Soc.*, accepted.