Supporting Information

A Method for the Deprotection of Alkylpinacolyl Boronate Esters

Jing Sun, Michael Perfetti and Webster L. Santos*

Department of Chemistry, Virginia Tech, Blacksburg, Virginia, 24061

•	General Information	2
•	¹ H, ¹³ C and ¹¹ B NMR spectra for 2a-2k	.3-32
•	¹ H, ¹³ C and ¹¹ B NMR spectra for 3a,3b,3f,3g,3j	.33-50
•	¹ H and ¹³ C NMR spectra for reisolated pinacolyl boronate esters 3c-3e, 3h, 3i	.51-60

General Information:

¹H NMR spectra were recorded on either a 500 MHz or 400 MHz spectrometer. Chemical shifts are reported in ppm with the solvent resonance as the internal standard (CDCl₃: 7.26 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constants (Hz), and assignment. ¹³C NMR spectra were recorded on a 125 MHz spectrometer. Chemical shifts are reported in ppm with the solvent resonance as the internal standard (CDCl₃: 77.16 ppm). The carbon directly attached to boron was not observed due to quadrupolar relaxation. ¹¹B NMR spectra were recorded on a 160 MHz spectrometer. Chemical shifts are reported in ppm with boron trifluoride diethyl etherate as an external standard (BF₃O(C₂H₅)₂: 0 ppm).

The following spectra (3c-e, 3h, 3i) represent the reisolated pinacol protected boronic ester from the corresponding DEA-adduct (see Table 1).

