Supporting Information

for

Two-Dimensional Packing of Short DNA with Non-Pairing Overhangs in Cationic Liposome–DNA Complexes: From Onsager Nematics to Columnar Nematics With Finite-Length Columns

Nathan F. Bouxsein, Cecília Leal, Christopher S. McAllister, Kai K. Ewert, Youli Li, Charles E. Samuel, Cyrus R. Safinya*

Content	Page
Table S1. Sequences of the sense and anti-sense strands of the short DNA molecules studied	S2
Derivation of Equations S1 and S2	S3

Table S1. Sequences of the sense and anti-sense strands of the short DNA molecules studied.

	sequence ^a	duplex name
S	CTTACGCTGAGTT	11bp DNA-2T
as	CTCAGCGTAAGTT	
S	CTTACGCTGAGTTTTT	11bp DNA-5T
as	CTCAGCGTAAGTTTTT	
S	CTTACGCTGAGTTTTTTTT	11bp DNA-10T
as	CTCAGCGTAAGTTTTTTTT	
S	ATCACTTACGCTGAGTACTTCGAATT	24bp DNA-2T
as	TTCGAAGTACTCAGCGTAAGTGATTT	
S	ATCACTTACGCTGAGTACTTCGAATTTTT	24bp DNA-5T
as	TTCGAAGTACTCAGCGTAAGTGATTTTT	
S	ATCACTTACGCTGAGTACTTCGAATTTTTTTTTT	24bp DNA-10T
as	TTCGAAGTACTCAGCGTAAGTGATTTTTTTTTT	
S	ACAGATGCACATATCGAGGTGGACATCACTTACGCTGAGTACTTCGAATT	48bp DNA-2T
as	TTCGAAGTACTCAGCGTAAGTGATGTCCACCTCGATATGTGCATCTGTTT	
S	ACAGATGCACATATCGAGGTGGACATCACTTACGCTGAGTACTTCGAATTTTT	48bp DNA-5T
as	TTCGAAGTACTCAGCGTAAGTGATGTCCACCTCGATATGTGCATCTGTTTTTT	
S	A CAGATG CACATATC GAGTG GACATCACTTACG CTGAGTACTTC GAATTTTTTTTTT	48bp DNA-10T
as	TTCGAAGTACTCAGCGTAAGTGATGTCCACCTCGATATGTGCATCTGTTTTTTTT	

^a sense (s) and anti-sense (as) strands as indicated

Derivation of Equations S1 and S2

As outlined in the text,

$$\sigma_{M} = \sigma_{CL} \frac{N_{CL}}{N_{CL} + rN_{NL}}$$
, where $\sigma_{CL} = \frac{eZ_{CL}}{a_{CL}}$

For $r = 1 + \varepsilon$ with $|\varepsilon| \ll 1$

$$\frac{N_{CL}}{N_{CL} + r N_{NL}} = \frac{N_{CL}}{N_{CL} + N_{NL} + \varepsilon N_{NL}} = \Phi_{CL} \frac{1}{1 + \varepsilon \Phi_{NL}} \ ,$$

since
$$\Phi_{CL} = \frac{N_{CL}}{N_{CL} + N_{NL}} = 1 - \Phi_{NL} = 1 - \frac{N_{NL}}{N_{CL} + N_{NL}}$$
.

 $\Phi_{NL} \le 1$ by definition, and thus $|\epsilon \Phi_{NL}| \le |\epsilon| << 1$.

Therefore, $\frac{1}{1 + \varepsilon \Phi_{NL}} \approx 1 - \varepsilon \Phi_{NL}$ (Taylor series expansion).

Substituting these results into the equation for σ_M , we obtain

$$\sigma_{M} = \sigma_{CL} \frac{N_{CL}}{N_{CL} + rN_{NL}} = \sigma_{CL} \Phi_{CL} \frac{1}{1 + \varepsilon \Phi_{NL}} \approx \sigma_{CL} \Phi_{CL} (1 - \varepsilon \Phi_{NL}) = \sigma_{CL} (1 - \Phi_{NL}) (1 - \varepsilon \Phi_{NL})$$
 (S1)

Equating this with the other expression for σ_M , we obtain

$$\sigma_{\scriptscriptstyle M} = \frac{e}{3.4 \, \text{Å} \, d_{\scriptscriptstyle \text{DNA}}} \approx \sigma_{\scriptscriptstyle CL} (1 - \Phi_{\scriptscriptstyle NL}) (1 - \varepsilon \Phi_{\scriptscriptstyle NL}) = \frac{e Z_{\scriptscriptstyle CL}}{a_{\scriptscriptstyle CL}} (1 - \Phi_{\scriptscriptstyle NL}) (1 - \varepsilon \Phi_{\scriptscriptstyle NL})$$

$$\Leftrightarrow d_{DNA} \approx \frac{a_{CL}}{3.4 \text{Å} Z_{CL}} \frac{1}{(1 - \Phi_{NL})(1 - \varepsilon \Phi_{NL})}$$
 (S2)