Appendix S1

For the case of simple linear regression, we can show directly that $\mathbb{E}[\hat{\beta}_{G \times E}|Y, E] \approx 0$ with high probability (ie, for virtually all realizations of Y and E). Suppose we work with centered variables: $E - \bar{E}$, $G - \bar{G}$, and $(G - \bar{G})(E - \bar{E})$. Let X be the design matrix with columns $(1, E - \bar{E}, G - \bar{G}, \text{ and } (G - \bar{G})(E - \bar{E}))$ and write

$$\hat{\beta} = (X^T X)^{-1} (X^T Y).$$

Consider the interaction component of $X^T Y$, which is $\sum_{i=1}^n (G_i - \overline{G})(E_i - \overline{E})Y_i$. This is linear in G, so its conditional expectation given E and Y is just

$$\sum_{i=1}^{N} \mathbb{E}[G_i - \bar{G}|E, Y](E_i - \bar{E})Y_i = \sum_{i=1}^{N} 0 \times (E_i - \bar{E})Y_i = 0.$$

The same is true of the genetic main-effect component, which is $\sum_{i=1}^{n} (G_i - \bar{G})Y_i$ and has expectation

$$\sum_{i=1}^{N} \mathbb{E}[G_i - \bar{G}|E, Y] Y_i = \sum_{i=1}^{N} 0 \times Y_i = 0.$$

By a similar argument, $\mathbb{E}[X^T X | Y, E]$ has the diagonal form

$$\mathbb{E}[X^{t}X] = \begin{bmatrix} n & 0 & 0 & 0 \\ 0 & \sum(E_{i} - \bar{E})^{2} & 0 & 0 \\ 0 & 0 & (n-1)\operatorname{var}[G] & 0 \\ 0 & 0 & 0 & \frac{n-1}{n}\operatorname{var}[G]\sum(E_{i} - \bar{E})^{2} \end{bmatrix}$$

where the first row and column are zero due to centering and the remaining off-diagonal terms are zero due to independence of G and E. Thus $\mathbb{E}[X^T X]^{-1}$ is also diagonal. This means that the G and $G \times E$ entries of $\mathbb{E}[X^T X | Y, E]^{-1} \mathbb{E}[X^T Y | Y, E]$ are zero. Omitting SNPs where $X^T X$ is singular (eg, those that are monomorphic in the sample),

$$\hat{\beta} = \mathbb{E}[(X^T X)^{-1} X^T Y | Y, E]$$

= $\mathbb{E}[X^T X | Y, E]^{-1} \mathbb{E}[X^T Y | Y, E] + O_p(1/n)$
= $O_p(1/n)$

so $\mathbb{E}[\hat{\beta}_{G \times E} | Y, E] = O_p(1/n)$ and $\operatorname{Var}\left[\mathbb{E}[\hat{\beta}_{G \times E} | Y, E]\right] = O(1/n^2)$. The second term in equation (3) is O(1/n), so the first term is of smaller

The second term in equation (3) is O(1/n), so the first term is of smaller order and can be ignored when sample size is large. A model-robust variance estimator will give $\hat{\lambda} \approx 1$ in the absence of population substructure.