
Appendix S1

For the case of simple linear regression, we can show directly that E[β̂G×E|Y,E] ≈
0 with high probability (ie, for virtually all realizations of Y and E). Suppose
we work with centered variables: E− Ē, G− Ḡ, and (G− Ḡ)(E− Ē). Let X
be the design matrix with columns (1, E − Ē, G− Ḡ, and (G− Ḡ)(E − Ē))
and write

β̂ = (XTX)−1(XTY ).

Consider the interaction component of XTY , which is
∑n

i=1(Gi − Ḡ)(Ei −
Ē)Yi. This is linear in G, so its conditional expectation given E and Y is
just

N∑
i=1

E[Gi − Ḡ|E, Y ](Ei − Ē)Yi =
N∑

i=1

0× (Ei − Ē)Yi = 0.

The same is true of the genetic main-effect component, which is
∑n

i=1(Gi −
Ḡ)Yi and has expectation

N∑
i=1

E[Gi − Ḡ|E, Y ]Yi =
N∑

i=1

0× Yi = 0.

By a similar argument, E[XTX|Y,E] has the diagonal form

E[X tX] =


n 0 0 0
0

∑
(Ei − Ē)2 0 0

0 0 (n− 1)var[G] 0
0 0 0 n−1

n
var[G]

∑
(Ei − Ē)2


where the first row and column are zero due to centering and the remain-
ing off-diagonal terms are zero due to independence of G and E. Thus
E[XTX]−1 is also diagonal. This means that the G and G × E entries of
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E[XTX|Y,E]−1E[XTY |Y,E] are zero. Omitting SNPs where XTX is singu-
lar (eg, those that are monomorphic in the sample),

β̂ = E[(XTX)−1XTY |Y,E]

= E[XTX|Y,E]−1E[XTY |Y,E] +Op(1/n)

= Op(1/n)

so E[ β̂G×E|Y,E ] = Op(1/n) and Var
[

E[ β̂G×E|Y,E ]
]

= O(1/n2).

The second term in equation (3) is O(1/n), so the first term is of smaller
order and can be ignored when sample size is large. A model-robust variance
estimator will give λ̂ ≈ 1 in the absence of population substructure.
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