
Supporting Information
Mlot et al. 10.1073/pnas.1016658108
SI Text
Experiments of Ant Rafts in Soap Solutions.We find that even trace
amounts will cause the ants to radically change their behavior,
as shown in the images of a raft on water with traces of soap
(Fig. S1). As soon as ants become even slightly soapy, they im-
mediately release their grip with each other, which is shown by
the disintegration of the raft and its submergence underwater.
This is in contrast to the closely packed ants in the buoyant raft,
as shown in Figs. 1 and 2 in the main text.

Differential Equation Models of Ant-Raft Formation. Straight move-
ment in random direction model. Let N equal the total number of
ants. Let t denote time in seconds. Let nðtÞ denote the number of
ants in the bottom layer at time t equal to the area of the raft at
time t. The number of ants in the bottom layer can be converted
to square centimeters with conversion factor 34 ants ¼ 1 cm2.
Let h denote the eventual thickness of the raft, experimentally
determined to be approximately 2.5 (ant heights). In the straight
movement model, we assume that only ants in the top layer move,
and they move by picking a random direction and going straight
until they hit a boundary. When they hit a boundary, they
“bounce” with probability p ¼ 0.65 (this value determined by
observation), picking a random direction away from the bound-
ary, and “stick” with probability 1 − p. If they bounce, they go
again until they hit a boundary, where again they bounce with
probability p and stick with probability 1 − p. They repeat this
process until they stick, at which time they join the bottom h
layers there. The expected number of “bounces” before sticking
is therefore 1

1−p − 1 ¼ 1.86.

Lemma 1.Let x be a random point in a circle of radius r, and let θ be
a direction randomly chosen from the interval ½0;2π�. Then the
expected distance from x to the circle boundary, in the direction θ,
equals 8r

3π ≈ 0.8488r. Now let x be a point on the circle boundary and
let θ be a direction randomly chosen from the interval ½0;π� where
θ ¼ π∕2 means the direction toward the circle center. Then the
expected distance from x to the circle boundary in the direction θ
equals 4r∕π ≈ 1.27r.

The Proof is given in Calculus derivations so as not to disrupt
the exposition of the model.

Let u denote the speed of an ant in centimeters per second.
When N ≥ ðhþ 1ÞnðtÞ, there is a full top layer of ants who can
move. A single ant in that layer takes on average ½0.849þ
ð1.86Þð1.27Þ�r∕u ¼ 3.21r∕u s to reach a boundary and stick, where
πr2 ¼ nðtÞ∕34 so r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðtÞ∕34πp
is the radius of the raft in cen-

timeters. There are nðtÞ ants in the moving layer so, on average,
nðtÞu∕3.21r ants reach and stick to the boundary per second,
equaling

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
34πnðtÞp

u∕3.21 ants per second. These ants form a
new exterior boundary h ants thick. So,

dnðtÞ
dt

¼ u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
34πnðtÞ

p
∕3.21 h:

When hnðtÞ ≤ N ≤ ðhþ 1ÞnðtÞ, there is a partial layer of
N − hnðtÞ ants who can move. So,

dnðtÞ
dt

¼ u½N − hnðtÞ�∕3.21 hr

¼ u
ffiffiffiffiffiffiffiffi
34π

p
½N − hnðtÞ�∕3.21 h

ffiffiffiffiffiffiffiffi
nðtÞ

p
:

Brownianmotionmodel.LetN;t;nðtÞ;h be as in the Straight Motion
Model. We assume that only ants in the top layer move, and they
move in Brownian motion until they hit a boundary. It is more or
less obvious that the expected time to reach a boundary from the
center of a circle of radius r is r2 (up to scaling by ant speed). It is
not as obvious what the expected time to reach a boundary is from
a random point in the circle.

Lemma 2. Let x be a random point in a circle of radius r. Execute
standard Brownian motion from x. The expected time until the circle
boundary is reached is r2∕4.

Proof: From Øksendal (1), the expected first hitting time is
ðr2 − jxj2Þ∕2 where jxj2 is the squared distance to the circle center
from x. The rest is calculus, given later.

When N ≥ ðhþ 1ÞnðtÞ, there is a full top layer of ants who can
move. A single ant in that layer takes r2∕4 ¼ nðtÞ∕136π s to reach
a boundary, because πr2 ¼ nðtÞ∕34. There are nðtÞ ants in the
moving layer so, on average, 136πnðtÞ∕nðtÞ ¼ 136π ants reach
the boundary per second. Notice this number is independent
of the size of the raft and of N:

dnðtÞ
dt

¼ 136π∕h:

When hnðtÞ ≤ N ≤ ðhþ 1ÞnðtÞ, we have N − hnðtÞ ants in the
moving layer. On average, 136π½N − hnðtÞ�∕nðtÞ reach the bound-
ary per second. For this time period,

dnðtÞ
dt

¼ 136π½N − hnðtÞ�∕hnðtÞ:

Note, this model has to be scaled by some unknown factor,
which is the ant speed, but the ant speed here is not the usual
centimeters per second, but rather the Brownian motion scaling
compared with standard Brownian motion. This model’s predic-
tions do not match the data. In the data, rafts grow faster when N
is bigger. We changed the model to let every ant except those
in the lowest h layers move. The formula is simply the second
formula used for all t, that is,

dnðtÞ
dt

¼ 136π½N − hnðtÞ�∕hnðtÞ:

However, this model did not fit the data, either.

Calculus derivations.For the BrownianMotionModel, we want the
average value of ðr2 − x2Þ∕2 in a circle of radius r, where x2 is the
squared distance to the circle center, which is

1

πr2

Z
r

x¼0

r2 − x2

2
2πxdx ¼ r2∕4.

For the Straight Motion Model, we first need a geometric
lemma. Suppose the ant is at distance x from the circle center.
Consider the chord that is perpendicular to the line segment from
the circle center to the ant and passes through the ant. Let z
denote the length of the chord. Then ðz∕2Þ2 ¼ ðr − xÞðr þ xÞ
whence z∕2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − x2

p
. Now suppose the ant moves at angle θ
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to the chord. If θ ¼ 0 or θ ¼ π, the distance to the circle boundary
is z∕2. If θ ¼ π∕2, the distance is r þ x and if θ ¼ 3π∕2 the
distance is r − x. We need a formula for the general case of θ.
By symmetry, it suffices to consider the cases 0 ≤ θ ≤ π∕2;
π ≤ θ ≤ 3π∕2. The two cases θ, θ þ π define a chord passing
through the ant. Let y denote the length of the shorter segment
of the chord (where the chord intersects the ant). Then the longer
segment has length 2x sin θ þ y, from which we obtain

yð2x sin θ þ yÞ ¼ ðr − xÞðr þ xÞ ⇒ y2 þ 2x sin θy − ðr2 − x2Þ ¼ 0.

One of the roots to this quadratic is negative. Hence,

y ¼ −x sin θ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 sin2 θ þ ðr2 − x2Þ

q
:

If the ant randomly chooses between θ and θ þ π, the expected
distance traveled is 1

2
ð2x sin θ þ 2yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 sin2 θ þ r2 − x2

p
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − x2 cos2 θ
p

. (Check this formulation against the two extremes:
When θ ¼ π∕2, we have cos θ ¼ 0 and the expected distance is r,
which is correct. When θ ¼ 0, we have cos θ ¼ 1 and the expected
distance is

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − x2

p
¼ z∕2, which is correct.)

We assume that the ant chooses a random direction. The
expected distance traveled by the ant to a boundary is therefore

2

π

Z
π∕2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − x2 cos2 θ

p
dθ:

Taking the mean value of this individual expected distance as x
ranges from 0 to r gives an overall expected distance of

1

πr2

Z
r

0

2πxdx
Z

π∕2

0

2

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − x2 cos2 θ

p
dθ:

Putting the factor of r on the left (which is obvious by scaling; we
could have done it earlier) gives

r
Z

1

0

4x∕πdx
Z

π∕2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2 cos2 θ

p
dθ ¼ 8r∕3π ≈ 0.8488r:

The integral was calculated both numerically and with
Mathematica 7. (Check this integral against the two extremes. At
the two extremes of integration, the values are 2r∕π at x ¼ r, and r
at x ¼ 0. The average value ought to be somewhere between
0.64 ≈ 2∕π and 1.)

After the ant reaches the boundary, the situation is slightly
different. We assume that the ant moves in a random direction
away from the boundary. In terms of our model, we assume that
the ant chooses a random value of θ from the interval 0 ≤ θ ≤ π.
The expected distance to the (next) boundary is

2

π
r
Z

π∕2

0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2 θ

p
dθ ¼ 4r

π

Z
π∕2

0

sin θdθ ¼ 4r
π
¼ 1.27r:

1. Øksendal B, (2003) Stochastic Differential Equations: An Introduction with
Applications (New York, Springer), 6th Ed, p 125.

Fig. S1. Raft of 3,000 ants exposed to traces of surfactant: (A) top view; (B) side view.
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Movie S1. A raft of 500 ants pushed underwater using tweezers. The glistening sheen marks the presence of an air-layer waterproofing the raft.

Movie S1 (MOV)

Movie S2. Panoramic view of an ant raft, showing the ant–water contact line. Time sped up 2×.

Movie S2 (MOV)

Movie S3. Side view of 3,000 ants constructing a raft. The green fluid is water, atop which is air. At all times during the raft construction, the top layer of ants
remain dry, floating atop a wetted bottom layer of ants. Time sped up 8×.

Movie S3 (MOV)
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Movie S4. Top view of 3,000 ants constructing a raft. A sphere of ants is placed on the water surface. Upon contact with water, ants from the center of the raft
scramble radially outward, adding to the raft’s edge until generating an equilibrium shape of the raft resembling a pancake. Time sped up 8×.

Movie S4 (MOV)

Movie S5. Top view of 8,000 ants constructing a raft. Although this raft was the largest we studied, rafts of hundreds of thousands of fire ants can be observed
in the wild. Time sped up 15×.

Movie S5 (MOV)
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