# **Supporting Information**

## Okazaki et al. 10.1073/pnas.1104423108

#### **SI Materials and Methods**

**Expression Vectors and Cell Lines.** Mouse activation-induced cytidine deaminase (mAID) cDNA was cloned in-frame to the 5' end of EGFP-FLAG-HA sequence in pBluescript by a three-fragment ligation, and the resulting cDNA cassette encoding mAID-EGFP-FLAG-HA (mAID-GF) was excised and cloned into a retroviral vector pFB-ires-Puro (pFBP). Expression vectors of human AID (hAID) and AID mutants of human and mouse origins were generated by replacing the mAID fragment in pFBP-mAID-GF with the corresponding AID cDNAs. Retroviruses were produced by transient transfection of each pFBP vector into Plat-E cells using FuGENE 6 transfection reagent (Roche) and used to infect CH12F3-2 cells. Infected cells were selected with puromycin.

Immunopurification and Mass Spectrometry. Cytosolic extracts were prepared as described (1). Briefly, cells were washed once and resuspended in 1 mL/10<sup>8</sup> cells of hypotonic buffer [10 mM Hepes (pH 7.9), 1.5 mM MgCl<sub>2</sub>, 10 mM NaCl, Complete Protease Inhibitor Mixture (Roche)] and incubated on ice for 30 min. Cells were then disrupted by Dounce homogenization (50 strokes with a tight pestle) and centrifuged at  $800 \times g$  for 15 min at 4 °C. Supernatants were mixed with 0.11 volume of 10× cytosolic extraction buffer [0.3 M Hepes (pH 7.9), 30 mM MgCl<sub>2</sub>, and 1.4 M NaCl] and ultracentrifuged at  $100,000 \times g$  for 1 h at 4 °C. Resulting supernatants were supplemented with 10% glycerol and used as cytosolic extracts. Cytosolic extracts were precleared with mouse IgG-agarose (Sigma) for 30 min at 4 °C, then incubated with anti-FLAG M2-agarose (Sigma) for 2 h at 4 °C. After extensive washing with immunoprecipitation (IP) buffer [20 mM Hepes (pH 7.9), 1.5 mM MgCl<sub>2</sub>, 150 mM NaCl, 0.2 mM EDTA, 10% glycerol, Complete Protease Inhibitor Mixture (Roche)], coimmunoprecipitated proteins were eluted twice with 100 µg/mL

1. Dignam JD, et al. (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. *Nucleic Acids Res* 11:1475–1489.

of 3× FLAG peptides in IP buffer. The eluates were separated on 6–9% SDS/PAGE gels and visualized with MS-compatible silver staining. Each band on gels was excised with a scalpel and subjected to MS as described previously (2). Briefly, proteins were ingel digested with trypsin, and molecular-mass analysis of tryptic peptides was performed by MALDI-TOF/MS with an Ultraflex MALDI-TOF/TOF system (Bruker Daltonics). Mass spectra were subjected to peptide mass fingerprinting using the Mascot (Matrix Science) search engine against the NCBInr database.

IP and Western Blotting. IP with anti-FLAG antibody was performed as described above, except that coimmunoprecipitated proteins were eluted by boiling in Laemmli buffer. For IP with anti-Spt6 antibody, cytosolic extracts were first precleared with Protein G-Sepharose pretreated with 0.1% BSA in IP buffer for 30 min at 4 °C, then incubated with anti-Spt6 mAb 2-1 (kindly provided by Dr. Handa, Tokyo Institute of Technology, Tokyo, Japan) for 1 h at 4 °C, and the immune complexes were captured for 1 h at 4 °C by Protein G-Sepharose pretreated as above. Coimmunoprecipitated proteins were eluted by boiling in Laemmli buffer. Eluted proteins were separated by SDS/PAGE, transferred to PVDF membranes, and probed with the following antibodies: an anti-Spt6 polyclonal antibody S2-B generated in our laboratory, anti-FLAG M2 antibody (Sigma), anti-Nucleolin polyclonal antibody (Novus Biologicals), anti-eEF1α monoclonal antibody (Upstate), and anti-KAP1 polyclonal antibody (Abcam). Signal was visualized using ECL Plus Western Blotting Detection Reagents (GE Healthcare) and detected with LAS4000 (Fujifilm). To analyze the effect of DNase I and RNase A treatment, cytosolic extracts were incubated at room temperature for 10 min either with RNase A (130 µg/mL) or with DNase I (4,000 U/mL) and subjected to IP.

2. Takamatsu H, et al. (2009) Anti-moesin antibodies in the serum of patients with aplastic anemia stimulate peripheral blood mononuclear cells to secrete TNF-alpha and IFN- $\gamma$ . J Immunol 182:703–710.



**Fig. S1.** (*A*) Glycerol gradient sedimentation analysis of AID-GF protein in CH12F3-2A cells. Cytoplasmic extracts of CH12F3-2A cells expressing AID-GF (GFP-FLAG) were fractionated by sedimentation in 10–50% (vol/vol) glycerol gradient at 284,400 x *g* for 17 h. The presence of AID-GF was monitored by GFP fluorescence. (*B*) Glycerol gradient sedimentation analysis of the endogenous AID protein in CH12F3-2A cells. Cytoplasmic extracts of unstimulated and stimulated CH12F3-2A cells were fractionated by sedimentation in 10–50% (vol/vol) glycerol gradient at 284,400 x *g* for 17 h. The presence of AID protein was monitored by Western blotting using anti-AID antibody (KKM-1). Strong signals observed in fractions 3–7 seemed to be nonspecific because they were also observed in unstimulated cells. (C) Distribution of AID-GF protein was analyzed by sedimentation in 10–50% (vol/vol) glycerol gradient. Cytosolic extracts were treated with RNase A before sedimentation. The positions of marker proteins are shown: ovalbumin (4.55),  $\gamma$ -globulin (75), catalase (115), and thyroglobulin (195).



Fig. S2. SPT6 fragments isolated from yeast two-hybrid screening. pACT2 human lymph node cDNA library (Clontech) and pACT2 mouse pre-B-cell cDNA library (gift from Dr. Watanabe, Kyushu University, Fukuoka, Japan) were screened with pGBKT7-hAID and pGBKT7-mAID as bait, respectively. The C-terminal fragments of hSPT6 (3817–5178 nt) and mSPT6 (4050–5178 nt), which contain Src homology 2 domain, were isolated from the human and mouse libraries, respectively.



Fig. S3. (A) Trim28 knockdown severely reduced class switch recombination efficiency. CH12F3-2 cells (1.5 × 10<sup>6</sup>) were introduced with 1.5 µg of siRNAs against mTrim28, scrambled siRNA for them, an siRNA against mAID, a scrambled siRNA for it, or negative control siRNAs with a low (36%) and medium (48%) GC contents (Ctrl-L and Ctrl-M, respectively). The GC contents of oligos mTrim28-1, -2, -3, and -4 are medium (45–55%), and that of oligo AID is low (35–45%). Twenty-four hours after siRNA introduction, cells were stimulated with CD40L, IL-4, and TGF-β for 24 h. The percentages of IgA<sup>+</sup> cells in the live population are indicated. Mean ± SD values were obtained from triplicate experiments. (B) siRNAs against Trim28 efficiently reduced the amount of Trim28 protein but also reduced the amount of AID protein. (C) CH12F3-2 cells expressing mAID-ER (1.5 × 10<sup>6</sup>) were introduced with 1.5 µg of siRNAs against mTrim28, scrambled siRNA for them, an siRNA against mAID, a scrambled siRNA for it, or negative control siRNAs with low (36%) and medium (48%) GC contents (Ctrl-L and Ctrl-M, respectively). Twenty-four hours after siRNA introduction, cells were stimulated with OHT and TGF-β for 24 h. Percentages of IgA<sup>+</sup> cells in the live population are indicated. (D) siRNAs against Trim28 efficiently reduced the amount of Trim28 protein but did not affect the amount of AID-ER protein. (E and F) Splenocytes from Trim28<sup>fff</sup> × mb1-hCre and control mice were stimulated with LPS and IL-4 in vitro for 3 or 4 d. The amounts of μGLT, γ1GLT, AID, γ1PST, and HPRT were analyzed by semiguantitative PCR using a threefold serial dilution series (E). Percentages of IgG1<sup>+</sup> cells are indicated (F). Mean ± SD values were obtained from triplicate experiments. Data are representative of two mice for each genotype. Note that splenocytes from Trim28<sup>t/f</sup> × mb1-hCre mice formed blasts, as well as those from control mice upon stimulation with LPS and IL-4, whereas the percentage and absolute number of B220<sup>+</sup> B cells, IqA<sup>+</sup> B cells, PNA<sup>hi</sup> B cells in mesenteric lymph nodes, and Peyer's patches from Trim28<sup>f/f</sup> × mb1-hCre mice were reduced to approximately 10–25% of those from control mice. (G) Trim28 knockdown reduced SHM efficiency in the artificial substrate independently of AID function, presumably by reducing the transcription of the substrate. BL2 cells expressing JP8Bdel-ER and the artificial SHM assay substrate (1.5 × 10<sup>6</sup>) were introduced with 3.0 μg of siRNAs against hTRIM28, siRNAs against hAID, or negative control siRNAs with low (36%) and medium (48%) GC contents (Ctrl-L and Ctrl-M, respectively). The GC contents of oligos mTrim28-1, -2, -3, -4, and AID are medium (45-55%). Twenty-four hours after siRNA introduction, cells were stimulated with OHT for 24 h and incubated for an additional 48 h in the absence of OHT. Percentages of GFP<sup>-</sup> cells and mutation frequencies in the GFP sequence are shown. Data are representative of three independent experiments.

| AID mutants                          | CSR activity | SHM activity | Binding with Spt6 | Reference |
|--------------------------------------|--------------|--------------|-------------------|-----------|
| WT                                   | 100          | 100          | +                 |           |
| P20 (34-aa insertion at residue 182) | 3            | 71           | +                 | 1         |
| P13 (M139V)                          | 5            | <1           | -                 | 1         |
| P7 (R24W)                            | 1            | <1           | +                 | 1         |
| M6A                                  | 4            | 1            | -                 |           |
| N7A                                  | 90           | 47           | +                 |           |
| R8A                                  | 107          | 139          | +                 |           |
| R9A                                  | 89           | 93           | +                 |           |
| K10A                                 | 59           | 38           | +                 |           |
| K10R                                 | 80           | 54           | +                 |           |
| L172A                                | 65           | 28           | +                 | 2         |
| JP8Bdel                              | 14           | 548          | ND                | 2, 3      |
| mG23S                                | 97           | 11           | +                 | 4         |
| W20K                                 | 103          | 17           | +                 | 4         |
| W20K-ΔC                              | -            | ±            | +                 |           |
| V18S-R19V                            | 53           | 5            | +                 | 4         |
| V18S-R19V-ΔC                         | -            | -            | +                 |           |
| Δ2-26                                | -            | -            | -                 |           |
| Δ2-26-ΔC                             | -            | -            | -                 |           |
| Δ2-5                                 | +            | +            | +                 |           |
| Δ2-10                                | 0            | 0            | -                 | 3, 4      |
| Δ2-10-ΔC                             | -            | -            | -                 |           |

#### Table S1. Mutants of AID used in this study

All constructs except for mG23S are derived from human AID. Expected activities for CSR and SHM are indicated as +, -, or  $\pm$ . CSR, class switch recombination;  $\Delta$ C, deletion of residues 183–198, ND, not done.

1. Ta VT, et al. (2003) AID mutant analyses indicate requirement for class-switch-specific cofactors. Nat Immunol 4:843-848.

2. Doi T, et al. (2009) The C-terminal region of activation-induced cytidine deaminase is responsible for a recombination function other than DNA cleavage in class switch recombination. Proc Natl Acad Sci USA 106:2758–2763.

3. Ito S, et al. (2004) Activation-induced cytidine deaminase shuttles between nucleus and cytoplasm like apolipoprotein B mRNA editing catalytic polypeptide 1. Proc Natl Acad Sci USA 101:1975–1980.

4. Shinkura R, et al. (2004) Separate domains of AID are required for somatic hypermutation and class-switch recombination. Nat Immunol 5:707–712.

#### Table S2. Proteins interacting with AID in 293T

| Description                                                       | CSR by knockdown*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Knockdown efficiency*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Protein with known direct or indirect interaction with DNA or RNA |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DEAD (Asp-Glu-Ala-Asp) box polypeptide 17                         | 0.79 ± 0.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.32 ± 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DEAD (Asp-Glu-Ala-Asp) box polypeptide 20                         | $1.0 \pm 0.046$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.12 ± 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| heterogeneous nuclear ribonucleoprotein A1                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| insulin-like growth factor 2 mRNA binding protein 1               | 0.93 ± 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.36 ± 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| poly(A) binding protein, cytoplasmic 1                            | $1.4 \pm 0.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.46 ± 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Proteins involved in degradation of proteins                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| proteasome (prosome, macropain) activator subunit 3               | 1.1 ± 0.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.55 ± 0.084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Proteins involved in cell cycle regulation                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| AF4/FMR2 family, member 4                                         | $0.94 \pm 0.034$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.51 ± 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                   | Description<br>Protein with known direct or indirect interaction with DNA or RNA<br>DEAD (Asp-Glu-Ala-Asp) box polypeptide 17<br>DEAD (Asp-Glu-Ala-Asp) box polypeptide 20<br>heterogeneous nuclear ribonucleoprotein A1<br>insulin-like growth factor 2 mRNA binding protein 1<br>poly(A) binding protein, cytoplasmic 1<br>Proteins involved in degradation of proteins<br>proteasome (prosome, macropain) activator subunit 3<br>Proteins involved in cell cycle regulation<br>AF4/FMR2 family, member 4 | DescriptionCSR by knockdown*Protein with known direct or indirect interaction with DNA or RNADEAD (Asp-Glu-Ala-Asp) box polypeptide 17 $0.79 \pm 0.034$ DEAD (Asp-Glu-Ala-Asp) box polypeptide 20 $1.0 \pm 0.046$ heterogeneous nuclear ribonucleoprotein A1NDinsulin-like growth factor 2 mRNA binding protein 1 $0.93 \pm 0.05$ poly(A) binding protein, cytoplasmic 1 $1.4 \pm 0.02$ Proteins involved in degradation of proteins $1.1 \pm 0.034$ Proteins involved in cell cycle regulation $0.94 \pm 0.034$ |

CSR, class switch recombination; ND, not done.

\*Ratio to the control siRNA.

NAS PNAS

|            |                       |                                 | 1 5         |                                         |  |
|------------|-----------------------|---------------------------------|-------------|-----------------------------------------|--|
| Oligo      | Clone (mutated/total) | Mutated (deletion or insertion) | Total bases | Mutation frequency ( $\times 10^{-4}$ ) |  |
| OHT+       |                       |                                 |             |                                         |  |
| AID-1 (M)  | 5/24                  | 6 (0)                           | 39,792      | 1.5                                     |  |
| AID-2 (M)  | 0/24                  | 0 (0)                           | 39,792      | <0.3                                    |  |
| AID-3 (M)  | 1/24                  | 1 (0)                           | 39,792      | 0.3                                     |  |
| SPT6-1 (L) | 17/25                 | 34 (0)                          | 41,450      | 8.2                                     |  |
| SPT6-2 (L) | 15/24                 | 26 (1)                          | 39,792      | 6.5                                     |  |
| SPT6-3 (M) | 17/24                 | 24 (0)                          | 39,792      | 6.0                                     |  |
| Ctrl-L     | 12/24                 | 18 (0)                          | 39,792      | 4.5                                     |  |
| Ctrl-M     | 14/25                 | 21 (0)                          | 41,450      | 5.1                                     |  |
| OHT-       |                       |                                 |             |                                         |  |
| AID-1 (M)  | 2/24                  | 2 (0)                           | 39,792      | 0.5                                     |  |
| AID-2 (M)  | 2/24                  | 2 (0)                           | 39,792      | 0.5                                     |  |
| AID-3 (M)  | 0/24                  | 0 (0)                           | 39,792      | <0.3                                    |  |
| SPT6-1 (L) | 3/24                  | 3 (0)                           | 39,792      | 0.8                                     |  |
| SPT6-2 (L) | 1/24                  | 1 (0)                           | 39,792      | 0.3                                     |  |
| SPT6-3 (M) | 0/24                  | 0 (0)                           | 39,792      | <0.3                                    |  |
| Ctrl-L     | 0/24                  | 0 (0)                           | 39,792      | <0.3                                    |  |
| Ctrl-M     | 0/24                  | 0 (0)                           | 39,792      | <0.3                                    |  |
|            |                       |                                 |             |                                         |  |

The control siRNA oligo corresponding to each test siRNA is indicated as L (Ctrl-L) or M (Ctrl-M).

### Table S4. Mutation frequency in the GFP sequence in NIH 3T3 cells expressing mutant hAID-GFs

hAID-GF constructs Clone (mutated/total) Mutated (deletion or insertion) Total bases Mutation frequency (×10<sup>-4</sup>)

| WT   | 26/43 | 75 (1) | 41,495 | 18.1 |  |
|------|-------|--------|--------|------|--|
| M6A  | 1/45  | 1 (0)  | 43,425 | 0.2  |  |
| N7A  | 20/46 | 38 (1) | 44,390 | 8.6  |  |
| R8A  | 25/35 | 85 (5) | 33,775 | 25.2 |  |
| R9A  | 25/45 | 73 (2) | 43,425 | 16.8 |  |
| K10A | 18/47 | 31 (2) | 45,355 | 6.8  |  |
| K10R | 21/46 | 43 (5) | 44,390 | 9.7  |  |
| Mock | 3/46  | 3 (0)  | 44,390 | 0.7  |  |
|      |       |        |        |      |  |

PNAS PNAS